
ORIGINAL RESEARCH
published: 26 November 2019
doi: 10.3389/fonc.2019.01294

Frontiers in Oncology | www.frontiersin.org 1 November 2019 | Volume 9 | Article 1294

Edited by:

Lasse Jensen,

Linköping University, Sweden

Reviewed by:

Xingxin Wu,

Nanjing University, China

Jianfeng Cai,

University of South Florida,

United States

*Correspondence:

Shun Zhu

shun_zhu@fudan.edu.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Molecular and Cellular Oncology,

a section of the journal

Frontiers in Oncology

Received: 31 October 2019

Accepted: 07 November 2019

Published: 26 November 2019

Citation:

Yang L, Sun X, Ye Y, Lu Y, Zuo J,

Liu W, Elcock A and Zhu S (2019)

p38α Mitogen-Activated Protein

Kinase Is a Druggable Target in

Pancreatic Adenocarcinoma.

Front. Oncol. 9:1294.

doi: 10.3389/fonc.2019.01294

p38α Mitogen-Activated Protein
Kinase Is a Druggable Target in
Pancreatic Adenocarcinoma
Ling Yang 1†, Xiaoting Sun 2†, Ying Ye 3†, Yongtian Lu 4, Ji Zuo 1, Wen Liu 1, Adrian Elcock 5

and Shun Zhu 1*

1Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China,
2Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai,

China, 3Department of Oral Implantology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration,

School and Hospital of Stomatology, Tongji University, Shanghai, China, 4Department of ENT, Second People’s Hospital of

Shenzhen, First Affiliated Hospital of Shenzhen University, Shenzhen, China, 5Department of Biochemistry, University of Iowa,

Iowa City, IA, United States

p38 mitogen-activated protein kinases are signaling molecules with major involvement
in cancer. A detailed mechanistic understanding of how p38 MAPK family members
function is urgently warranted for cancer targeted therapy. The conformational dynamics
of the most common member of p38 MAPK family, p38α, are crucial for its function
but poorly understood. Here we found that, unlike in other cancer types, p38α is
significantly activated in pancreatic adenocarcinoma samples, suggesting its potential
for anti-pancreatic cancer therapy. Using a state of the art supercomputer, Anton,
long-timescale (39 µs) unbiased molecular dynamics simulations of p38α show that apo
p38α has high structural flexibility in six regions, and reveal potential catalysis mechanism
involving a “butterfly” motion. Moreover, in vitro studies show the low-selectivity of the
current p38α inhibitors in both human and mouse pancreatic cancer cell lines, while
computational solvent mapping identified 17 novel pockets for drug design. Taken
together, our study reveals the conformational dynamics and potentially druggable
pockets of p38α, which may potentiate p38α-targeting drug development and benefit
pancreatic cancer patients.

Keywords: p38α, molecular dynamics, tumor targeted therapy, conformational dynamics, pancreatic cancer

INTRODUCTION

p38 mitogen-activated protein kinases (MAPKs) play critical roles in cellular responses,
proliferation, survival, cell cycle, and migration in cancer. p38 MAPK family includes p38α
(MAPK14), p38β (MAPK11), p38γ (MAPK12), and p38δ (MAPK13). The four p38 MAPK family
members have different tissue expression patterns, with p38α being ubiquitously expressed at
significant levels in most cell types. The p38 MAPKs function in a cell context-dependent manner
(1–4). However, a detailed mechanistic understanding of how p38MAPK family members function
is still not well-understood. A major challenge will be to determine when and how to specifically
target p38 MAPK for disease therapy.

To gain insights into its molecular mechanisms and design potential therapeutics, the structure
of MAP kinase p38α has been extensively studied over the last two decades (5–8). X-ray
crystallography and nuclearmagnetic resonance (NMR) showed that p38α consists of two domains,
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a 135-residue N-terminal domain mainly composed of β-sheets
and a 225-residue C-terminal domain mainly composed of α-
helices, in between of which lies the catalytic site, i.e., the
ATP-binding pocket (9, 10). Despite its seemingly rigid crystal
structures, p38α is highly dynamic, which is supported by various
evidence. Firstly, in the majority (∼78%) of the p38α crystal
structures, e.g., 3L8X (11), 3OCG (12), and 2NPQ (13), the
glycine-rich loop and/or the activation loop is invisible in the
electron density map, indicating the structural flexibility of
these loops. Secondly, hydrogen-exchange mass spectrometry
(HX/MS) study showed that phosphorylation of the activation
loop induced conformational changes in p38α (14); While X-ray
crystallographic study showed that phosphorylation brings the
N-terminal domain and C-terminal domain closer (15). Thirdly,
NMR experiments of p38α in apo and ligand-bound forms
suggested that the ATP-binding pocket is highly flexible even
after ligand binding (16, 17). These studies reveal the important
roles of conformational dynamics in the activation and catalysis
of p38α.

Pharmacologically, p38α is considered as a potential target for
various diseases such as inflammatory diseases and cancer. The
potent small-molecule inhibitor SB203580 competitively binds
the ATP-binding pocket and has been widely used to study
p38 MAPK functions (5). Nevertheless, given the similarity of
the ATP-binding site in different kinases, SB203580 also targets
non-p38 protein kinases, usually at higher concentrations (18).
Over the years, many p38α inhibitors have been developed,
for example BIRB796, which leads to a conformational
reorganization that prevents ATP binding and activation (19).
The C-terminal domain has also been predicted to have the
flexibility for potentially binding differently shaped compounds
(20). For p38α inhibitor development, allosteric small-molecule
inhibitors that target other regions of the kinase are warranted
and they might reduce the off-target effects in drug applications.

Clinically, p38 MAPK inhibitors show significant effects
in pre-clinical animal models but repeatedly failed in clinical
trials (21). In cancer study, p38α and p38β increase cell
proliferation and invasion of colon cancer, follicular lymphoma,
ovarian cancer, and more recently, pancreatic cancer (22–25).
It is indicated that targeting p38 MAPKs, especially p38α,
should be explored for cancer therapy. However, several phase
I clinical studies with p38 MAPK small-molecule direct or
indirect inhibitors show hepatic, neurological, gastrointestinal,
and cardiovascular toxicities, indicating that the commonly
studied inhibitors are not highly selective (26). Currently, one of
the major challenges in pancreatic cancer drug development is to
overcome drug off-target effects and drug resistance (26, 27). It
is rational to speculate that next-generation highly selective p38
MAPK inhibitors may exhibit less adverse effects. However, it still
requires further investigation in cancer patients.

In this work, by screening pancreatic adenocarcinoma
(PDAC) patient samples (n = 40) and TCGA database, we
demonstrated that p38 MAPKs, especially p38α are highly
expressed and activated. p38α blockades show significant anti-
tumor effect in PDAC cells, but are not selective enough.
To pave the way for highly selective inhibitor development,
conformational dynamics of p38α was examined. Anton

supercomputer long-timescale (39 µs) MD simulations using
both AMBER and OPLS force fields show the p38α flexibility
in six regions. Mechanistically, p38α MD simulations reveal a
“butterfly” motion that might be important for p38α catalytic
function. In addition, computational solvent mapping reveals
17 novel pockets that are potentially druggable for cancer
therapy. To our knowledge, this is the first comprehensive
study of both the conformational dynamics and potentially
druggable pockets in p38α. This study provides insights into
understanding the molecular mechanism of p38α function
and into developing potential drugs with high specificity and
selectivity against PDAC.

RESULTS

p38 MAPKs Expression Correlates With
Poor Prognosis in PDAC Patients
To investigate the role of p38 MAPKs in cancer, we screened
a panel of human tumor tissues in The Cancer Genome Atlas
(TCGA) that spontaneously express p38 MAPKs. We have found
that the majority of the tumor tissues express similar level of p38
MAPKs to its adjacent healthy tissues (black labeled, Figure 1A,
Figures S1A–C), while uterine carcinosarcoma (UCS), uterine
corpus endometrial carcinoma (UCEC), and chromophobe renal
cell carcinoma (KICH) show decreased p38α (MAPK14), p38β
(MAPK11), and p38γ (MAPK12) expression compared with
control pancreas (green labeled, Figure 1A, Figures S1A,B).
Surprisingly, between more than 30 types of cancer, only
pancreatic adenocarcinoma (PAADor PDAC) shows a significant
increase of p38α, p38β , and p38γ compared with healthy control
pancreas (red labeled, Figure 1A, Figures S1A,B), suggesting
that p38 MAPKs may be involved in PDAC development.
To further validate these findings, we detected the mRNA
level for all four members of the p38 MAPK family. Indeed,
p38α, p38β , and p38γ are all increased markedly, while p38δ
(MAPK13) shows a trend of increase (Figure 1B). p38α shows a
significant dominance among these genes (Figure 1C), indicating
its importance among four members. We next investigated the
relationship of p38 with PDAC clinical outcomes. Surprisingly,
p38α showed a trend of increasing with advanced stage, and
strongly correlated with poor overall survival in PDAC patients
(Figures 1D,E). These results suggest that p38α plays a role
in PDAC progression and correlates with poor prognosis in
PDAC patients.

p38α Expression Correlates With Adipose
Markers in PDAC Tissues
It was reported that proliferating cancer cells may take up
exogenous lipids and activating endogenous lipid biosynthesis
(28), and tumor implanted in adipose environment show
significant lipid metabolic reprogramming (29). Considering
that PDAC is one of the tumors that adjacent to the adipose
environment, we tested the correlation of p38 MAPKs and lipid
droplet marker perilipin (PLIN) family in the PDAC database.
Surprisingly, p38α strongly correlated with PLIN 2 and 3, two
small lipid droplets markers, but not PLIN1, 4, and 5, which

Frontiers in Oncology | www.frontiersin.org 2 November 2019 | Volume 9 | Article 1294

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yang et al. p38α Dynamics for Pancreatic Cancer

FIGURE 1 | p38α expression correlates with poor prognosis and adipose markers in PDAC patients. (A) Transcriptomic expression levels of MAPK14 across
multiple cancer types and paired normal samples, with each dot representing a distinct tumor or normal sample. Red dot, tumor sample; Green dot, control sample; Red

(Continued)
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FIGURE 1 | group name, significantly upregulated; Green group name, significantly downregulated; Black group name, not significant. (B) Transcriptomic expression
levels of MAPK14, MAPK11, MAPK12, and MAPK13 in PDAC and adjacent pancreas samples [n(Control) = 179 samples; n (PAAD) = 171 samples].
(C) Transcriptomic expression levels of MAPK14, MAPK11 and MAPK12 in PDAC samples [n (PAAD) = 171 samples]. (D) Violin plots of MAPK14 based on PDAC
patient pathological stage [n (PAAD) = 171 samples]. (E) Overall survival (OS) analysis of PDAC patients based on MAPK14 expression. (F) Correlation analysis of
MAPK14 and adipose markers (PLIN1, PLIN2, PLIN3, PLIN4, PLIN5) expression in human PDAC tissues and adjacent pancreas. Control group = 179 samples;
PAAD group = 171 samples. *p < 0.05. NS = not significant. Data presented as mean ± s.e.m.

are the big lipid droplets marker (Figure 1F). It was plausible
that small lipid droplets exist inside pancreatic tumor cells or
in mobilized adipocytes in the tumor microenvironment. These
findings support that p38α correlates with adipose-rich PDAC
and may be involved in cancer lipid metabolism.

p38α Is Activated in PDAC Patient Samples
To validate our findings, we measured p38α levels in human
PDAC patients. In this study, the patient PDAC sample and
adjacent pancreas were compared. In accordance with previous
report (30), PDAC tissues show significant infiltration of
inflammatory cells, stromal cellular components, and activated
fibroblasts (Figure 2A). Next, we detected p38α in these samples.
As expected, p38α is highly expressed in human PDAC
tissues (Figures 2B,D; Figure S2). Consistent with this result,
western blot and immunohistochemistry staining show highly
activated phospho-p38α in human PDAC tissues (Figures 2B,D).
Furthermore, pathological analysis shows that both p38α and
phospho-p38α are mainly located in epithelial cancer cells
(Figure 2C). Western blot of various cell lines demonstrates that
PDAC cancer cells and endothelial primary cells expressed high
levels of p38α protein, whereas human THP-1 macrophage-like
cell line, and human stromal fibroblasts lacked p38α expression
(Figure 2E). These findings further support our notion that p38α
is activated in PDAC cells. These pilot clinical findings validate
our TCGA data.

p38α Blockade Enhances Apoptosis of
Human and Mouse PDAC Cells
To gain further mechanistic insights of p38α blockade on cancer,
human pancreatic adenocarcinoma cells MiaPaca-2, Panc-1, and
mouse PDAC cell line Panc02 were projected for p38α blockade.
The canonical inhibitor SB203580, which can block both p38α
and p38β (31), and ralimetinib, a small molecule inhibitor
specifically for p38α under phase 2 clinical trial (32), were tested.
As expected, both drugs significantly inhibit PDAC cell viability,
with the IC50 around 56.89µM (Figure 2F). These findings
suggest the potential of p38α as a therapeutic target for PDAC.

p38α Is Highly Dynamic Locally and
Globally
Despite its potential for PDAC therapy, our understanding of the
structural and functional basis of p38α is still poor. To investigate
the structural dynamics of p38α, we applied the state of the art
supercomputer, Anton for simulation of our potential targets
(33). Three simulation runs of apo p38α and one simulation
run of ligand-bound p38α (Table 1) for the AMBERff99SB-ILDN
and OPLS-AA/L force fields (abbreviated as AMBER and OPLS)
were performed (Table 2) and the convergence was evaluated

(Figure S3). We plot the root mean square deviations (RMSDs)
of the protein backbone from their crystallographic positions
for all simulation runs. In AMBER simulations, RMSDs of apo
p38α range from 2 to 5 Å (Figure 3A, left panel, red, orange,
and green lines); in OPLS simulations, RMSDs of the apo p38α
run go up to 8 Å (Figure 3A, right panel, red line). In contrast,
ligand-bound p38α is below 4 Å in both AMBER and OPLS
simulations (Figure 3A, blue lines). The RMSD discrepancy
between AMBER and OPLS simulations is possibly due to their
different preference for secondary structure propensities. The
RMSD discrepancy between apo and ligand-bound p38α suggests
that the conformational flexibility of p38α is dampened upon
ligand binding. It should be noted that as the N terminal and
C terminal ends of p38α can be quite floppy (Figure S4), these
ends were truncated in MD simulations. These results show
that apo p38α exhibits higher structural flexibility than ligand-
bound p38α.

To show global structural excursions of apo p38α, we visually
inspected trajectories of simulation runs and found several
representative conformations (Figure 3B, pink ribbons) that
were aligned to the crystal structure (Figure 3B, light blue
ribbons). In AMBER apo3, we see a spike in the RMSD
plot at ∼1,790 ns (Figure 3A, left panel, green line), which
attributes to the loss of helicity in αD helix and “closing” motion
of the glycine-rich loop (Figure 3B, AMBER apo3, magenta
circles; Figure S5). In OPLS apo1, RMSD rises rapidly to ∼8
Å (Figure 3A, right panel, red line), which can be mainly
attributable to the “closing” motion of the glycine-rich loop
that is accompanied by large conformational changes in both
the N-terminal and C-terminal domains (Figure 3B, OPLS apo1
magenta circle). In OPLS apo2, RMSD climbs up to ∼4.5 Å at
∼1,000 ns and descends to 3.5 Å at ∼2,000 ns (Figure 3A, right
panel, orange line), which identify the “closing” and “opening”
of the glycine-rich loop (Figure 3B, OPLS apo2, magenta circle).
In OPLS apo3, RMSD rises steadily to ∼4 Å (Figure 3A, right
panel, green line), which classifies the “closing” of the glycine-
rich loop (Figure 3B, OPLS apo3, magenta circle). Among these
structural excursions, OPLS apo1 seems to have the highest
RMSD at 7.0 Å (Figure 3B, OPLS apo1, magenta circle), probably
due to the global conformational change of both the N-terminal
and C-terminal domains. It is also intriguing to see that in both
OPLS apo1 and OPLS apo2, the glycine-rich loop is deformed
significantly compared with the β-hairpin structure in the crystal
structure (Figure 3B, OPLS apo1 and OPLS apo2).

Furthermore, to understand the local structural dynamics of
p38α, residue-based root mean square fluctuations (RMSFs) were
calculated and mapped onto the p38α structure (Figure 3C).
In general, we found that local structural dynamics is highly
dependent on the secondary structure of the local region. In
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FIGURE 2 | p38α is activated in cancer cells in PDAC patient samples. (A) Micrographs of H&E and immunohistochemistry staining with CD163, PDGFRβ, and
αSMA. Quantification of CD163+, PDGFRβ+, and αSMA+ signals (n = 8 random fields per group). (B) Micrographs of immunohistochemistry staining with p38 and

(Continued)
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FIGURE 2 | Phospho-p38 in PDAC and adjacent pancreas samples. Quantification of p38+, Phospho-p38+ signals (n = 8 random fields per group). (C) Pathological
analysis of p38 and Phospho-p38 in PDAC and adjacent pancreas samples (n = 20 samples per group). (D) Protein expression levels of p38 and Phospho-p38 in
human PDAC tissues and adjacent pancreas (n = 20 samples per group). (E) protein expression levels of p38 and Phospho-p38 in various human cell lines (n = 3
samples per group). (F) Cell viabilities of Pan02 cell lines treated with 3.125–200µM SB203580 for 24 h (n = 6 samples per group). *p < 0.05; **p < 0.01;
***p < 0.001. NS = not significant. Data presented as mean ± s.e.m.

TABLE 1 | Equilibrium angles for the eight restrained dihedral angles of the ligand
SB203580.

ai-aj-ak-al ϕ(◦)

CB5-CB4-CC5-CC4 42.99

CB5-CB4-CC5-NC1 −138.65

CB3-CB4-CC5-CC4 −136.12

CB3-CB4-CC5-NC1 42.23

CD1-CD6-CC4-NC3 56.05

CD1-CD6-CC4-CC5 −124.05

CD5-CD6-CC4-NC3 −122.52

CD5-CD6-CC4-CC5 57.38

The atom names are consistent with the crystal structure (PDB code: 1A9U).

TABLE 2 | Simulation parameters for MD simulations of apo and
SB203580-bound p38α.

Type Form Force field Box size (Å3) #Atoms Duration
(µs)

Solution Apo AMBER 85.0 × 85.0 × 85.0 60,120 6.5(apo1);
3.2(apo2);
3.2(apo3)

Solution Bound AMBER 85.0 × 85.0 × 85.0 60,253 6.4

Solution Apo OPLS 85.0 × 85.0 × 85.0 60,120 6.3(apo1);
3.6(apo2);
3.4(apo3)

Solution Bound OPLS 85.0 × 85.0 × 85.0 60,253 6.3

α-helices- or β-sheets-rich local regions, low structural flexibility
is observed, such as β-sheets 1–5 in the N-terminal domain
(Figure S6) (34), and C-terminal domain that is made up of
α-helices E, F, H, and G (Figure 3C, blue and cyan tubes).
In local regions mainly consisting of disordered secondary
structures such as loops and turns, high structural flexibility is
observed (Figure 3C, orange and red tubes). In AMBER and
OPLS simulations of p38α, high structural flexibility is observed
mainly in 6 local regions (Figures 3C,D): (1) the glycine-rich
loop (residue 30–38); (2) the L6 loop (residue 93–99); (3) the
αD helix (residue 113–119); (4) the activation loop (residue 169–
183); (5) the MAP kinase insert (residue 243–261); (6) the L16
loop (residue 305–330). Taken together, these data suggested
p38α is highly dynamic in the entire kinase structure and in the
specific secondary structures of local regions.

“Butterfly” Motions Potentially Contribute
to p38α Enzymatic Catalysis
To gain further insights on the catalysis mechanism of p38α,
we performed a principal component analysis (PCA) on p38α

trajectories. For both AMBER and OPLS simulations, the
trajectories of three apo p38α runs and one ligand-bound p38α
run were combined to build a structure ensemble for PCA. The
two most dominant PCs, PC1 and PC2, account for a large
fraction of the correlated motions (S7A). Both AMBER and
OPLS force fields produce considerable structural excursions (as
big as 100 Å) from the crystal structures (Figures 4A,B). AMBER
simulations show a more restricted structural excursion pattern
(Figure 4A) while OPLS simulations have a more expanded
pattern (Figure 4B). These results are in accordance with our
previous findings (Figure 3A).

Structural morphing between the two extreme structures
along the PC1 and PC2 axis was performed (Movies S1–S4).
For PC1 and PC2, we overlaid the two extreme structures
onto each other (Figures 4C–F). Note that the pink and blue
structures represent the + and – axis. In AMBER simulations,
PC1 represents the “butterfly” motion between the N-terminal
and C-terminal domains (Figure 4C; Movie S1), where the N-
terminal domain and the C-terminal domain resembling the
wings of “butterfly”; PC2 represents the “twist” motion, where the
N-terminal domain and the C-terminal domain rotates relative
to each other (Figure 4D; Movie S2). In OPLS simulations,
PC1 represents a large conformational change where both the
N-terminal domain and the C-terminal domain move toward
to each other, completely occluding the ATP-binding pocket
(Figure 4E; Movie S3); PC2 represents a “butterfly” motion
(Figure 4F; Movie S4). Notably, although the similarity of PCs
in AMBER and OPLS simulations are limited (Figure S7B), it
appears that both force fields have a reasonable agreement with
the experimental crystal structures (Figures S7C,D).

Simulations Agree With Experimental NMR
Observables
Chemical shifts have been important indicators of local backbone
conformations (35). For verification of our results, we compared
simulated and experimental chemical shifts of apo p38α. Linear
regression of chemical shifts for five atom types in two
representative simulation runs is performed (Figures 5A,B).
The correlation coefficient (r2) suggest that there is excellent
agreement for atom CB (r2: 0.98, 0.99) and atom CA (r2:
0.88, 0.89); reasonable agreement for atom C and N (r2: 0.42,
0.64); and bad agreement for atom H (r2: 0.19, 0.28). The
correlation coefficient of the five atoms ranks similarly in other
simulation runs (Figure S8). The top six outlier amino acid
residues were highlighted (Figures 5A,B, red dots). To confirm
the PPM results, we also performed chemical shift predictions
using SHIFTX2. As expected, similar results were observed,
indicating the accuracy of our simulation data (Figures S9–
S11). Despite different structural flexibility in AMBER and
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FIGURE 3 | Dynamics of p38α kinase in MD simulations. (A) RMSDs of p38α in AMBER and OPLS simulations. Three runs of apo p38α (apo1, apo2, and apo3) and
one run of ligand-bound p38α are shown in red, orange, green, and blue, respectively. The probability density functions are shown in the right panel. (B)
Representative snapshots (pink) aligned to the initial structure (light blue). Regions of interest are marked by magenta circle. (C) RMSFs mapped onto p38α structure.

(Continued)
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FIGURE 3 | Sausage representation is used for the protein. The thickness of the tube is normalized within each simulation run with thicker tubes corresponding to
higher RMSFs. The color of the tube is normalized using all simulation runs using the “rainbow” gradient with warmer color corresponding to higher RMSFs. Color
normalization was done by setting the color range to 0–8.3 Å (the largest RMSF value in all simulations). The N-terminal end (residue 4–13) and C-terminal end
(residue 345–354) are not shown and excluded from the color normalization for better visualization. (D) RMSFs of p38α backbone in AMBER and OPLS simulations.
The color scheme is same as in RMSD.

FIGURE 4 | Principal component analysis. PC1-PC2 plots for AMBER simulations (A) and OPLS simulations (B). Data for apo1, apo2, apo3 and bound simulations
are shown as red, orange, green, and blue dots. Data for the crystal structures of apo p38α (PDB code: 1P38) and SB203580-bound p38α (PDB code: 1A9U) are
shown as white circle and triangle, respectively on the PC1-PC2 plot. Probability density functions are shown in upper and right panels. (C–F) show the two extreme
structures along the PC1 or PC2 axis as blue and pink ribbons. Blue and pink indicate the – and + axis, respectively.

OPLS simulations, there seems to be no significant difference
between the accuracy of the chemical shifts. Furthermore,
experimental residual dipolar couplings (RDCs) of apo p38α
were applied for accuracy validation (Table 3). We compare
simulated and experimental RDCs for 39 residues (Figure S12A)
in apo p38α (36). The probability density function of Pearson’s
R (between simulated and experimental RDCs) indicated that
MD simulations using both force fields agree generally well
with RDC experiments (Figure S12B). Linear regressions of
simulated and experimental RDCs show the same trend except
OPLS apo1 (r2 is 0.00), possibly due to the surface charge
distribution difference for all 85 charged residues (Table 4,
Figure S13). The other five simulation runs agree generally well

(r2 is 0.47, 0.34, 0.38, 0.35, 0.19 for AMBER apo1, AMBER apo2,
AMBER apo3, OPLS apo2, OPLS apo3; Figures 5C,D). Taken
together, these data suggest the high quality and accuracy of
our simulations.

Dynamics of p38α Inhibitor in the
ATP-Binding Pocket
The commonly used p38α inhibitor, SB203580, was suggested
as a potential drug for cancer therapy (37). To study the drug-
kinase dynamics of p38α, we measured the distances of two
major interactions: (1) the hydrogen bond between the backbone
of MET109 and SB203580; (2) the π-π stacking interactions
between the phenyl sidechain of TYR35 and SB203580. In

Frontiers in Oncology | www.frontiersin.org 8 November 2019 | Volume 9 | Article 1294

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yang et al. p38α Dynamics for Pancreatic Cancer

FIGURE 5 | Comparison between simulated and experimental NMR observables. (A,B) Comparison between simulated and experimental chemical shifts of apo p38α

for simulation runs AMBER apo1 and OPLS apo1. Chemical shifts were calculated from MD snapshots at an interval of 1 ns using PPM. The x-axis and y-axis of the
correlation plot are the simulated and experimental chemical shifts, respectively. The linear regression lines are shown as gray, with slope a, intersection b, and
correlation coefficient r2 shown in top left corner. The top six outlier residues with the largest RMS error are shown as red dots. (C,D) Comparison between simulated
and experimental RDCs of apo p38α. Results are shown for all AMBER simulations and OPLS simulations of apo p38α. The x-axis and y-axis of the correlation plot
are the simulated and experimental RDCs, respectively. The linear regression lines are shown as red, with slope a, intersection b, and correlation coefficient r2 shown
in top left corner.

AMBER simulations, the hydrogen bond is well-maintained; the
π-π stacking interaction is frequently disrupted with ring-ring
distance up to 13 Å (Figure 6A). In OPLS simulations, although
with minor fluctuations, both the hydrogen bond and the π-π
stacking interaction are well-maintained (Figure 6A). SB203580
is less stable in AMBER simulations than in OPLS simulations,
which is consistent with the wider range of RMSD fluctuations
in AMBER simulations (Figure 3A, blue lines), suggesting that
the ligand stability might affect the protein flexibility and
vice versa.

Current p38α Inhibitor Is Not Highly
Selective
Although a variety of p38α inhibitors have been developed
with enhanced specificity (38), most of these inhibitors are ATP
competitors. Due to the similarity of the ATP-binding site of
different kinases, off-target effects remain one of the biggest
obstacles for the clinical application of p38α inhibitors. We
tested the p38α inhibitors in PDAC cancer cells and various
host cell lines. Indeed, both first and second generation of p38α
inhibitors impedes cell viability of healthy host fibroblasts, and
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TABLE 3 | Experimental 1H–15N residual dipolar couplings of the 39 residues in
apo p38α.

Resid Residue RDC (Hz)

17 ILE −21.25

19 GLU 4.117647

20 VAL 13.71324

23 ARG −2.61029

27 LEU −7.79412

28 SER 40.40441

33 GLY −9.11765

36 GLY −0.29412

42 PHE 18.23529

43 ASP −14.9632

56 SER −7.79412

57 ARG −1.94853

60 GLN −15.8456

61 SER −12.5368

81 GLU 38.75

91 THR −6.47059

93 ALA −13.75

94 ARG 18.56618

97 GLU −4.70588

98 GLU 9.522059

99 PHE 12.83088

101 ASP −8.18015

129 PHE −2.83088

296 ARG −21.1397

297 ILE 16.13971

298 THR 29.15441

300 ALA −30.9559

306 ALA −5.42279

309 ALA −25.1654

310 GLN 7.647059

317 GLU 41.39706

319 VAL 13.60294

321 ASP 26.17647

330 ARG −20.1471

331 ASP 27.44485

332 LEU −9.33824

333 LEU 13.82353

335 ASP −30.3493

343 ASP −26.5441

Data were extracted from the reference Honndorf et al. (36).

monocytes in a similar pattern as of cancer cells (Figure 6B).
Surprisingly, in PDAC cells treated with two classical inhibitors,
the phosphorylation of other kinases such as AKT, ERK is
significantly altered under a relatively modest concentration
(Figure 6C). Interestingly, the total amount of AKT was reduced
under 100µM SB203580 and 1µM ralimetinib treatment,
suggesting that an indirect regulatory pathway might be involved
(Figure 6C). These findings suggest current p38α inhibitor is not
selective enough. New approaches to inhibit the p38α needs to be
explored for PDAC treatment.

TABLE 4 | List of charged residues used in distance matrix calculations.

Index Residue

0 GLU4

1 ARG5

2 ARG10

3 GLU12

4 LYS15

5 GLU19

6 GLU22

7 ARG23

8 ASP43

9 LYS45

10 ARG49

11 LYS53

12 LYS54

13 ARG57

14 LYS66

15 ARG67

16 ARG70

17 GLU71

18 ARG73

19 LYS76

20 LYS79

21 GLU81

22 ASP88

23 ARG94

24 GLU97

25 GLU98

26 ASP101

27 ASP112

28 LYS118

29 LYS121

30 ASP124

31 ASP125

32 ARG136

33 LYS139

34 ASP145

35 ARG149

36 ASP150

37 LYS152

38 GLU160

39 ASP161

40 GLU163

41 LYS165

42 ASP168

43 ARG173

44 ASP176

45 ASP177

46 GLU178

47 ARG186

48 ARG189

49 GLU192

50 ASP205

(Continued)
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TABLE 4 | Continued

Index Residue

51 GLU215

52 ARG220

53 ASP227

54 ASP230

55 LYS233

56 ARG237

57 GLU245

58 LYS248

59 LYS249

60 GLU253

61 ARG256

62 LYS267

63 ASP283

64 GLU286

65 LYS287

66 ASP292

67 ASP294

68 LYS295

69 ARG296

70 ASP313

71 ASP315

72 ASP316

73 GLU317

74 ASP321

75 ASP324

76 GLU328

77 ARG330

78 ASP331

79 ASP335

80 GLU336

81 LYS338

82 ASP343

83 GLU344

84 ASP354

Indices are consistent with that in distance matrix plots.

Potential Drug Binding Sites in p38α

To explore potential ligand-binding pockets in p38α,
computational solvent mapping was performed using FTMap
(39, 40). Pockets with consensus cluster strength S ≥ 16
are considered druggable. Using these criteria, 19 druggable
pockets were found (Table 5): αD-L13 pocket, L4-L7 pocket,
P-αC pocket, αG-L14 pocket, αE-L16 pocket, αE-L16b pocket,
P-L12 pocket, L12 pocket, αE-β7 pocket, αC-αL16 pocket,
β5-αL16 pocket, P-L16 pocket, MKI pocket, ATP pocket, αE-αF
pocket, αH-MKI pocket, αF-αG pocket, β2-L4 pocket, αE-L4
pocket (Figure 6D). These pockets have a varied frequency of
occurrences in simulations (Table 6) and are scattered in the
entire p38α structure (Figure 6E). For comparison, FTMap
analysis performed on crystal structure ensemble consisting of
196 crystal structures of p38α identified 6 druggable pockets:

P-L16 pocket, ATP pocket, L4–L7 pocket, αG-L14 pocket, β5-
αL16 pocket, MKI pocket, which partially verified our simulation
results. Besides the well-studied ATP pocket andMKI pocket, the
remaining 17 pockets are novel pockets that may be explored for
further cancer drug development. Interestingly, a comparison
between apo and ligand-bound simulations indicates that
the presence of the ligand seems to prevent the exposure of
a few binding pockets in AMBER (Figure S14A) and OPLS
simulations (Figure S14B). Taken together, we provide potential
new drug-binding sites that may pave the way for new generation
drug design targeting p38α.

DISCUSSION

The role of p38 MAPKs in cancer is still under intense
investigation. What is the role of p38 MAPK family members
in cancer? The one-word answer is “context-dependent.” Some
human tumors, such as HCCs, have lower p38 MAPK activity
than non-tumorigenic tissues (41). Several reports showed that
p38α is a tumor suppressor. In support of that view, negative
regulators of p38α, such as the phosphatases PPM1D and
DUSP26, are overexpressed in human tumors (42, 43). However,
bearing the evidence of p38α signaling in tumor suppression,
mutations of p38α have not been consistently identified in human
tumors. It is suspected that cancer cells may benefit from the
p38α signaling pathway. In support of that view, p38α blockades
show significant tumor suppressing effects in vivo in various
cancer types (44, 45), suggesting the dual roles of p38α signaling
in cancer. Here in our work, a thorough screening for more
than 30 types of tumors and their counterparts shows that p38α
expression is significantly increased in PDAC tissues, which
drives our curiosity. We originally hypothesized that p38α may
also be activated in PDAC cells and p38α blockades may benefit
PDAC patients. Our experimental data support this hypothesis,
and SB203580 significantly inhibit human and mouse PDAC cell
growth. Moreover, in our recently unpublished data, SB203580
reduces the activity of pancreatic tumor derived-macrophages in
in vivo models. Our data suggest that p38α blockades may block
various cell components in PDAC tumormicroenvironment, and
may serve as a potential target for PDAC therapy.

Clinically, obesity is associated with cancer risk (46),
and the adipose tissue microenvironment supports cancer
development, metastasis (47), and drug resistance (29).
For tumors predominantly occur in the adipocyte-rich
microenvironments such as breast, prostate, ovarian, colon,
and pancreatic cancers, the degree of adipose tissue involvement
is often correlated with poor prognosis (48). Our data shows
that MAPK14 is correlated with PLIN2 and PLIN3, but not
PLIN1, 4, and 5. Notably, PLIN2 and 3 is the marker for small
lipid droplets. These results may reflect that cancer cells induce
lipolysis of surrounding adipocyte, which is previously reported
in breast cancer (49).

After establishing the role of p38α in PDAC cells, we turn
to computational biology tools for more detailed information
on the atomistic level for this interesting target. We performed
molecular dynamics study on p38α conformational dynamics
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FIGURE 6 | p38α-SB203580 interaction and potential binding pockets in p38α. (A) Distance plots of hydrogen bond and stacking interactions between p38α and
the inhibitor SB203580. The hydrogen bond distance is measured between backbone amide of MET109 and atomNB1 in the inhibitor (red lines). The stacking interaction

(Continued)
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FIGURE 6 | distance is measured between the center of mass of the six-member ring in TYR35 and the inhibitor (blue lines). Probability density functions are shown in
the side panel. (B) Cell viabilities of Pan02, RAW, MS5 cell lines treated with 3.125–50µM SB203580 for 24 h (n = 6 samples per group). Cell viabilities of Pan02,
RAW, MS5 cell lines treated with 1.25–10µM ralimetinib for 24 h (n = 6 samples per group). (C) SB203580 and ralimetinib inhibit phosphorylation of ERK and AKT at
4 h and 30min in Pan02 cells. GAPDH indicates the loading level in each lane. (n = 3 samples per group) (D) Violin plot of consensus cluster strength for potential
ligand-binding pockets identified from AMBER (blue) and OPLS (red) simulations of apo p38α. Results with consensus cluster strength S ≥ 16 are plotted with
quartiles shown as dashed lines inside the violins. Note that for pockets with very few occurrences in simulations, only single lines are displayed. (E) Representative
snapshots showing the location of potential ligand-binding pockets identified in FTMap analysis of AMBER and OPLS simulations. p38α protein is shown in white
ribbon representation and pockets are indicated by corresponding solvent probes shown in green surface representation. Note that the apo p38α crystal structure
(PDB code: 1P38) is used here for consistency in visualization.

on the state of the art, highly parallel supercomputer, Anton.
Supercomputer-powered biomolecular simulation provides us
abundant information related to p38α function. Initially, a
powerful and direct metrics, all-too-all RMSDs were calculated
to examine the convergence of MD simulations. We observed
the frequent appearance of low RMSD stripes in both AMBER
and OPLS simulations (Figure S3A, dark blue areas), indicating
a reasonable convergence. The results show that across different
simulation runs, the conformational similarity is quite low,
especially for OPLS apo1 (6.3 µs), which is significantly different
from all other simulation runs (Figure S3B, mid panel, lower
panel, red areas), possibly due to large conformational change
of the glycine-rich loop in OPLS apo1 simulation (Figure S5).
We found 11 p38α crystal structures with glycine-rich loop
conformations that at least partially resemble the unfolded
conformation found in MD simulations, suggesting that the
novel conformation of the glycine-rich loop might be realistic.

The high flexibility we found in local regions of apo p38α
is generally in line with previous simulation studies. Kuzmanic
et al., performed metadynamics simulations of p38α to find
that the glycine-rich loop, the activation loop, and the L16 loop
are highly flexible (50). McClendon et al. carried out multiple
microsecond-scale MD simulations of protein kinase A (PKA)
and observed the opening and closingmotions of the glycine-rich
loop (51). Shan et al. performed long MD simulations of EGFR
kinase to find that it is intrinsically disordered in the glycine-
rich loop and the activation loop (52). Kumar et al. performed
long MD simulations of Aurora-A kinase and identified several
highly flexible regions including the glycine-rich loop and the
activation loop (53). These data support that the conformational
flexibility of local regions might be a common feature in protein
kinases, presumably conferring adaptability in enzyme catalysis
and protein-protein interactions.

The “butterfly” motion identified in PCA analysis is a quite
interesting protein dynamics motion. Similar motions were seen
in simulations of other enzymes as well such as the adenylate
kinase (54). Many two-lobe enzymes may show similar type of
motions during catalysis. Meanwhile, it is possible that both
“conformational selection” and “induced fit” (55–57) contribute
to the ligand-binding because the PC1-PC2 subspace of apo and
ligand-bound p38α has both overlapping and non-overlapping
regions. Nevertheless, the PCA result is complicated by two
factors. Firstly, the initial structure of apo and SB203580-bound
p38α simulations are similar (with RMSD of only 0.5 Å).
Therefore, it is highly likely to have structural overlaps. Secondly,
the apo and SB203580-bound p38α crystal structures come from

mouse and human, respectively. The two structures differ at
residue 48 and 263 (HIS and ALA for the mouse form; LEU
and THR for the human form), which may be a potential source
of error.

Despite the different conformational changes, linear
regression of simulated and experimental chemical shifts shows
similarly good agreement in AMBER and OPLS simulations,
indicating that chemical shift is not sensitive to conformational
changes. In contrast, linear regression of simulated and
experimental RDCs shows a lower correlation coefficient in
OPLS apo1 than other simulation runs, suggesting that RDC
is sensitive to conformational changes. Large conformational
changes of both N-terminal and C-terminal domains in OPLS
apo1 may also contribute to the relatively worse RDC agreement.
Since accurate RDC predictions are dependent on the precise
distribution of the surfaces charges (58), we calculated all-to-all
distance matrix for all 85 charged residues (Table 4) in p38α
including ARG, LYS, ASP, and GLU for the simulation run
AMBER apo1, AMBER apo2, and OPLS apo1. The charged
residue distance matrices have a much bigger discrepancy
between AMBER apo1 and AMBER apo2 than between AMBER
apo1 and OPLS apo1 (Figure S13), suggesting that surface
charge distribution can be an important contributing factor in
RDC predictions.

Newly discovered potential druggable pockets in this study
may benefit millions of PDAC patients. Notably, ATP pocket,
MAP kinase insert (MKI) pocket, and αC-αL16 pocket have
been experimentally verified (13, 59). Several novel pockets
are in proximity to the binding site of upstream activators or
downstream substrates of p38α and can potentially be explored
to modulate its activity. There are at least four pockets that
can be potentially used for this purpose: (1) αD-L13 pocket,
which can be used to block docking of kinase substrates; (2)
αC-αL16 pocket, which can be used to lock p38α in inactivate
conformation; (3) αG-L14 pocket, which can be used to block
p38α-TAB1 interaction (60); (4) αE-β7 pocket, which can be
used to block p38α-MK2 interaction (61) and p38α-MKP5
interaction (62). Interestingly, the binding of the inhibitor
seems to veil many potential binding pockets in AMBER and
OPLS simulations (Figure S14). Further, virtual screenings and
experimental validations are needed to confirm the druggability
of these novel pockets.

Taken together, our study provides an interesting potential
target for combating PDAC and offers detailed conformational
dynamics information on p38α protein. Our findings have
also paved potential avenues for developing the new classes of
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TABLE 5 | Details of pocket lining residues of potential ligand-binding pockets
identified from FTMap analysis.

Pocket name Residue #

aD-L13 118, 183, 221

L4-L7 81, 82, 83, 84, 86

P-aC 67, 74, 171

aG-L14 222, 237, 273

aE-L16 140, 317, 320

aE-L16b 125, 132, 311

P-L12 193, 197, 199

L12 177, 185, 194

aE-b7 116, 126, 162

aC-aL16 73, 76, 344

b5-aL16 88, 92, 346

P-L16 145, 146, 70, 325, 326

MKI 242, 249, 259

ATP 34, 35, 169, 109

aE-aF 142, 202, 299

aH-MKI 241, 269, 289

aF-aG 207, 214, 235

b2-L4 16, 17, 57

aE-L4 82, 134, 137

p38α-targeting drug, which may overcome the side effects of
current therapy and benefit PDAC patients.

MATERIALS AND METHODS

Cell Culture
Murine Panc02 pancreatic ductal adenocarcinoma cell line was
kindly provided by Dr. Maximilian Schnurr from Munich
University, Germany. Murine monocyte/macrophage-like cell
line RAW264.7 and human monocyte/macrophage-like cell
line THP-1 were kindly provided by Dr. Dapeng Yan at
the Fudan University, China. Human TERT-immortalized
fibroblasts Whirly, human PDAC cell lines MiaPaCa-2, Murine
PDAC cell Pan02, and Human umbilical vein endothelial cell
HUVEC were kindly provided by Dr. Yihai Cao from the
Karolinska Institutet, Sweden. Murine fibroblast cell line MS5
were purchased from the ATCC. Panc02, RAW264.7, MS5,
Whirly, MiaPaCa-2 were cultured in 10% FBS-DMEM (Cat.
No. TBD10569, TBD, China) containing 100 U/ml penicillin,
100µg/ml streptomycin (Cat. No. MA0110, Meilunbio, China).
THP-1 cells were cultured in 10 % FBS-RPMI1640 (Cat. No.
HY1640, TBD, China) containing 100 U/ml penicillin, 100µg/ml
streptomycin. HUVEC cells were cultured in 10% FBS-Medium
199/EBSS (Cat. No. SH30253.01, HyClone) containing 100 U/ml
penicillin, 100µg/ml streptomycin. All cell lines used in our
study were negative for mycoplasma (Cat. No. LT07-318; Lonsa).

Human Patient Samples
All studies related to clinical human samples were approved
by the Ethical Review Committee in Shuguang Hospital,
Shanghai University of Traditional Chinese Medicine, Shanghai,

TABLE 6 | Number of occurrences of potential ligand-binding pockets in MD
simulations.

Pocket name AMBER apo OPLS apo AMBER bound OPLS bound

aD-L13 264 2061 20 30

L4-L7 3691 564 723 674

P-aC 129 1137 218 186

aG-L14 26 91 3 179

aE-L16 1 49 N/A N/A

aE-L16b N/A 3 N/A N/A

P-L12 66 11 28 8

L12 70 539 47 43

aE-b7 3 43 2 45

aC-aL16 1 1 5 N/A

b5-aL16 359 466 32 67

P-L16 978 742 1121 662

MKI 14 4 1 N/A

ATP 9,553 4,371 3,738 2,498

aE-aF 3 4,641 2 63

aH-MKI 176 111 37 17

aF-aG N/A 117 N/A N/A

b2-L4 N/A 79 6 N/A

aE-L4 N/A 121 N/A N/A

Note that the total number of snapshots used for FTMap analysis are 13,114 (AMBER

apo),13,462 (OPLS apo), 6,468 (AMBER bound), and 6,347 (OPLS bound), respectively.

China. Pancreatic tumor samples and adjacent pancreatic
tissues were collected from cancer patients with written
informed permission.

Database Analysis
Transcriptome data from patient samples of pancreatic
cancer were analyzed using the online database, The Cancer
Genome Atlas (TCGA, https://www.cancer.gov/about-nci/
organization/ccg/research/structural-genomics/tcga) to
investigate whether the expression of interesting markers
is altered in tumor tissue. RNA sequencing analysis and
visualization platform Gene Expression Profiling Interactive
Analysis (GEPIA, http://gepia.cancer-pku.cn/) (63) were used
to perform the correlation analysis and survival analysis in
pancreatic cancer cohort. A gene expression profile across
various cancer types and paired normal samples was generated
from GEPIA.

Immunoblot
Fresh tumor tissues and cultured cells were lysed in RIPA buffer
and the proteinase and phosphatase inhibitor cocktail (Cat.
No. MA0151, Meilunbio, China; Cat. No. MB2678, Meilunbio,
China; 1:100). For immunoblot, each protein sample and a
standard molecular weight marker (Cat. No. WJ102, EpiZyme,
China) were loaded onto a 10% SDS-PAGE gel (Cat. No. PG112,
EpiZyme, China), followed by transferring onto a polyvinylidene
difluoride (PVDF) membrane (Cat. No. IPVH00010, Millipore).
Themembranes were blocked with 5% skimmedmilk for 2 h, and
were probed overnight at 4◦C with a rabbit anti-phospho-p38
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antibody (Cat. No. 4631S, Cell Signaling; 1:1,000), a rabbit anti-
p38 antibody (Cat. No. 9212S, Cell Signaling; 1:1,000), a rabbit
anti-phospho-Erk1/2 antibody (Cat. No. 9101S, Cell Signaling;
1:1,000), a rabbit anti-Erk1/2 antibody (Cat. No. 4695S, Cell
Signaling; 1:1,000), a rabbit anti-phospho-AKT antibody (Cat.
No. 2118-1, Epitomics; 1:1,000), a rabbit anti-AKT antibody
(Cat. No. 1085-1, Epitomics; 1:1,000) and a mouse anti-GAPDH
antibody (Cat. No. A01020, Abbkine; 1:1,000) in 5% skimmed
milk. After rigorous washing with PBS containing 0.1% Tween-
20 (Cat. No. T8220, Solarbio, China), membranes were incubated
with a goat anti-mouse HRP-conjugated IgG antibody (Cat.
No. AS003, ABclonal; 1:5,000) and a goat anti-rabbit HRP-
conjugated IgG antibody (Cat. No. AS014, ABclonal; 1:5,000).
Target proteins were visualized using a super-sensitive ECL
luminescence reagent (Cat. No.MA0186,Meilunbio, China) with
a Molecular Imager ChemiDoc XRS System (Bio-Rad).

RNA Extraction and Quantitative
Real-Time PCR
Total RNAs were extracted from tumor tissues and cultured cells
using RNAsimple Total RNA kit (Cat. No. DP419, TIANGEN,
China). Total RNA from each sample was reversely transcribed
using an All-in-One cDNA Synthesis SuperMix (Cat. No.
B24408, Bimake, China). Reverse transcription was performed
at 42◦C for 60min, followed by 70◦C for 5min to inactivate
the enzyme activity. cDNA samples were stored at −20◦C and
subjected to qPCR using a StepOnePlus Real-Time PCR System
(Applied Biosystems). Each qPCR sample was performed in a
triplicate and 10 µl reaction containing 2× SYBR Green qPCR
Master Mix (Cat. No. B21202, Bimake, China), 50 nM forward
and reverse primers, and 4 µl cDNA. The qPCR protocol was
executed for 45 cycles and each cycle consisted of denaturation
at 95◦C for 15 s, annealing at 60◦C for 1min, and extension
at 72◦C for 1min. The primer pairs used in our experiments
included: mouse Gapdh forward: 5′-CCAGCAAGGACACTGA
GCAA-3′; mouse Gapdh reverse: 5′-GGGATGGAAATTGTGA
GGGA-3′; mouse Mapk14 forward: 5′- GGGACACCCCCT
GCTTATCT-3′; mouse Mapk14 reverse: 5′- TCCCTGCTTTCA
AAGGACTGG-3′; mouse Mapk11 forward: 5′- GGACCTGA
ACAGGATCGTGAA-3′; mouse Mapk11 reverse: 5′- CTCA
GCCATGAAGCCTCCC-3′; mouse Mapk12 forward: 5′- CGCC
GTGTACCAAGACCTG-3′; mouse Mapk12 reverse: 5′- GAGG
CGCAACTCTCTGTAGG-3′; mouse Mapk13 forward: 5′-
GAGGCGCAACTCTCTGTAGG-3′; mouse Mapk13 reverse:
5′- CACTCAGGGTCTCATGCTTCA-3′; human GAPDH
forward: 5′-AGGGCTGCTTTTAACTCTGGT-3′; human
GAPDH reverse: 5′-CCCCACTTGATTTTGGAGGGA-3′;
human MAPK14 forward: 5

′
- CCCGAGCGTTACCAGAACC-

3′; human MAPK14 reverse: 5′- TCGCATGAATGATGGA
CTGAAAT-3′; human MAPK11 forward: 5′-AAGCACGAG
AACGTCATCGG-3′; humanMAPK11 reverse: 5′- TCACCAAG
TACACTTCGCTGA-3′; human MAPK12 forward: 5′- CCCA
GACATCAGGGAGTAATGG-3′; human MAPK12 reverse:
5′- TCTATCGGATACTTCAGCGTCA-3′; human MAPK13
forward: 5′- CACTCAGGGTCTCATGCTTCA-3′; human
MAPK13 reverse: 5′- GCTTGCGTTGGTCAGGACA-3′.

Histology and Immunohistochemistry
Paraffin-embedded tissues were cut in the thickness of 5µm,
mounted onto glass slides, baked for 1 h at 60◦C, deparaffinized
in Xylene (Cat. No. 10023418, SCR, China), and sequentially
rehydrated in 99, 95, and 70% ethanol (Cat. No. 10009218, SCR,
China). Tissue slides were counterstained with Haematoxylin
(Mayer’s) (Cat. No. MB9897, Meilunbio, China) and Eosin (Cat.
No. MA0164, Meilunbio, China) before dehydration with 95 and
99% ethanol, and were mounted with neutral balsam (Cat. No.
1004160, SCR, China). Stained tissues were analyzed under a
light microscope (Leica DM IL LED). For immunohistochemical
staining, paraffin-embedded tissue sections were stained with a
rabbit anti-PDGFRβ antibody (Cat. No. ab32570, Abcam; 1:200);
a mouse anti-CD163 antibody (Cat. No. ab156769, Abcam;
1:200); a rabbit anti-αSMA antibody (Cat. No. ab32575, Abcam;
1:200); a rabbit anti-phospho-p38 antibody (Cat. No. 4631S,
Cell Signaling; 1:100), and a rabbit anti-p38 antibody (Cat. No.
9212S, Cell Signaling; 1:100). A ready to use HP IHC detection
kit (Cat. No. abs957, Absin, China) was used for visualization.
Captured images were further analyzed using Adobe Photoshop
CS software.

Cell Viability
Panc02, RAW, and MS5 cells at the density of 1 × 104 cells per
well were seeded in a 96-well plate. After 24 h of incubation,
cells were treated with 3.125–50µM SB203580 SB203580
(Cat.No.S1076, selleck,USA) and 1.25–10µM ralimetinib (Cat.
No.S1494, selleck,USA). Cell viability was measured using a Cell
Counting Kit-8 (Cat. No. MA0218-5, Meilunbio, China). In brief,
10 µl of the solution containing 2-(2-methoxy-4-nitrophenyl)-3-
(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-8)
was added to each well of a 96-well plate, followed by incubation
for 4 h. Densitometry was measured at the wavelength of 450 nm
by a Synergy 2 Multi-Mode Microplate Reader (BioTek).

Simulation System Preparation
p38α protein structures were prepared using Maestro 9.0
(Schrödinger, LLC). The crystal structures of apo p38α (PDB
code: 1P38) (9) and SB203580-bound (PDB code: 1A9U) p38α
(10) were used as initial structures. The protein was capped
with acetyl group (ACE) at the N-terminus and N-methyl
group (NME) at the C-terminus to prevent artificial charge-
charge interactions. AMBERff99SB-ILDN (64) and OPLS-AA/L
(65) force fields were used for the protein. A box size of 85.0
× 85.0 × 85.0 Å3 was used to ensure the enclosure of the
entire protein. Apo p38α or SB203580-bound p38α system was
solvated in water described by the TIP3P model (66) to mimic
physiological condition and neutralized using nine sodium
ions (67).

Ligand Parameterization
To derive parameters for the SB203580, we used different
approaches. For AMBER simulation, the bonded parameters and
non-bonded parameters for SB203580 were parameterized using
General Amber Force Field (GAFF) (68). The partial charges
were derived using the restrained electrostatic potential (RESP)
method on the RED server (69, 70). For OPLS simulations, the

Frontiers in Oncology | www.frontiersin.org 15 November 2019 | Volume 9 | Article 1294

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yang et al. p38α Dynamics for Pancreatic Cancer

bonded parameters, non-bonded parameters, and partial charges
were derived by analogy method as previously described (71).
In both simulations of ligand-bound p38α, dihedral restraints
were applied to eight dihedral angles to keep the ligand
conformations close to the crystal structures. The force constant
for dihedral restraints is 4184 kJ/mol.rad. Each equilibrium angle
(Table 1) was obtained from four SB203580-bound p38α crystal
structures [PDB codes: 1A9U (10), 1PME (72), 2EWA (17), and
3GCP (73)].

Molecular Dynamics Simulations
Before the production simulation, energy minimization, and
equilibration were performed on our in-house clusters using
Desmond 2.4 (74). Energy minimization was initially carried
out using the steepest descent algorithm for 1,000 steps and
the L-BFGS algorithm for 1,000 steps. The energy-minimized
structure was incrementally heated up from 50 to 298K (50,
100, 150, 200, 250, 298K) with 100 ps at each temperature
in the NVT ensemble using Berendsen thermostat (75). Next,
the protein was equilibrated at 298K for an additional 10
ns in the NVT ensemble using the Nosé-Hoover thermostat
(76, 77). For van der Waals interactions and short-range
electrostatic interactions, a 9 Å cutoff was used; for long-range
electrostatic interactions, Particle Mesh Ewald (PME) was used
(78). The “bonded,” “near,” and “far” time steps are 1, 1, and 3
fs, respectively.

Anton Supercomputer Molecular Dynamics
Simulations
For production simulations, we performed simulations on
the Anton supercomputer (Pittsburgh supercomputing center,
Pittsburgh, PA) (33). Production simulations were performed
in the NVT ensemble with the temperature maintained at
298K using Nosé-Hoover thermostat (76, 77). For van der
Waals interactions and short-range electrostatic interactions,
the cutoff was automatically determined by the “guess_chem”
utility on Anton for optimized performance. Gaussian Split
Ewald (GSE) (79) method was used for long-range electrostatic
interactions. M-SHAKE algorithm (80) was used to constrain
all bonds, enabling a 2 fs time step. Snapshots of the
simulations were saved at an interval of 0.1 ns for analysis.
Visualizations of simulation snapshots and trajectories were
done using both PyMOL 1.8 (PyMOL 2015) and VMD 1.9
(81). For AMBER and OPLS simulations, three independent
simulations of apo p38α and one simulation of SB203580-
bound p38α were performed with detailed parameters shown in
Table 2.

Calculations of RMSD and RMSF
To obtain root mean square deviations (RMSDs) in p38α
simulations, the trajectory (non-terminal residues, residue 14–
344) at an interval of 0.1 ns was fitted to the initial structure
on protein backbone; RMSDs were calculated for each snapshot
over simulation time. To obtain all-to-all RMSDs, the trajectory
at an interval of 1 ns was fitted to the initial structure on the
protein backbone before all-to-all RMSD matrix was generated
using pytraj (82), a Python package binding to cpptraj program
(83). To obtain root mean square fluctuations (RMSFs) in p38α

simulations, the trajectory at an interval of 0.1 ns was fitted
to the initial structure on protein backbone; RMSFs were then
calculated for each residue.

Principal Component Analysis
Principal components analysis (PCA) was performed for a
combined trajectory of apo and ligand-bound p38α for each force
field. The input trajectory was initially aligned on Cα atoms of
p38α and used to extract eigenvectors and eigenvalues. Then,
the trajectory of Cα atoms was projected onto the two most
dominant eigenvectors to obtain principal components PC1 and
PC2. For experimental comparison, PCA of 44 full-length crystal
structures of p38α was performed with PDB entries as follows:
5LAR, 5ETI, 5ETC, 4LOO, 3U8W, 3S3I, 3RIN, 3PY3, 3NNW,
3NNV, 3NNU, 3KQ7, 3ITZ, 3GFE, 3GC7, 3DT1, 3D83, 3D7Z,
2ZB0, 2YIX, 2I0H, 1ZZL, 1YQJ, 1WBW, 1WBV, 1WBT, 1WBS,
1WBO, 1WBN, 1W84, 1W83, 1W82, 1W7H, 1R3C, 1P38, 1OVE,
1OUY, 1OUK, 1M7Q, 1DI9, 1BMK, 1BL7, 1BL6, 1A9U. All PCA
calculations were performed using the analysis tools g_covar and
g_anaeig in Gromacs 5.0 (84, 85).

Calculations of Chemical Shifts and
Residual Dipolar Couplings
To obtain chemical shifts of the backbone atoms in p38α from
MD simulations, we performed ensemble-based chemical shift
calculations on MD trajectory at an interval of 1 ns using the
PPM program (86). PPM predicts the chemical shifts of CA,
CB, C, N, and H based solely on the physical and chemical
properties of the protein structure. For comparison, we also
performed chemical shift calculations on MD trajectory at an
interval of 1 ns using the SHIFTX2 program (87). SHIFTX2
predicts the chemical shifts of CA, CB, C, N, and H using
both structure- and sequence- based criteria. Experimental
p38α chemical shifts were obtained from Biological Magnetic
Resonance data bank (BMRB entry number: 6468) (88); the entry
includes 219 1H chemical shifts, 684 13C (including CA, CB, and
C) chemical shifts, and 219 15N chemical shifts for apo p38α.
For comparison of simulated and experimental chemical shifts
of atom CA, CB, C, N, and H, different residues were used
depending on the availability of experimental chemical shifts
for specific atoms in BMRB entry 6,468. To obtain residual
dipolar couplings (RDCs) of each residue in p38α, we performed
RDC calculations on structural snapshots at an interval of
1 ns using the PALES program (58, 89). Experimental RDC
data for 39 residues of apo p38α and the parameters in RDC
(Table 3) were obtained from previous report (36). Specifically,
a concentration of bacteriophage Pf1 at 20 mg/mL and a pH of
6.0 was used. The sodium chloride concentration was optimized
using a range from 0.005 to 0.5M and 0.2M was used for final
RDC calculations.

FTMap Analysis
A standalone version of FTMap (39, 40) was used to perform
calculations on MD snapshots at an interval of 1 ns. FTMap
analysis mainly consists of three steps: (1) independent docking
of 16 organic probes on the protein using a fast Fourier transform
correlation approach; (2) refinement of the probe positions using
energy minimizations; (3) clustering and ranking of the resulting
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poses to identify consensus sites (CSs). The 16 solvent probes
used in FTMap algorithm are: acetamide, acetonitrile, acetone,
acetaldehyde, methylamine, benzaldehyde, benzene, isobutanol,
cyclohexane, N, N-dimethylformamide, dimethyl ether, ethanol,
ethane, phenol, isopropanol, urea. Consensus cluster strength
(S) is defined as the number of probe clusters in a specific
binding pocket on the protein. For experimental comparison,
196 crystal structures were also used for FTMap analysis. Their
PDB codes are: 1A9U, 1BL6, 1BL7, 1BMK, 1DI9, 1IAN, 1KV1,
1KV2, 1LEW, 1LEZ, 1M7Q, 1OUK, 1OUY, 1OVE, 1OZ1, 1P38,
1R39, 1R3C, 1W7H, 1W82, 1W83, 1W84, 1WBN, 1WBO, 1WBS,
1WBT, 1WBV, 1WBW, 1WFC, 1YQJ, 1YW2, 1YWR, 1ZYJ,
1ZZ2, 1ZZL, 2BAK, 2FSL, 2FSM, 2FSO, 2FST, 2GFS, 2GHL,
2GHM, 2GTM, 2GTN, 2I0H, 2NPQ, 2PUU, 2QD9, 2RG5, 2RG6,
2Y8O, 2YIS, 2YIW, 2YIX, 2ZAZ, 2ZB0, 2ZB1, 3BV2, 3BV3,
3BX5, 3CTQ, 3D7Z, 3DS6, 3DT1, 3FC1, 3FI4, 3FKL, 3FKN,
3FKO, 3FLN, 3FLQ, 3FLS, 3FLW, 3FLY, 3FLZ, 3FMH, 3FMJ,
3FMK, 3FML, 3FMM, 3FMN, 3FSF, 3FSK, 3GC7, 3GCP, 3GCQ,
3GCS, 3GCV, 3GFE, 3GI3, 3HA8, 3HEC, 3HEG, 3HL7, 3HLL,
3HP2, 3HP5, 3HRB, 3HUB, 3HUC, 3HV3, 3HV4, 3HV5, 3HV6,
3HV7, 3HVC, 3ITZ, 3IW5, 3IW6, 3IW7, 3IW8, 3K3I, 3K3J,
3KF7, 3KQ7, 3L8S, 3LFA, 3LFB, 3LFC, 3LFE, 3LFF, 3MGY,
3MH0, 3MH1, 3MH2, 3MH3, 3MPA, 3MPT, 3MVL, 3MVM,
3MW1, 3NEW, 3NNU, 3NNV, 3NNW, 3NNX, 3NWW, 3O8P,
3O8T, 3O8U, 3OBG, 3OBJ, 3OC1, 3OCG, 3OD6, 3ODZ, 3P4K,
3P5K, 3P78, 3P79, 3P7A, 3P7B, 3P7C, 3PG3, 3PY3, 3QUD,
3QUE, 3RIN, 3ROC, 3S3I, 3U8W, 3UVP, 3UVQ, 3ZS5, 3ZSG,
3ZSH, 3ZYA, 4A9Y, 4AA0, 4AA4, 4AAC, 4DLI, 4DLJ, 4E5A,
4E5B, 4E6A, 4E6C, 4E8A, 4EH2, 4EH3, 4EH4, 4EH5, 4EH6,
4EH7, 4EH8, 4EH9, 4EHV, 4EWQ, 4F9W, 4F9Y, 4FA2, 4GEO,
4KIN, 4KIP, 4KIQ.

Classification of Binding Pockets
Binding pockets are named and classified based on its adjacent
secondary structures, which harbor pocket lining residues
(Table 5). To determine the identity of a pocket, the intersecting
volume of the bounding sphere for the probe clusters and the
pocket lining residues were calculated for each pocket using the
equation as described previously (90):

Vo =







0 for d ≥ r1 + r2
π
12d

(

r1 + r2 − d
)2 (

d2 + 2d (r1 + r2) − 3(r1 − r2)
2) for |r1 − r2| < d < r1 + r2

4
3π(min {r1, r2})3 for 0 ≤ d ≤ |r1 − r2|

(1)

Vo is the intersecting volume; r1, r2 are the radii of the bounding
sphere of the probe cluster and of the pocket lining residues,
respectively; d is the distance between the two sphere centers.
A specific probe cluster falls in a pocket category if it has the
maximum intersecting volume with that pocket. A scaling factor
of 0.75 on r2 was used to avoid the overestimation of the bound
site volume. All pockets and subpockets in the ATP-binding site
are classified as ATP pocket.

Statistical Analysis
Statistical analyses of biological experiments were performed
using the standard two-tailed Student t-test, and P < 0.05 was
considered statistically significant.
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