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Many proteins can fold into well-defined conformations. However, intrinsically-disordered
proteins (IDPs) do not possess a defined structure. Moreover, folded multi-domain
proteins often digress into alternative conformations. Collectively, the conformational
dynamics enables these proteins to fulfill specific functions. Thus, most experimental
observables are averaged over the conformations that constitute an ensemble. In this
article, we review the recent developments in the concept and methods for the
determination of the dynamic structures of flexible peptides and proteins. In particular,
we describe ways to extract information from nuclear magnetic resonance small-angle
X-ray scattering (SAXS), and chemical cross-linking coupled with mass spectroscopy (XL-
MS) measurements. All these techniques can be used to obtain ensemble-averaged
restraints or to re-weight the simulated conformational ensembles.
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1 INTRODUCTION

Proteins exist as dynamic structures. Many proteins undergo often very significant motions while
performing their functions (Henzler-Wildman and Kern, 2007; Boehr et al., 2009). The respective
conformational states are sometimes stable enough to be captured through X-ray structure
determination if appropriate conditions of protein-sample preparation are applied (Bertelsen
et al., 2009; Kityk et al., 2012). Nevertheless, in most instances, the structures of multistate
proteins, as well as those of intrinsically disordered proteins (IDPs) or proteins with
intrinsically-disordered regions (IDRs) can be described only in terms of conformational
ensembles. Over 40% of human proteins contain stretches of disorder longer than 30 residues
(van der Lee et al., 2014).

Thus, ensemble-averaged quantities are usually obtained from measurements while studying
conformational dynamics of multistate proteins, IDPs, or flexible peptides. The composition of an
ensemble can be determined only by combining the results of measurements with advanced
molecular modeling (Bonomi et al., 2017; Bonomi and Vendruscolo, 2019; Orioli et al., 2020).
In this minireview, we summarize the methods for conformational-ensemble determination using
molecular modeling, using the data from nuclear magnetic resonance (NMR), small-angle X-ray
scattering (SAXS), and chemical cross-linking coupled with mass spectroscopy (XL-MS). In Section
2, we outline the experimental techniques mentioned above and the quantities that they provide,
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while in Section 3we describe conformational-sampling methods
and two major approaches of implementing the experimental
quantities in conformational-ensemble determination:
simulations with ensemble-averaged restraints and ensemble
reweighting. A scheme summarizing the methodologies
discussed is shown in Figure 1.

2 EXPERIMENTAL METHODS TO STUDY
FLEXIBLE PROTEINS

Here we focus on the experimental measurements that can be
performed for proteins in solution. We leave out the single-
molecule fluorescence resonance energy transfer (FRET), which
does not yield ensemble averages and does not have the same
issues as those discussed in Section 3 (Tang and Gong, 2020;
Lerner et al., 2021).

2.1 Nuclear Magnetic Resonance
The most complete information about the structure and
conformational dynamics of proteins and peptides is provided
by NMR (Sekhar and Kay, 2019). NMR remains the method of
choice to characterize the conformational dynamics of proteins to
atomic resolution in near-physiological conditions. NMR
observables, including nuclear Overhauser effect (NOE),
chemical shift, dipolar coupling constants, and paramagnetic
relaxation enhancement (PRE) are ensemble-averaged over a
multitude of conformational states (Salmon et al., 2010;
Konrat, 2014; Clore, 2015; Huang et al., 2015; Tang and Gong,
2020). Thus, though the flexible regions in a protein can be easily
identified by NMR owing to their favorable relaxation properties,
it is difficult to obtain a comprehensive description of the
ensemble structure of a multi-domain protein or an IDP as a
whole and determine the fractions of the constituting
conformational states. To this end, many methods have been

developed to reconstruct the ensembles based on the NMR data
(Bertini et al., 2004; Mittag and Forman-Kay, 2007; Delaforge
et al., 2015).

Paramagnetic NMR, in particular, paramagnetic relaxation
enhancement (PRE), allows the visualization of protein ensemble
structures (Otting, 2010; Liu et al., 2016). The PRE is exquisitely
sensitive to the sparsely populated conformations, thanks to the
large gyromagnetic ratio of an unpaired electron in the
paramagnetic probe and an inverse sixth power dependence
on the distances to the observed NMR nuclei (Clore, 2015; Liu
et al., 2015). On the other hand, covalent attachment of a
paramagnetic probe could perturb the structure, which is more
likely for an IDP (Sasmal et al., 2017). As a result, paramagnetic
cosolute molecules have been developed (Gu et al., 2014; Gong
et al., 2017a), which can also be used to assess the dynamic
structures of IDPs (Hartlmüller et al., 2019; Spreitzer et al., 2020).
Similar to the PREs, the NOEs also provide ensemble-averaged
distances between protein nuclei. However, quantitative
interpretation of the NOEs is hampered by the complex
relaxation pathways. The exact proton-proton distances and
the corresponding conformational states of a protein are best
extracted on a perdeuterated background (Vögeli et al., 2009;
Vögeli et al., 2016).

2.2 Small-Angle Scattering Methods
Compared to NMR, small-angle X-ray and small-angle neutron
scattering (SANS) provide less detailed but more global structural
information (Konarev et al., 2003; Forster et al., 2008;
Schneidman-Duhovny et al., 2011; Trewhella et al., 2013). For
a multi-state protein, the scattering curve is averaged over a
multitude of conformational states. The different states and the
associated population can, in theory, be obtained from the
deconvolution of the scattering curve. To this end, many
algorithms have been developed that include ensemble
optimization method (EOM) (Bernadó et al., 2007; Tria et al.,
2015), minimal ensemble search (MES) (Pelikan et al., 2009), and
Bayesian ensemble SAXS (BE-SAXS) (Antonov et al., 2016).
Though the scattering intensity at each scattering angle is
normally used as a restraint (Forster et al., 2008), pairwise
distance distribution could also be employed for the
comparison between different sets of structure ensembles
(Gorba et al., 2008; Karczyńska et al., 2018). The different
approaches fit different numbers of parameters and use
different treatments of the displaced solvent, which inevitably
leads to somewhat different solutions.

2.3 Chemical Cross-Linking Coupled With
Mass Spectroscopy
Cross-linking reactions are initiated either by illumination or
chemical reaction followed by enzymatic digestion. The final
products are cross-linked peptides, which can be identified by
mass spectrometry with high confidence. The cross-linked
residues have to be closer in distance than the length of the
cross-linker arm. Therefore, each cross-link can be used to derive
the restraint imposed on the Cα . . . , Cα-, Cβ . . . , Cβ- or the
terminal-atom (e.g., Nζ . . . , Nζ atom pair of lysine side chains)

FIGURE 1 | A scheme of methods for the determination of
conformational ensembles of flexible proteins.
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distance of the two cross-linked residues. However, the cross-
links may artificially pull two protein regions together, in a so-
called zippering effect (Belsom and Rappsilber, 2021), which
needs to be carefully controlled and ruled out.

The identified cross-links are often found incompatible with
the known protein structure, in which the calculated distance
exceeds the maximum length of the cross-linker. Such “over-
length” cross-links can be explained by alternative protein
conformations, e.g., an open-to-closed transition (Ding et al.,
2017), or by the transient oligomerization of the protein. The
latter can be ascertained with the mixing of “light” and “heavy”
proteins with distinct isotope labeling patterns (Gong et al., 2015).
Furthermore, cross-linking mass spectrometry (XL-MS) can be
used to elucidate dynamic encounters between two proteins
(Gong et al., 2017b).

A crosslink restraint is usually imposed on the straight-line
distance between the Cα-atoms of the corresponding residues
(Leitner et al., 2014; Merkley et al., 2014; Fajardo et al., 2019).
Recently, we developed an approach in which restraints are
imposed on side-chain ends and implemented it in all-atom
(Gong et al., 2020) and coarse-grained (Kogut et al., 2021)
molecular dynamics. This approach is more realistic because
such distances are close to those between the solvent-accessible
surfaces, which are targeted by the cross-linking reagents in the
XL-MS experiments.

3 MODELING PROTEIN STRUCTURES
WITH EXPERIMENTAL RESTRAINTS

3.1 Conformational Search
Canonical molecular dynamics (MD) (Frenkel and Smit, 2000)
and its extensions, namely simulated annealing (SA) (Kirkpatrick
et al., 1983), replica-exchange molecular dynamics (REMD)
(Hansmann, 1997), and multiplexed replica exchange
molecular dynamics (MREMD) (Rhee and Pande, 2003) are
usually the methods of choice for sampling the conformational
space, owing to their efficiency. All-atom MD is commonly used
and a variety of good algorithms and software packages such as
e.g., AMBER (Salomon-Ferrer et al., 2013), CHARMM (Brooks
et al., 2009), GROMACS (Abraham et al., 2015), LAMMPS
(Plimpton, 1995) and DESMOND (Bowers et al., 2006) are
available, which also enable the researchers to include
experimental information as restraints.

All-atom MD has restricted ability to sample the
conformational space extensively (Bottaro and Lindorff-Larsen,
2018). Compared to all-atom approaches, the coarse-grained
(CG) approaches, in which several atoms are merged into
extended interaction sites, are computationally more efficient
and enable us to run simulations at much longer time-scales and
for larger systems (Voth, 2008; Kmiecik et al., 2016). The coarse-
grained models with which MD for proteins can be run include
MARTINI (Marrink and Tieleman, 2013), AWSEM (Davtyan
et al., 2012), OPEP (Sterpone et al., 2014), and UNRES (Liwo
et al., 2019). CABS (Kolinski, 2004) is another very good CG
model of proteins, which was developed to run Monte Carlo
dynamics on a high-resolution lattice.

The experimental information can be used as restraints or to
filter the conformational ensembles/reweight its conformations to
reproduce the experimental observables (Bonomi et al., 2017;
Orioli et al., 2020). These two approaches are described in the two
subsequent subsections.

3.2 Restrained Simulations of
Conformationally Heterogeneous Systems
In restrained simulations, penalty terms are added to the potential
energy in MD so that the forces consist of the forces computed
from the force field of choice and those due to restraint violation
(van Gunsteren et al., 2016). This approach is straightforward if a
protein has a well-defined structure and has been implemented in
the CYANA (Güntert and Buchner, 2015) and XPLOR-NIH
software packages (Schwieters et al., 2018) for structure
determination by NMR, as well as is built in the MD packages
mentioned in the previous section. For flexible systems, time- and
ensemble averaging algorithms to run restrained simulations
have been developed.

It should be noted that using restraints from NMR in CG
simulations is not straightforward, because the respective
quantities depend on all-atom geometry. One method, in
which the CG structures are converted into all-atom
structures, from which the respective quantities are calculated,
was developed (Latek and Koliński, 2011) for use with the CABS
model of proteins (Kolinski, 2004). However, this method is not
suitable for restrained MD simulations, because it does not
provide the forces due to restraints. Recently, we developed
ESCASA (Lubecka and Liwo, 2021), an analytical approach to
calculating approximate positions of the protons from Cα-trace
geometry, thus enabling us to compute the forces due to the
penalty function and, consequently, to use the method with
coarse-grained MD.

3.2.1 Time-Averaged Restraints
In the time-averaged-restraint method, the quantities obtained
from simulations (e.g., interproton distances) are averaged over a
time window (Torda et al., 1989; Bonvin et al., 1994). These
average quantities are inserted into the penalty terms.

�f r t( )( ) � τ 1 − exp −t/τ( )( )[ ]−1 ∫
t

0

exp −t′/τ( )f r t − t′( )( )dt′

(1)

where f is the quantity being averaged, which depends on the
coordinates of the atoms of the system contained in vector r and τ
is the length of the time window.

3.2.2 Ensemble Averaged Restraints
The methods that use ensemble-averaged restraints are based on
the maximum-entropy and Bayesian principles, according to
which a minimally perturbed conformational ensemble
compared to that resulting from free simulations is sought
and, at the same time, the ensemble-average quantities match
their experimental counterparts within the experimental error
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(Pitera and Chodera, 2012; White et al., 2015; Amirkulova and
While, 2019). If the ensemble-averaged restraints are enforced
strictly, the potential-energy function is modified to include the
experimental quantities with the weight calculated to maximize
the entropy (Pitera and Chodera, 2012).

UME r; α1, . . . , αM( ) � U r( ) +∑
N

i�1
αifi r( ) (2)

where fi(r) is the value of the ith experimental observable
calculated for the conformation described by the vector of
coordinates r, N is the number of observables, U is the
potential-energy function used in MD simulations, UME is the
extended energy function and the weights αi are calculated to
minimize Γ(α1, . . . , αN).

Γ α1, . . . , αN( ) � ln ∫ exp −βUME r; α1 . . . , αN( )[ ]d3nr

− β∑
N

i�1
αifi, exp (3)

where fi, exp is the experimental (ensemble-averaged) value of the ith
observable, β � 1/RT, R being the universal gas constant and T
absolute temperature, and n is the number of atoms in the system. It
should be noted that the integral in Equation 3 does not have to be
evaluated, because minimization of Γ leads to equations which
contain the observables averaged over the conformations, which
can readily be calculated from MD simulations (Pitera and
Chodera, 2012). With this approach, the distribution of
conformations is minimally perturbed with respect to that
resulting from the force field used. In other words, the
experimental constraints enable us to compensate for the
inevitable inaccuracy of the force field and to obtain a distribution
of conformations in the ensemble, which is closer to the true
(Boltzmann) distribution (Cavalli et al., 2013), provided that the
experimental data are sufficient in number and quality. In practical
implementation, the replica-averaged method is applied (Camilloni
et al., 2013; Hummer and Köfinger, 2015), in which several replicas
are run with the extended potential energy, UED, containing
harmonic restraints on the experimentally measured quantities
that are averaged over all replicas.

UED ri( ) � U ri( ) +M∑
j

1
M∑M

k�1fj rk( ) − fexp ,j( )2
2σ2j

(4)

where the index i runs over replicas,M is the number of replicas,
rk is the vector of the coordinates of the conformation of the kth
replica, and σ j is the error in the jth observable. It has been
demonstrated that this method becomes the maximum-entropy
method as the number of replicas increases (Pitera and Chodera,
2012; Cavalli et al., 2013; Roux and Weare, 2013; Hummer and
Köfinger, 2015). This approach has been implemented in
determining the conformational ensembles from NMR
(Camilloni et al., 2013) and SAXS data (Hermann and Hub,
2019). A similar approach termed dynamic ensemble refinement
(DER) (Lindorff-Larsen et al., 2005) was developed earlier for the
determination of protein dynamical ensembles from NMR data.

3.3 Reweighting the Conformational
Ensembles
In the ensemble-reweighting methods, a pool of
conformations is generated first in unrestrained simulations
and, subsequently, the weights of the conformations are
determined to reach the agreement of the conformation-
averaged observables with the corresponding experimental
quantities (Cavalli et al., 2013; Orioli et al., 2020). An
advantage of this approach is that the ensemble can be
generated once and used as the results of new experiments
are available. However, the state-of-the-art force fields do not
produce the true Boltzmann distribution of the
conformational states. Consequently, the distribution of
conformations obtained in unrestrained simulations could
be far from the true distribution; specifically, some regions
of conformational space that are, in reality, visited by the
system might happen to be under-represented or omitted
from the simulated ensemble. It has been demonstrated
(Ceriotti et al., 2012) that the more the input distribution
diverges from the true distribution the greater the error in
reweighting. When the experimental information is included
in the simulations as maximum-entropy constraints or
replica-averaged restraints, the ensemble is driven towards
reproducing the experimental data, i.e., closer to the true
(unknown) Boltzmann distribution. An example that the
quality of the force field becomes less important with
increasing the number of data is the work by Joo et al. (Joo
et al., 2015), in which a force field that contained only the van
der Waals repulsion, stereochemistry, improper-torsion, and
chirality terms, in combination with NOE and dihedral-angle
restraints, was used with success to determine protein
structures from NMR data.

Because the number of conformations in the ensemble (and,
thereby, the number of weights) is usually much greater than the
number of observables, the fitting problem is underdetermined. It
is solved by using either the maximum-parsimony or the
maximum-entropy principle (Bonomi et al., 2017).

In the maximum-parsimony approaches, a minimum set of
conformations is determined that can reproduce the
experimental observables. This method was originated by
Nikiforovich and coworkers (Nikiforovich et al., 1987) and,
subsequently evolved into a variety of algorithms, including
EOM (Bernadó et al., 2007), ASTEROIDS (Nodet et al., 2009),
and SES (Berlin et al., 2013), as well as the algorithms developed
in our laboratories to determine the conformational ensembles
from the SAXS (Kozak et al., 2010) or SAXS, NMR and XL-MS
data (Liu et al., 2018). Usually, the ensemble is clustered first and
averages are computed over each cluster, the weights of the
clusters being determined by least-square fitting the ensemble-
averaged observables to the experimental quantities, subject to the
condition that all weights are non-zero and the number of clusters
with non-zero weights is minimal.

In the maximum-entropy approach, the weights of
conformations are determined so that the ensemble-averaged
quantities match the experimental counterparts with minimal
perturbation of the input ensembles. Usually, the experimental
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errors are included in the target function, which results in solving
a Bayesian problem, with the prior distribution being equal to
that from unrestrained MD simulations.

θ∑
M

j�1
wj lnwj +∑

N

i�1

∑M
j�1wjfij − fi, exp( )2

2σ2i
� min (5)

where the first term is the negative of the Shannon entropy, θ
being the weight of this term, and the weights are required to be
normalized to unity and non-negative. Many approaches that use
this principle, including ENSEMBLE (Marsh and Forman-Kay,
2012; Krzeminski et al., 2013), EROS (Różycki et al., 2011),
COPER (Leung et al., 2016), and others (Groth et al., 1999)
were developed.

Recently, Pesce and Lindorff-Larsen (Pesce and Lindorff-
Larsen, 2021) designed an iterative maximum-entropy
reweighting method for the determination of conformational
ensembles from SAXS data, in which background intensity
and the scaling factor of the computed average SAXS profile
are fitted to match the experimental profile. Subsequently, the
weights are determined by minimizing the target function of
Equation 5. The two steps are iterated until convergence is
achieved. The determination of background intensity and
scaling factor is a major step forward with respect to the
previous approaches, in which only the weights were
determined, because these parameters depend on many
features of the system studied (e.g., the solvation shell) and on
experimental conditions. Also, very recently, an ensemble-
reweighting method by using side-chain NMR-relaxation,
termed Average Block Selection Using Relaxation Data with
Entropy Restraint (ABSURDer), an extension of the ABSURD
method of Blackledge and others (Salvi et al., 2016), has been
developed by the Lindorff-Larsen group (Kümmerer et al., 2021).
This approach takes into account system dynamics, thus enabling
us to find the ensemble of trajectories, not just static
conformations, consistent with experiment.

4 CONCLUSION AND OUTLOOK

Investigation of the dynamic structures of proteins and other
biomolecules in solution is a rapidly growing field, in which the
experimental and theoretical methods are complementary to each
other (Bonomi et al., 2017; Bonomi and Vendruscolo, 2019;
Orioli et al., 2020). Since the experiment provides only average
observables (NMR), distance distribution (SAXS, SANS, and
WAXS), or just indicates which residues may be close to each
other in part of the dynamic structure (XL-MS), dynamic
structure determination from the experiment alone is an
underdetermined problem. Thus, the development of efficient
and reliable conformational-search methods and better force
fields is a necessity.

At present, the respective algorithms are based mostly on
ensemble reweighting (Bonomi et al., 2017; Bonomi and
Vendruscolo, 2019; Orioli et al., 2020), the maximum-entropy

variant of which seems to be better, because it does not leave out
any part of the ensemble completely, an important feature given
the under-determinability of the reweighting problem (Bonomi
et al., 2017). Because the conformational ensemble is generated in
unrestrained simulations, this approach depends on the quality of
a force field used, which is usually still far from being perfect.
Therefore, the development of methods based on replica-
averaged restraints, which stem from the maximum-entropy
principle (Cavalli et al., 2013; Hummer and Köfinger, 2015)
seems to be a better approach. Combining this approach with
time-averaged restraints (Torda et al., 1989; Bonvin et al., 1994)
or posterior ensemble fitting to enrich the averaging is
recommended. An efficient conformational search is required
regardless of choosing a particular method to include the
experimental data, which can be carried out with coarse-
grained models (Voth, 2008; Kmiecik et al., 2016). Deep-
learning algorithms are also likely to advance the field,
especially given their recent tremendous success in predicting
the stable structures of proteins at crystallographic accuracy
(Baek et al., 2021; Jumper et al., 2021). These methods may be
used to generate the initial models for studying the dynamics of
multistate proteins.

Another challenge is capturing the full dynamics of the
system under study. Time-resolved techniques are an obvious
answer here but averages, such as kinetic rate constants, can
also be used – an approach has recently been proposed
(Brotzakis et al., 2021). This will be particularly important
when studying the dynamics of multistate proteins with more
than two stable states.
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