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Abstract

Tyrosine and serine/threonine kinases are essential regulators of cell processes and are

important targets for human therapies. Unfortunately, very little is known about specific

kinase-substrate relationships, making it difficult to infer meaning from dysregulated phos-

phoproteomic datasets or for researchers to identify possible kinases that regulate specific

or novel phosphorylation sites. The last two decades have seen an explosion in algorithms

to extrapolate from what little is known into the larger unknown—predicting kinase relation-

ships with site-specific substrates using a variety of approaches that include the sequence-

specificity of kinase catalytic domains and various other factors, such as evolutionary rela-

tionships, co-expression, and protein-protein interaction networks. Unfortunately, a number

of limitations prevent researchers from easily harnessing these resources, such as loss of

resource accessibility, limited information in publishing that results in a poor mapping to a

human reference, and not being updated to match the growth of the human phosphopro-

teome. Here, we propose a methodological framework for publishing predictions in a unified

way, which entails ensuring predictions have been run on a current reference proteome,

mapping the same substrates and kinases across resources to a common reference, filter-

ing for the human phosphoproteome, and providing methods for updating the resource eas-

ily in the future. We applied this framework on three currently available resources, published

in the last decade, which provide kinase-specific predictions in the human proteome. Using

the unified datasets, we then explore the role of study bias, the emergent network properties

of these predictive algorithms, and comparisons within and between predictive algorithms.

The combination of the code for unification and analysis, as well as the unified predictions

are available under the resource we named KinPred. We believe this resource will be useful

for a wide range of applications and establishes best practices for long-term usability and

sustainability for new and existing predictive algorithms.

Author summary

Kinases are the enzymes responsible for controlling a large number of cell biological pro-

cesses. They can regulate protein interactions, protein function, protein localization, and
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protein turnover by adding negatively charged phosphate groups to three amino acid

types that make up proteins. Despite a large growth in knowledge about what sites on

what proteins kinases can target, we still do not fully understand the exact relationship

between every one of the hundreds of human protein kinases and the hundreds of thou-

sands of possible amino acid targets within proteins. Instead, we can use algorithms to

predict relationships and this has been an intense area of research and many such algo-

rithms, based on different underlying features and mathematical approaches, have been

published. Here, we create a method for making it easy to harness and compare multiple

algorithms and keep these updated as new phosphorylation sites are observed. The out-

come of this work is a computational pipeline, a current resource of predictions for three

prediction algorithms for all know phosphorylation sites in the human proteome, and the

results of comparing how different algorithms compare to each other and their inherent

properties.

Introduction

Kinase regulation of protein phosphorylation plays important roles in almost all cell processes,

including: growth factor/cytokine signaling, cell cycle and metabolic control, and DNA dam-

age response. Serine/threonine phosphorylation-driven networks are anciently conserved and

found throughout both prokaryotes and eukaryotes. Tyrosine phosphorylation is a more

recent evolutionary mechanism, appearing as a complete signaling unit around the post-meta-

zoan switch [1]. We should also note that histidine phosphorylation plays essential roles in cell

physiology, but experimental challenges for measuring it have hindered our ability to study

and discover it [2], hence we focus on serine/threonine and tyrosine phosphorylation. These

types of post-translational modifications (PTMs) are extensive in human biology and currently

include roughly 40,000 tyrosine and 200,000 serine/threonine residues known to be phosphor-

ylated [3]. This number of discovered phosphorylation sites has grown dramatically in recent

years [4], due to advances in mass spectrometry-based enrichment and discovery methods [5].

Unfortunately, our understanding of the role and regulation of the phosphoproteome has

not kept pace with its discovery. For example, only about 3% of phosphorylation sites have a

kinase that is known to recognize and phosphorylate that site (i.e. a kinase’s substrate), mean-

ing that the vast majority of phosphorylation sites have no validated kinase [6]. A major hurdle

for validation is due to the preponderance of evidence required to ensure that a kinase is

directly responsible for a specific phosphorylation site, especially when kinase networks often

involve the activation of many kinases within a network. Since dysregulation of phosphoryla-

tion-driven networks are common to disease states and kinase inhibitors are a major class of

FDA-approved drugs [7], it would be highly beneficial to connect dysregulated phosphoryla-

tion sites to candidate kinase targets.

A major breakthrough in the ability to hypothesize kinase-substrate connections came with

the discovery that kinase catalytic domains have preferences for the protein sequence immedi-

ately surrounding the site of phosphorylation [8]. However, kinases are often part of multi-

domain protein architectures, where tertiary protein-protein interactions also help to shape

kinase-substrate recognition [9, 10]. Although full proteins may be referred to as substrates of

kinases, it is individual tyrosine/serine/threonine residues that are phosphorylated by a kinase

and not all sites on a protein are regulated by the same kinase. Hence, for the purposes of this

work, the term substrate will refer to the site-specific phosphorylation site targeted by a kinase.

The motivation to understand the kinases responsible for phosphorylating substrates and the
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discovery of kinase specificity determination has resulted in the proliferation of a large number

of kinase-substrate prediction approaches, which extrapolate from available kinase-substrate

data, or specificity features, to predict kinase-substrate relationships across the whole prote-

ome. We found 31 such predictive algorithms published since 1999, ranging in methodologies

from position specific scoring matrix approaches [11] to machine learning approaches, such as

support vector machines [12, 13], Bayesian-based learning [14, 15], and recently, deep learning

approaches [16]. Additionally, new approaches that infer kinase networks from phosphopro-

teomic data have also recently emerged [17, 18]—although these types of predictions are on

the order of the experimental size, versus at the scale of the entire proteome, which we focus

on here. The myriad of approaches suggest a vast array of resources to consider when identify-

ing candidate kinases for new phosphosites, integrating for network-based approaches, or

looking for kinase enrichment, such as in KSEA [19].

Despite a plethora of resources, there are significant barriers to the use of these kinase-sub-

strate prediction algorithms. For example, in our experience, more than one-third of the 16

resources published since 2010 are no longer accessible. In the event that the publication pro-

vided the predictions as supplementary material, there are two main classes of problems one

encounters. First, there are issues with the sequences provided and mapping to current data-

bases. For example, a phosphorylation site is often only designated by its position and an acces-

sion (e.g. Y1197 in UniProt record P00533). The older the dataset, the less likely there exists a

Y/S/T at that position, as reference proteins are not static records. Second, these predicted

resources might publish data filtered, either based on a stringency or based on the known

phosphoproteome at that time. That presents a problem when one wishes to know whether the

absence of a kinase-substrate edge represents a relationship that was tested and then filtered

out due to stringency (a true negative), or is not present, because it was: 1) not tested (reference

proteome difference) or 2) the site was not known to be phosphorylated at the time (reference

phosphoproteome difference). Additionally, different age datasets and datasets published

using alternate accession numbers are difficult to compare/cross-reference. The culmination

of these challenges results in difficulty for researchers to consider multiple prediction algo-

rithms in their research, to get complete results for the current scale of the phosphoproteome,

or to interpret the meaning of various prediction algorithms.

To overcome these challenges, we built a process for unifying kinase-substrate prediction

datasets, where substrates are residue-specific targets of kinases. This process uses a non-

redundant reference proteome to retrieve proteome-level predictions (keeping all edges

tested), maps kinase names to a common ontology, filters on the current phosphoproteome,

and provides methods to allow for updates to both the reference proteome and phosphopro-

teome. Here, we present KinPred v1.0, a framework for unification, a unified resource contain-

ing three selected predictive algorithms, and analysis and methods for considering how to

compare results, network sizes and emergent properties, agreement/disagreement between

predictive algorithms, study bias, and the discriminability/overlap of different kinases within a

predictive algorithm. We have made all code and datasets of KinPred v1.0 publicly available at

https://github.com/NaegleLab/KinPred, and https://figshare.com/projects/KinPred_v1_0/

86885, respectively.

Materials and methods

Data and code availability

All retrieval, processing, and analysis code was written in Python3/Jupyter and are available in

our Github repository at: https://github.com/NaegleLab/KinPred. All datasets, midpoints,
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reference proteome and phosphoproteomes, and mapping ontologies, extracted code, for

KinPred v1.0 are available on Figshare at: https://figshare.com/projects/KinPred_v1_0/86885.

Data preparation

Retrieving and processing a unified prediction set. We used a non-redundant canonical

human proteome reference file from UniProt (Feb. 26, 2020, stored with project data at:

https://doi.org/10.6084/m9.figshare.12749342.v1). The downloaded FASTA file was program-

matically split into 21 smaller files and then submitted to the prediction services, using the

appropriate programmatic or web-based interface, as outlined below. We removed prediction

types that did not refer to protein kinase-substrate interactions. For unification between pre-

dictive algorithms, the raw prediction data was pre-processed to a standard format, and a

controlled vocabulary was used (labeled Whole proteome-level predictions in the Figshare

project). The substrates and kinases were mapped to the same ontology, compliant with the

UniProt reference. The standardized format includes the following information: the unique

identifier for substrates, which is the combination of the protein UniProt accession and site

position within the protein sequence; the protein accessions and gene names annotated in

UniProt; the site, which is the combination of the amino acid residue and the site position

within the protein sequence; the peptide sequence around the predicted site; and the common

kinase name used across all predictions. Each algorithm has a pre-processed prediction data

file with a standardized format. We created a global kinase ontology reference to map between

algorithm-specific kinase names and a common kinase name (available at: https://doi.org/10.

6084/m9.figshare.12749333.v1). The global kinase map contains the UniProt accession, a com-

mon kinase name, the description of the kinases, the kinase type, and the reference kinase

names in each algorithm. Additionally, this file contains a preferred name, so that users may

define preferred kinase names in downstream analyses.

NetworKIN predictions were run from a local installation of NetworKIN3.0, software avail-

able at https://networkin.info/download/NetworKIN3.0_release.zip. Predictions were set to

include all kinases with no threshold, in order to retrieve all possible edges, and Human was

the selected species, if available.

GPS The GPS5.0 application was downloaded (GPS5.0 Unix v. 20190721 from http://gps.

biocuckoo.cn/download.php), installed locally, and predictions were initially collected in Janu-

ary 2020, then updated to Feb. 26, 2020 reference proteome.

PhosphoPICK predictions were retrieved in November 2019 by submitting the split

FASTA files to the web interface at http://bioinf.scmb.uq.edu.au/phosphopick/submit. Initial

predictions were performed on a reference proteome from Oct.16, 2019, and then updated to

the Feb. 26, 2020 reference proteome.

Filtering predictions for known phosphorylation sites

We retained kinase-substrate predictions for known phosphorylation sites by using the refer-

ence phosphoproteome from ProteomeScout (downloaded Feb. 2020, reference available in

project data with the human UniProt reference on the Figshare project in the Raw directory).

Phosphosites were retrieved from the ProteomeScout database by protein accessions using

ProteomeScout API [4, 20] for every UniProt accession in the reference proteome. The phos-

phorylation sites were matched by the site position. If the site position did not match between

the ProteomeScout UniProt record and the reference record, we matched the substrate sites by

using the algorithm returned 11-mer or 15-mer (GPS, PhosphoPICK) peptide—which, for

some highly repetitive sequences in the human proteome, may match multiple times in a single

protein record. In these cases, all matches were retained in the final data format. Kinase-
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substrate predictions were filtered for coherence—i.e. serine/threonine sites were removed if

the kinase is a known tyrosine kinase and vice versa. Tyrosine/serine/threonine residues were

kept for dual specificity kinases only. The final datasets for each algorithm are available in the

Figshare project under the “Final Data” directory. It is important to note that no stringency fil-

ters have been applied to this data, so that researchers have full control over edge weights of

interest. However, all analyses in this paper applied at a minimum the lowest stringency as

defined in Table 1.

Updating prediction data

We wrote methods to update the human phosphoproteome predictions for future releases of

ProteomeScout datasets. This method checks for changes between the human reference used

to generate KinPred v1.0 and a new human reference dataset. Any sequences that have

changed or been added will be provided, such that the retrieval of new predictions can be per-

formed and added/replaced in the datasets. Next, phosphosites in the new reference phospho-

proteome, mapped to the common substrate ontology, are used to filter the whole proteome-

level predictions for each resource.

Data analysis methods

Thresholds for final prediction data comparison across predictive algorithms. Each

algorithm has a different interpretation of what an edge weight signifies and therefore, there is

no single value that can be applied to threshold all predictive algorithms. The thresholds used

for filtering each algorithm dataset are summarized in Table 1.

NetworKIN the unified likelihood was used as the score of the predictions. The unified like-

lihood of a certain NetPhorest probability and network proximity score of STRING were cal-

culated by the joint probability rule [21]. Horn et al. indicated that it is likely to be true for the

unified likelihood scores to be higher than the theoretically neutral value of 1 [21]. Therefore,

for the purpose of the algorithm comparisons for NetworKIN prediction data, the low,

medium, and high thresholds were adopted with the unified likelihood of 0.3, 0.5, and 1,

respectively.

GPS5.0, the default low, medium, and high thresholds for serine/threonine kinases were

adopted with FPRs of 10%, 6%, and 2%, respectively; and 15%, 9%, and 4%, respectively, for

tyrosine kinases [22]. These default thresholds were kept in this study. To obtain the actual cut-

off scores for the predicted kinases, a random subset of the human proteome sequences was

submitted to GPS5.0 with threshold setting of low, medium, or high. The actual cutoff scores

were extracted from the ‘Cutoff’ column of the prediction results of GPS5.0 application. These

values are provided in the Figshare project under the Raw/GPS directory.

PhosphoPICK PhosphoPICK is the only resource that includes a fourth category of strin-

gency, with default thresholds of 0.25, 0.1, 0.05, and 0.005 as the low, medium, high, and very

high, respectively [15]. In order to identify a relevant set of cutoffs that produce three

Table 1. The definition of kinase-substrate edge weights in a given prediction network and stringencies cutoffs used by algorithm for low, medium, and high

stringencies.

Algorithm Score Definition Low Medium High

NetworKIN Likelihood Ratio 0.3 0.5 1

PhosphoPICK P-value 0.1 0.06 0.02

GPS (Ser/Thr) False Positive Rate 10% 6% 2%

GPS (Tyr) False Positive Rate 15% 9% 4%

https://doi.org/10.1371/journal.pcbi.1008681.t001
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categories for direct comparison to GPS and NetworKIN, and since both GPS and Phospho-

PICK stringencies are based on a false positive rate, we used p-values of 0.1, 0.06, and 0.02, for

low, medium, and high stringencies, respectively.

Predicted kinase networks similarity comparisons. The predicted kinase network simi-

larity comparisons were measured by the Jaccard’s Index [23]. The Jaccard’s index is the ratio

of the intersection to the union of the two sets. The values range from 0 for no similarity to 1

for the complete overlap of the two compared sets. Based on “Tables of significant values of

Jaccard’s index of similarity” [23], the lower and upper critical values of Jaccard’s index with

the probability levels 0.05, 0.01 and 0.001 were calculated for the N elements in either of the

two compared OTUs (Operational Taxonomic Units). The upper critical values of Jaccard’s

index of 0.49 with N = 100, which is the upper limit for the calculated table of the significant

values of Jaccard’s index, correspond with the probability level of 0.001. Hence, we used a

threshold of 0.49 to identify similarities between kinases that are significant.

Results

Evaluation of available kinase-substrate prediction sets

We performed a wide literature search of available kinase-substrate prediction algorithms.

This encompasses approximately 30 prediction algorithms published between 1999 and 2020

(S1 Table). Our goal was to select prediction resources that are: 1) available/accessible, 2) cov-

ered a large range of kinases, 3) residue-specific predictions, versus predictions of whole pro-

teins as substrates, 4) proteome-scale predictions, and 5) kinase-specific, versus predictions by

kinase family. We selected algorithms that focused on kinase-specific results, instead of kinase

family predictions, such as DeepPhos [16], Quokka [24], and MusiteDeep [25], for the breadth

of kinases and to allow comparisons between sets, but also because there is evidence that total

sequence similarity does not guarantee similarity in specificity. Typically, the most recently

duplicated paralogs may have high overall similarity, but the duplication event itself likely

results in the freedom of one of these copies evolving new function—i.e. substrate targets [26].

Instead, small changes in key regions that define specificity can occur [27], resulting in differ-

ential specificity, such as seen for the highly similar paralogs SRC and LCK [28]. There are

three prediction algorithms that met these requirements, which are: (NetworKIN [21, 29],

PhosphoPICK [15], and GPS 5.0 [22] (referred to here as GPS).

The three selected predictive algorithms use various features for prediction, which ulti-

mately result in weighted edges between kinases and possible substrates, where the edge weight

indicates a likelihood of that relationship, although edge weight values are not directly compa-

rable across algorithms. NetworKIN’s [21] prediction approach uses a kinase-specific classifier,

based on sequence and evolutionary phylogeny, and a network proximity score, based on

annotated proximity between kinases and substrates from the STRING protein-protein inter-

action database [30]. We used the combined score of the sequence-specific and network-spe-

cific scores (done by a naive Bayes approach), which is reported as a log-likelihood. GPS’s

prediction approach relies on combined literature curation and kinase-substrate annotations

from Phospho.ELM 7.0 [31] and PhosphoSitePlus [32], then uses a scoring approach based on

sequence similarity to kinase substrates. GPS edge weights are reported as false positive rates

based on generation of 10,000 random phosphopeptides, which are calculated within defined

protein families based on protein kinase homology. Finally, PhosphoPICK, like NetworKIN,

incorporates both sequence-based and network-based information. For training data, they

used Phospho.ELM [31] and HPRD [33] for defined kinase-substrate relationships and Bio-

GRID [34] and STRING [30] for protein-protein interactions. Their Bayesian network algo-

rithm then estimates a likelihood p-value, which is the reported edge score. In summary, the
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three predictive algorithms rely heavily on sequence context, either from degenerate libraries

(NetworKIN) or annotated kinase-substrate training sets (GPS, PhosphoPICK), where Net-

worKIN and PhosphoPICK add protein-protein interaction information and other context

features.

Integration of multiple kinase-substrate predictions into a common

ontology that can be updated

Having selected our three predictive algorithms, we next wished to create a unified prediction

set in which all possible human substrates had been tested and the substrates and kinases were

mapped onto a common ontology. In this framework, there are two steps: 1) we used the algo-

rithm to compute the prediction for all unique human proteins, capturing all predicted kinase-

substrate edges—where edges may exist to Y, S, or T amino acids that are not known to be

phosphorylated and 2) substrates were filtered to include only those sites that have been identi-

fied as phosphorylated according to the integrated compendia and experimental database of

post-translational modifications, ProteomeScout, which combines five major compendia and

primary phosphoproteomic experiments [3]. The results are based on current ProteomeScout

data (Feb. 7, 2020), which includes 41,414 unique phosphotyrosines and 204,399 unique phos-

phoserines/threonines. Combined, the three kinase-substrate predictive algorithms cover 76

tyrosine kinases and 266 serine/threonine kinases. Based on current UniProt annotations of

human kinases this is out of 100 human tyrosine kinases and 376 human serine/threonine

kinases possible. Of the few (9) dual specificity kinases, we include them in both categories,

keeping their relevant substrates as either phosphotyrosine or phosphoserine/phosphothreo-

nine substrates. Fig 1 shows the total kinases covered, indicating that GPS is the largest and

PhosphoPICK is the smallest of the predictive algorithms in this set. This dataset guarantees

coverage of known phosphorylation sites across the available kinases, all commonly mapped to

the same kinase and substrate identifiers.

In order to update this common resource in the future when new phosphorylation sites are

discovered, a trend that continues [4], we have implemented two basic approaches. First, most

updates will require pulling pre-calculated edge weights from the resource that were filtered in

the last version as not being phosphorylated at that time. Second, for a smaller number of

cases, the underlying human proteome sequence may have changed in a way that affects the

sequence surrounding the phosphorylated amino acid of interest. In these cases, our infra-

structure identifies these protein sequences for running anew on the prediction servers/code,

where new predictions are then replaced/added in the compendia of kinase-substrate predic-

tions. We plan to update these predictions once to twice a year, when ProteomeScout under-

goes a stable update. Hence, we provide here both a current, unified prediction set across the

three predictive algorithms, but also a general framework for adding new predictive algorithms

and updating prediction sets in the future.

Thresholding kinase-substrate predictions

The kinase-substrate edges predicted by each algorithm have different mathematical interpre-

tations and each resource publication suggested stringency thresholds (Table 1), where edges

above that threshold are retained in the network. To explore the effects of these thresholds on

overall algorithm coverage and size, we measured the number of unique phosphorylation sites

in post-thresholded networks, across the suggested stringencies (Fig 2A). There is a unique

behavior between tyrosine and serine/threonine kinase networks—increasing stringency in

tyrosine kinase predictions results in a significant loss of human phosphotyrosine coverage in

NetworKIN and, to a lesser extent, PhosphoPICK. For PhosphoPICK, this may be related to
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the smaller number of kinases predicted, compared to the other algorithms. However, Networ-

KIN and GPS have more equivalent tyrosine kinases in their predictive algorithms (50 and 65,

respectively). Hence, the decrease in NetworKIN phosphotyrosine coverage is likely due to the

distribution of edges—fewer overall sites have at least one high stringency edge in NetworKIN,

compared to GPS. This behavior is unique to phoshphotyrosine networks. Phosphoserine/

threonine networks drop a significantly smaller fraction of the known human sites as a func-

tion of increasing stringency. Each algorithm stringency therefore has different effects on

overall phosphorylation site coverage that is specific to the algorithm and the type of kinase

network under consideration.

The total number of edges included in the post-thresholded networks is also of interest, this

captures the density of kinase-substrate connections predicted in each network at, or above,

the given stringency (Fig 2B). At all thresholds, GPS contains the highest number of kinase-

Fig 1. Comparison of the number of kinases in each predictive algorithm by kinase group. A: Tyrosine kinases. B:

Serine/threonine kinases.

https://doi.org/10.1371/journal.pcbi.1008681.g001
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Fig 2. Network comparisons across stringencies. A: Bar graph of total phosphotyrosine and phoshphoserine/

phosphothreonine sites included in the network, normalized to the total number in the low stringency network, as a

function of increasing stringency. Number of substrates at low stringency is labeled on each bar. B: Bar graph of total

edges in the network, normalized by the total number covered in low stringency, as a function of threshold. Numbers

on low stringency bars are the total number of edges at low stringency. C: Distributions of substrate degree of

phosphotyrosine and phosphoserine/phosphothreonine sites, where degree is the number of edges connected to a

substrate at or above the denoted stringency.

https://doi.org/10.1371/journal.pcbi.1008681.g002
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substrate edges, consistent with it being the largest of the three predictive algorithms, in terms

of the total number of kinases available. However, the rate of loss of edges in the different pre-

dictive algorithms as a function of stringency differ. Specifically, medium and high stringencies

in NetworKIN result in significant loss of predicted edges (as well as phosphorylation site cov-

erage). To a lesser extent, this loss of network edges also occurs in PhosphoPICK.

Finally, in order to understand how edge loss translates to the connectedness of individual

substrates, we explored the degree distribution of substrates as a function of stringency (Fig

2C). Generally, the median substrate degree is directly proportional to the networks’ size (Fig

2), where the center of the distribution is highest for GPS, which generally predicts signifi-

cantly more kinases are responsible for phosphorylating substrates than the other algorithms.

All algorithms demonstrate that there are a small proportion of substrates that are highly con-

nected—being more than two standard deviations higher, compared to other substrates for

that algorithm (Fig 2C). For GPS, lowly connected substrates are considered outliers, which is

different than the other algorithms, where the majority of substrates are lowly-connected—i.e.

the majority of their substrates have connections from 0 to 10 kinase connections. Increasing

stringency generally has the effect of reducing highly-connected outliers and decreasing the

average degree of substrates. Taken together, the three different networks demonstrate very

different properties regarding substrate inclusion and connectedness, including different

effects of stringency thresholds, suggesting that direct stringency comparisons do not result in

comparable networks.

Effect of study bias in substrate prediction networks

The training of kinase-substrate predictive algorithms relies on well-annotated training data,

which has the potential to create bias of strong predictions for phosphorylation sites that

formed the basis of training sets, i.e. study bias. To test for this type of study bias, we looked at

the relationship between the number of high-stringency edges a substrate has and how fre-

quently it appears in compendia/databases of phosphorylation. ProteomeScout currently con-

tains five compendia (PhosphoSitePlus [32], Phospho.ELM [31], dbPTM [35], HPRD [33],

and UniProt [36]). Two of these resources, Phospho.ELM and HPRD are no longer updated,

but represent the oldest data that was the foundation of many kinase-substrate prediction algo-

rithms. Conversely, PhosphoSitePlus, the largest resource, is predominantly composed of mass

spectrometry-based discovery and accounts for a large proportion of the data represented by

just one compendium. Interestingly, none of the compendium completely overlaps with

another compendium. Hence, we propose that the total number of compendia a phosphoryla-

tion site appears in can be used as a proxy for how likely they were included as part of the

original training or testing data of kinase-substrate prediction algorithms—i.e. a measure of

training set study bias.

Fig 3 shows the distribution of substrate degrees as a function of the number of compendia

the substrate has been observed in. Roughly 93% and 90% of phosphotyrosine and phospho-

serine/threonine sites, respectively, are annotated by at least one compendium, the majority of

which are annotated only in one compendia (60% and 53% respectively). Roughly 16% of

phosphotyrosines and 23% of phosphoserine/threonine are very well studied, appearing in at

least three different compendia. Most predictive algorithms, in both phosphorylation groups,

generally show increasing degree with increasing compendia annotations, suggesting a strong

relationship between how many high-stringency edges a substrate has and how well-studied it

is. To statistically test this, we used the Kolmogorov-Smirnov (KS)-test to compare the distri-

butions of a group to the distribution in the next compendia group. If substrates were truly a

random sampling of the background, the KS-test would result in no significant rejections of
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the null hypothesis. However, we observed very significant differences in most comparisons,

including all of the tests in GPS substrate degrees and most of PhosphoPICK tests. NetworKIN

demonstrates fewer significant differences in network degree as a function of study bias. These

results suggest that it is important to understand the effect of study bias that underlies the

kinase-substrate predictions when drawing conclusions from these predictive algorithms.

Direct comparison of kinase-substrate predictive algorithms

We wished to understand the similarity of kinase-substrate predictive algorithms. For these

analyses, we consider only the kinases that are predicted in any pair of predictive algorithms

(Fig 1), which includes: 11 tyrosine kinases and 68 serine/threonine kinases between Phospho-

PICK and NetworKIN; 39 tyrosine kinases and 117 serine/threonine kinases between GPS

and NetworKIN; 19 tyrosine kinases and 87 serine/threonine kinases between GPS and

PhosphoPICK.

One aspect of comparison we considered was whether different algorithms generally agreed

with how connected kinases are—i.e. their degree or number of substrates predicted per

kinase. To measure this, we looked at the correlation in kinase degree between predictive algo-

rithms at different stringencies. There was no discernible correlation between any pair of pre-

dictive algorithms. The highest correlation was between PhosphoPICK and NetworKIN

tyrosine kinase degrees with a Pearson correlation of 0.49 (p-value of 0.12, likely due to few

numbers of kinases in the set). If we perform the same analysis from the perspective of sub-

strate connectivity, there is a modest correlation only between PhosphoPICK and NetworKIN

for both tyrosine (r = 0.6, p-value < 1e-100) and serine/threonine networks (r = 0.4, p-

value < 1e-100). All other pairwise comparisons of kinase and substrate degree showed poor

Fig 3. Effect of study bias. Each panel shows the distribution (boxen plot) of the number of high stringency kinase connections a

substrate has, where substrates are grouped according to the number of compendia they were annotated in, where the more the

compendia a substrate is in the more likely it was part of a training set for the algorithms (i.e. a type of study bias). Distributions are

plotted for high-stringency networks for NetworKIN, GPS, and PhosphoPICK (from left to right) and for tyrosine (top) and serine/

threonine networks (bottom). To test if there is a difference between one compendia group and the next higher compendia group, we

performed pairwise Kolmogorov-Smirnov (KS)-tests, where � denotes<1e-3 p-value, indicating the data do not come from the same

underlying distribution, which is the expected behavior if each sample distribution by compendia was randomly pulled from the

background.

https://doi.org/10.1371/journal.pcbi.1008681.g003
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correlation. In short, this means algorithms do not generally agree about which kinases and

substrates are highly or lowly connected within networks and only PhosphoPICK and Networ-

KIN have some agreement as to the general trend of substrate connectivity.

Finally, we wished to ask how similar/dissimilar kinases are within and across predictive

algorithms. We measured the similarity between kinases using the Jaccard index, which is the

size of the intersection of two sets, normalized by the size of the union of the sets, for thre-

sholded networks. The Jaccard index ranges from 0 (no overlap), to 1 (complete overlap).

There is an expectation that some amount of overlap occurs by random chance. For sets con-

taining at least 100 elements, a Jaccard index of 0.49 or larger is considered significant at a p-

value of 0.001 [23]. A kinase set is defined as the substrates connected to it at, or above, a given

threshold. Since all comparisons here contain at least 100 elements, then 0.49 is a bound with

conservative estimate of being unlikely due to random chance alone. Additionally, a Jaccard

index of 0.49 corresponds to roughly half of the available substrates between a pair of kinases

as being shared. We used this approach to understand network overlap between kinases within

the same algorithm and between kinases in different predictive algorithms.

Within-algorithm kinase similarity. We compared within-algorithm kinase similarity to

understand the overlap, or lack of discriminability, between kinases within an algorithm. Fig 4

shows the results of all pairwise Jaccard scores for tyrosine kinase predictions within Networ-

KIN at low and high stringency. The highest degree of overlap exists at low stringencies, where

46% (23) of the tyrosine kinase networks predicted by NetworKIN are significantly similar to

at least one other tyrosine kinase in NetworKIN. This overlap decreases with increasing strin-

gency—dropping to 26% of kinases (13) at medium stringency and 22% of kinases (11) at high

stringency. The NetworKIN serine/threonine kinase overlap starts higher (65.7% overlap sig-

nificantly at low stringency), but also drops faster to end at only 9.3% overlap at high strin-

gency. PhosphoPICK shows no significant overlap at high stringency for tyrosine kinases and

modest overlap (2%) for serine/threonine kinases. The general trend of decreasing overlap

with increasing stringency is consistent across all predictive algorithms and both tyrosine and

serine/threonine networks (S1 Fig), with the exception of tyrosine kinase networks in GPS,

which actually increase in the extent of overlap with increasing stringency.

We next used a network layout to see what kinases significantly overlap with each other

(Fig 4C and 4D, and S1 Fig). The kinases that significantly overlap with each other show very

different patterns in NetworKIN than in GPS. In NetworKIN high stringency networks, over-

lap occurs between highly homologous paralogs of kinases (e.g. the EPHA and MAPK family

of kinases). However, in GPS there is low overlap amongst these families, but high overlap

between evolutionarily diverse kinases, such as CSF1R, JAK1, ITK, ERBB4, and PTK2. Hence,

our analysis suggests that when using the kinase-substrate networks as a whole, one must con-

sider the degree of overlap, i.e. lack of discriminability, between kinases in an algorithm and

the role of stringency in alleviating, or in the case of GPS, increasing overlap.

Between-algorithm kinase similarity. We next wished to understand whether the differ-

ent predictive algorithms generally agreed regarding kinase network similarity. We again used

the Jaccard index, this time measuring overlap between a kinase in one algorithm and kinases

in a second algorithm. Most notably, this analysis demonstrated that globally the between-

algorithm similarity of the same kinases is significantly lower than within-algorithm similari-

ties of different kinases. For example, Fig 5 shows NetworKIN vs. PhosphoPICK at low strin-

gencies for both tyrosine and serine/threonine networks (all direct comparison JI matrices are

available in S2 Fig), with JI values that are significantly lower than the best JI values seen within

an algorithm (Fig 4A).

Despite having low overall similarity, we wished to know if the best overlap still occurred

between predictive algorithms for the same kinase. Fig 5 and S2 Fig highlight the kinases
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whose match is in the top 1% of Jaccard scores measured against all kinases in another algo-

rithm. We noticed that although some kinase’s rank high when comparing from one algorithm

to another, the opposite is not necessarily true. For example, SRC, ERBB1, ABL1, HCK, and

INSR rank high when comparing NetworKIN to PhosphoPICK, but only SRC and ERBB1

rank high when comparing from PhosphoPICK to NetworKIN. Based on Jaccard scores, HCK

of NetworKIN overlaps best with HCK PhosphoPICK networks, but the HCK PhosphoPICK

network instead overlaps to a greater extent with NetworKIN’s LCK, ABL2, and FYN net-

works. The same trend holds true for serine/threonine networks, where 14 kinases in

Fig 4. Within-algorithm kinase similarity. Jaccard index matrices for NetworKIN predictions at A: low and B: high stringency. The symmetric matrix

was sorted hierarchically and kinase names are highlighted in red text if their Jaccard index meets a minimum of 0.001 p-value significance (a value of

0.49 or greater). Those relationships that exceed significant Jaccard index values are shown in network diagrams C: NetworKIN tyrosine and serine/

threonine kinases under high stringency and D: GPS tyrosine kinase networks (serine/threonine are large and available in S1 Fig). A spring layout was

used on the weighted graph, so the closer the nodes the larger the Jaccard index. These graphs show all significant overlapping kinases in the given

kinase network.

https://doi.org/10.1371/journal.pcbi.1008681.g004
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Fig 5. Between-algorithm kinase similarity. A: Jaccard index matrix (non-symmetric), comparing GPS and NetworKIN tyrosine kinases

at low stringency, where highlighted labels in red fall within the top 1% of all kinase comparisons B: Jaccard index matrices (non-

symmetric), comparing GPS and NetworKIN serine/threonine kinases at low threshold, where labels indicate that comparison falls within

the top 1% of all kinase comparisons. C: In order to understand if the highest overlap of a kinase in one algorithm is the same kinase in the

other algorithm, we calculated the cumulative distributions of the fraction of this match from the highest ranked kinase to the top 10

(tyrosine kinases) or top 20 (serine/threonine kinases). For example, a y-axis value of 0.3 at x-axis value of 2 means that 30% of the kinase

comparisons from algorithm A to algorithm B, where the title defines A:B comparison in that panel, have a JI value that puts them in the

top 2 of all kinase-kinase comparisons. The black line gives an estimation of what is expected by random chance. This calculation was run
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NetworKIN’s overlap in the top 1% of rankings with PhosphoPICK, but only 10 PhosphoPICK

kinases overlap in the top 1% of JI values with NetworKIN kinases. Finally, we noted that the

identity of the best-ranking kinases is highly dependent on stringency—the kinases that over-

lap change drastically across different stringency networks (S2 Table).

Since each algorithm’s stringency value has a different interpretation and results in different

impacts on the overall networks (e.g. the number of edges, edge degree distributions, etc.), we

wished to compare all combinations of stringency in a pairwise manner to identify the maxi-

mum overlap of kinase networks between predictive algorithms. Fig 5 shows the results of this

experiment, presented as the cumulative distribution function of the kinases by rank—mean-

ing one can measure the fraction of kinases whose direct match appears in the top 10 or top 20

ranks for tyrosine and serine/threonine networks, respectively. We included a line (in black)

that establishes a bound on random expectation for this type of calculation. Additionally, we

randomized the networks and performed this experiment, which demonstrated that random

networks generally follow random expectation (S3 Fig).

The CDF ranks, akin to the findings of the top 1% of kinases in the heatmaps, highlights

that the asymmetry in mapping results is universal. Specifically, there are drastically different

behaviors in mapping from algorithm “A” to algorithm “B” than from B to A. For example,

not only are the starting points (fraction that are ranked first) in the A:B than B:A plots differ-

ent, but which stringency selections achieve optimum overlap varies between comparisons

and between kinase types. For example, low stringency NetworKIN predictions have the best

overlap with PhosphoPICK for tyrosine kinases, but the opposite is true for the serine/threo-

nine comparison, where high stringency creates the best overlap. Additionally, the shape of the

curve, where positive deviation from the random line indicates more similarity between pre-

dictive algorithms, is not the same in the A to B than the B to A comparisons. For example,

although mapping from NetworKIN into GPS deviates positively from the random line, the

opposite is not true—GPS rankings are not better than expected by random chance. This

means that GPS overlap of kinases with the same kinase in NetworKIN is indistinguishable

from the overlap they share with different kinases in NetworKIN. GPS mappings in both

kinase groups and against both NetworKIN and PhosphoPICK perform the worst in matching

relevant kinases in other predictive algorithms. Taken together, these results suggest that there

is generally low agreement between predictive algorithms, although it is often better than ran-

dom chance, suggesting at least some agreement. Unfortunately, these results also suggest that

there is no single best stringency to recommend that maximizes the comparisons between pre-

dictive algorithms.

Discussion

Lessons from comparisons of multiple predictive algorithms

The analyses we performed on the three different prediction datasets demonstrated vastly dif-

ferent behaviors in terms of network size, properties, study bias, and overlap both within and

between predictive algorithms. Sadly, the deeply disparate results from the network overlap

analysis suggest that it is unhelpful to merge networks in a manner that relies on agreement

between predictive algorithms. Instead, users of these networks should likely consider specific

for all possible thresholds and the color line is used to indicate the threshold of algorithm “A” and the thickness indicates the threshold of

the “B” algorithm. For example, the top-left panel, the thick gold line indicates the comparison of NetworKIN’s high-stringency network to

GPS high-stringency network, which also has the largest deviation from the random-chance line of all possible NetworKIN:GPS

comparisons. The faster and higher the deviation from the random chance line, the more agreement there is between prediction algorithms

networks at those stringencies.

https://doi.org/10.1371/journal.pcbi.1008681.g005

PLOS COMPUTATIONAL BIOLOGY KinPred: Sustainable kinase-substrate approach

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008681 February 8, 2021 15 / 20

https://doi.org/10.1371/journal.pcbi.1008681.g005
https://doi.org/10.1371/journal.pcbi.1008681


needs when determining which predictive algorithms to use, how to consider stringency, and

how to aggregate results between predictive algorithms. For example, if one wishes to mini-

mize overlap between kinase networks within an algorithm, then for serine/threonine predic-

tions you would select high stringency networks for all predictive algorithms, but for tyrosine

networks you would select low stringency for GPS, medium or high stringency for Phospho-

PICK, and high stringency for NetworKIN. If instead, one wished to maximize network cover-

age of phosphorylation sites, then GPS at any stringency and low stringencies for NetworKIN

and PhosphoPICK would be ideal. Finally, if the goal is to maximize overlap between predic-

tive algorithms, there is no single stringency selection that is ideal, even in a single pair of pre-

dictive algorithms, since mapping from one to the other is not equivalent in the reverse

mapping. In conclusion, we propose that the general analysis framework developed here will

be useful to researchers when considering this, or other predictive algorithms.

Another important conclusion from this analysis, is that it is likely that the predominate

behaviors within the predictive algorithms are largely driven by the underlying assumptions

and training data at the basis of the predictive algorithms. For example, NetworKIN’s basis for

sequence recognition did not come from annotated sets, but from degenerate libraries and

therefore, may be the reason that NetworKIN does not exhibit the same extent of study bias

within its network as GPS and PhosphoPICK. Since the latter two predictive algorithms relied

on relatively small numbers of kinase-substrate annotations coming from databases like Phos-

pho.ELM, we hypothesize that these predictive algorithms enrich for confident scores on well-

studied proteins from the training data, which results in the very high degree of study bias

observed. Secondly, NetworKIN’s poor discrimination between highly homologous kinases is

likely due to its reliance on assumptions that homologous kinases result in similar specificity.

Unfortunately, whether highly homologous kinases are more likely to phosphorylate similar

substrates, versus the suggestion of GPS, where highly dissimilar kinases have high degree of

overlap, is difficult to explore given the small amount of available, validated kinase-substrate

relationships. Beyond the onus of explicit kinase-substrate identification, recent approaches

for assessing kinase specificity profiles have been developed, which demonstrated that two

highly homologous proteins (SRC and LCK) have evolved different specificities [28]. Ideally

the expansion of these approaches will eventually aid in the determination of the relevance of

homology-based specificity assumptions in kinase models.

Value of cohesion and growth

KinPred (version 1.0) is the first bioinformatics resource that provides a unified kinase-sub-

strate prediction network for the human phosphoproteome from multiple predictive algo-

rithms. Here, we retrieved unified results for all kinase-specific predictive algorithms that were

accessible at the time of this research. We believe this is a useful resource for any researcher

wishing to explore specific kinase-substrate hypotheses or for use in algorithms that rely on

entire networks, such as KSEA [19]. In addition to providing current, updated results of these

three predictive algorithms for the whole proteome, we have provided code and a created a

general framework for: 1) unifying new approaches in kinase-substrate predictions 2) updating

resources as knowledge of the human phosphoproteome grows, and 3) updating resources for

when the underlying protein databases are updated in a way that impacts specific kinase-sub-

strate predictions. By using a framework for updating these predictions, it helps to ensure the

usability, accessibility, and accurateness of these resources for future users.

Unfortunately, our broad exploration of kinase-substrate prediction resources highlighted

challenges users face in accessing or understanding the predictions. Of the five predictive algo-

rithms for site-specific kinase-substrate prediction, three were unavailable or unaccessible for
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creating updated results. For available resources, if we wished to guarantee coverage of the

human phosphoproteome, it required running the full proteome against the website, or in

downloadable code. This process took several weeks for the largest predictive algorithms.

Hence, there are significant barriers to the usability of these resources and we would like to

emphasize that for long term sustainability/usability of new algorithms in the field, publication

should include the entirety of the prediction against a reference proteome (i.e. all kinase-sub-

strate edges tested) and a subset of those predictions for the current phosphoproteome, pro-

vided with the reference proteome and phosphoproteome used. This way, should algorithm

access no longer be available, users could more easily access and update from the larger set of

available predictions provided at the time of publication. Ideally, if prediction results were pro-

vided in the unified format we have developed, results are also easily comparable between algo-

rithms. Finally, an advantage to providing all edge weights, instead of filtering on a specific

stringency, is that, as we demonstrated, stringency selection for considering edges as signifi-

cant depends on the application, so publishing only post-filtered results presents a significant

barrier for the use of these resources.

Supporting information

S1 Fig. Within algorithm similarities. Within-algorithm kinase similarity measured by Jac-

card index for all predictive algorithms at all stringencies (low, medium, and high from left to

right). The symmetric matrix was sorted hierarchically. The within-algorithm relationships

that exceed significant Jaccard index (0.49) values are shown in network diagrams, below their

corresponding heatmap. The figures are separated by kinase type (tyrosine kinases first and

serine/threonine kinases second. For dense maps, where it is not possible to achieve label sepa-

ration, the names of kinases can be found as labels in the heatmap, where heatmap sorting cor-

relates with proximity in the network graphs.

(PDF)

S2 Fig. Between algorithm similarities. Between-algorithm kinase similarity measured by

Jaccard index for all combinations of predictive algorithms at all stringencies (low, medium,

and high from left to right). The matrices are sorted by the same kinase order on both the Y-

and X-axes. If the ranking of kinase in algorithm A is in the top 1% of similarities in algorithm

B comparisons, the font is in red for tyrosine kinases, or indicated with a label in serine/threo-

nine kinases.

(PDF)

S3 Fig. Ranking performance for randomized datasets. The edges of predictive algorithms

were randomized and the process of measuring Jaccard index overlap between predictive algo-

rithms and measuring the cumulative distribution function of rankings, as done in Fig 5 was

repeated on random datasets. The dashed-black line indicates the expectation of random per-

formance line.

(PDF)

S1 Table. Overview of predictive algorithms. The name, Pubmed link, and details about the

availability and details of 49 predictive algorithms of phosphorylation and kinase-substrate

relationships.

(XLSX)

S2 Table. Ranks of kinases in between-algorithm comparisons. This Excel book contains an

overview of the performance of each pairwise algorithm overlap, the optimum stringency

selected, and the ranks of kinases mapping from one algorithm to another at those optimum
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stringencies.
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