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Abstract
Introduction: Categorization is a fundamental cognitive process, whereby the brain 
assigns meaning to sensory stimuli. Previous studies have found category representa-
tions in prefrontal cortex and posterior parietal cortex (PPC). However, these higher-
order areas lack the fine-scale spatial representations of early sensory areas, and it 
remains unclear what mechanisms enable flexible categorization based on fine-scale 
features.
Methods: In this study, we decoded functional MRI signals and measured causal influ-
ences, across visual, parietal, and prefrontal cortex from participants performing cat-
egorization based on coarse- or fine-scale spatial information in thirteen healthy 
adults.
Results: We show that category information based on coarse discriminations was rep-
resented in the PPC, in the intraparietal sulcus region, IPS1/2, at an early stage of 
categorization trials, whereas representations of category information based on fine-
scale discriminations formed later during interactions between IPS1/2 and primary 
visual cortex (V1). Specifically, when fine-scale discriminations were necessary, we 
decoded significant category information from V1 at an intermediate stage of trials 
and again from IPS1/2 at a late stage. IPS1/2 feedback was critical, because categori-
zation performance improved as causal influence from IPS1/2 to V1 increased. Further, 
these mechanisms were plastic, as the selectivity of IPS1/2 and V1 responses shifted 
markedly with retraining to categorize the same stimuli into two new groups.
Conclusions: Our findings suggest that reentrant processing between the PPC and 
visual cortex enables flexible abstraction of category information.
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1  | INTRODUCTION

Our ability to categorize information based on common aspects 
or structure in varied sensory experiences is essential for se-
lecting appropriate behavioral responses (Seger & Miller, 2010). 
Representations of category information have been shown in 
higher-order cognitive areas such as the lateral prefrontal cortex 
(PFC) (Ferrera, Yanike, & Cassanello, 2009; Freedman, Riesenhuber, 
Poggio, & Miller, 2001; Li, Mayhew, & Kourtzi, 2009) and poste-
rior parietal cortex (PPC) (Freedman & Assad, 2006; Swaminathan 
& Freedman, 2012). In delayed match-to-category tasks, neurons in 
macaque PFC and PPC often show category-selective signals after 
sample stimulus onset and throughout the delay period and test 
stimulus presentation (Freedman & Assad, 2006; Freedman et al., 
2001). It has been reported that the PPC has stronger, earlier, and 
more reliable category-related signals than the PFC (Swaminathan & 
Freedman, 2012), which suggests that category representations can 
be generated in the PPC.

Because category-defining information may contain, for in-
stance, high spatial frequency content requiring fine-scale visual 
representations, learning new categories may also depend on plas-
ticity in early sensory areas, which has been demonstrated in ex-
trastriate cortical areas (Aizenstein et al., 2000; Goncalves et al., 

2015). However, the respective roles of higher-order and early 
visual areas and their interactions during categorization remain 
unclear. One possibility is that category signals are generated in 
higher-order areas, such as the PPC, owing to its involvement in 
both sensory (Bisley, Krishna, & Goldberg, 2004) and higher cog-
nitive functions (Toth & Assad, 2002), whereas early visual cortex, 
such as the primary visual cortex (V1), strictly represents sen-
sory information on object features and locations that are neces-
sary for extracting category information at higher cortical levels. 
Alternatively, category signals may be detectable as early as V1 
when categorizations rely on fine-scale features, which would likely 
involve interactions with higher-order cortex like the PPC. Such a 
role for V1 beyond basic sensory processing has been shown in 
selective attention, working memory, subjective perception, and 
perceptual learning (Kamitani & Tong, 2005; Li, Piech, & Gilbert, 
2008; Roelfsema, Lamme, & Spekreijse, 1998; Super, Spekreijse, & 
Lamme, 2001; Yan et al., 2014).

To test for category signals in V1 and, if present, the large-scale 
network dynamics giving rise to these signals, we used fMRI and 
multivariate pattern analysis (MVPA) (Haxby et al., 2001) to moni-
tor cortical activity in the PPC, PFC, lateral occipital cortex (LOC), 
and V1 while participants performed a visuospatial categorization 
task.

F IGURE   1 Delayed visual–spatial 
categorization task and behavioral 
performance. (a) Circular visual stimuli 
appeared at one of eight possible 
locations equidistant from the fixation 
point. Participants grouped stimuli into 
two categories defined by an invisible 
category boundary (solid line). The 
dotted line is the boundary used when 
participants retrained to categorize stimuli 
into two new categories. The boundary 
lines are shown for illustration only. (b) A 
sample stimulus was presented for 0.5 s, 
and after a long delay period (11 s), a 
test stimulus was presented. Participants 
reported whether the sample and test 
stimuli belonged to the same category. 
(c) Participants’ performance accuracy 
(left) and average reaction time (RT; 
right) for the sample stimuli far (6.5 dva) 
from the category boundary and close 
(2.7 dva) to the boundary. Red and green 
lines, respectively, denote increase and 
decrease from 2.7 to 6.5 dva. Participants’ 
average RT was shorter for sample stimuli 
6.5 dva from the category boundary 
(compared with 2.7 dva)
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2  | MATERIALS AND METHODS

2.1 | Participants

Thirteen healthy adults (seven females; age: 20.70 ± 1.59 years) with 
normal or corrected-to-normal vision participated in the fMRI study. 
None of the participants had a history of neurological or psychiatric 
conditions. Informed consent was obtained from all subjects in accord-
ance with guidelines, and the protocol was approved by the Institute 
of Psychology, Chinese Academy of Sciences. One participant was ex-
cluded from the fMRI analysis due to he requested to terminate the 
scanning session after the first scan.

2.2 | Experiment design

In order to assess the role of higher-order and early visual areas in 
visuospatial categorization (Figure 1a), we adapted a categorization 
task previously used in macaque experiments (Crowe et al., 2013). We 
used a delayed visuospatial categorization (DVSC) task that requires 
participants to group eight circular stimuli according to learned catego-
rization rules (Figure 1a; category boundary in experiment 1: solid line; 
experiment 2, after retraining: dotted line). Trials began with the pres-
entation of a square gaze fixation point (each side 0.5 degrees of visual 
angle [dva]; duration 0.5 s) at the center of the display. Participants 
were instructed to acquire and maintain their gaze on the fixation point 
throughout the trial. After the initial fixation period, a circular sample 
stimulus (0.6 dva in diameter) was presented for 0.5 s at an eccentricity 
of 7 dva. This was followed by a long delay period (11 s), after which 
a circular test stimulus was presented (7 dva from the fixation point). 
The sample and test stimulus positions were selected pseudorandomly 
from eight possible positions equally spaced around the perimeter of 
an invisible circle centered at the fixation point. There was 5.4 dva be-
tween two adjacent positions). The category boundary in experiment 
1 and, after retraining, in experiment 2 was a diagonal line passing 
through the fixation point at an angle of 45 and 135°, respectively. The 
positions nearest the boundary were 2.7 dva away from the bound-
ary. If the test stimulus belonged to the same category as the sample, 
participants were instructed to press the “yes” button on the response 
device as quickly as possible within the 2-s test duration. If the test 
stimulus belonged to the different category, participants pressed the 
“no” button (Figure 1b). The “yes” button was either on the left or 
right, which was counterbalanced across the participants. As control 
trials, a fixation cross instructed participants to simply gaze at the cross 
(14 s). Before scanning, participants practiced to ensure they would be 
able to perform the task with greater than 85% accuracy. Participants 
completed 15 runs (30 trials per position, for a total of 240 trials, and 
240 fixation trials) in each experiment. There were four scans totally 
for each subject (7, 8, 7, 8 runs, respectively).In particular, experiment 
one and two consisted of two scanning sessions, respectively. Each 
experiment included 15 runs (a total of 30 runs). Each run was 448s. 
The sessions performed on separate days with 1 or 2 days separated. 
A high-resolution 3D anatomical T1-weighted scan was acquired from 
each participant in each scan session.

2.3 | Visual display

We generated visual displays on a DELL computer using the Matlab 
Psychophysics toolbox (Psychtoolbox-3; www.psychtoolbox.org). A 
17 × 14 inch liquid crystal display projector outside the scanner room 
displayed the stimuli on a screen located at the end of the scanner 
bore. Participants viewed the visual stimuli back-projected onto the 
screen at a total length of 12 cm through a mirror attached to the 
head coil. The screen subtended 45 dva in the horizontal dimension 
and 37 dva in the vertical dimension.

2.4 | MRI acquisition

Scanning was performed at the Hospital of Anhui Medical University 
using a 3-T GE Discovery scanner. We used foam pads to stabilize the 
head of each participant and earplugs for ear protection. T1-weighted 
images for anatomical localization were acquired using a 3D spoil 
gradient-recalled sequence (repetition time [TR] = 7.872 ms; echo 
time [TE] = 3.06 ms; inversion time [TI] = 400 ms; flip angle = 11°; 
voxel size = 0.8594 mm × 0.8594 mm × 1 mm; 192 sagittal slices; 
matrix size = 256 × 256). T2-weighted images sensitive to blood oxy-
genation level-dependent contrasts were acquired using a gradient 
echo-planar image pulse sequence (TR = 2,000 ms; TE = 22.6 ms; flip 
angle = 30°; voxel size = 3.4375 mm × 3.4375 mm × 3.7 mm; 37 axial 
slices; slice thickness = 3.7 mm; matrix size = 64 × 64).

2.5 | Data analysis

2.5.1 | fMRI data preprocessing

Functional and anatomical images were first analyzed using the FMRI 
Expert Analysis Tool (part of the FSL package; http://www.fmrib.
ox.ac.uk/fsl). Preprocessing of functional images consisted of motion 
correction, run-wise linear (1st-order polynomial) detrending, spa-
tial smoothing (Gaussian kernel, full width at half maximum = 5 mm), 
and temporal filtering (a nonlinear high-pass filter with a 90-s cutoff). 
Functional images were first registered to the anatomical images and 
then into the standard (MNI) space. Registration of the functional im-
ages with high-resolution structural images and standard (MNI) space 
was carried out using affine transformations (Jenkinson & Smith, 
2001). Registration from the anatomical images to MNI space was 
further refined using FNIRT nonlinear registration (Andersson et al., 
2007). We performed run-wise detrending because our data were de-
rived from 15 different runs (two scans), so an assumption of a con-
tinuous linear trend across all runs is not appropriate. Global scaling, 
which was used in a previous Granger causality analysis for fMRI data 
(Wen, Yao, Liu, & Ding, 2012), was applied to remove the global signal.

2.5.2 | Regions of interest (ROIs)

All ROIs that we used are based on probabilistic templates (Mars et al., 
2011; Sallet et al., 2013; Wang, Mruczek, Arcaro, & Kastner, 2015; 
Zhen et al., 2015). Previous studies have shown that the cortical 
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anatomy of V1 is a reliable predictor of the location and retinotopic 
organization of V1 (Benson et al., 2012). In addition, our recent study 
revealed that early visual areas were better aligned across subjects 

within the standard space relative to the higher-order areas (Wang 
et al., 2015). Thus, we defined V1 (and occipital areas, V2 and V3, 
as well as ventral occipitotemporal areas, V4, VOC, and PHC) on the 

TABLE  1 Regions of interest. To obtain regions in the left parietal and dorsal frontal cortex, we flipped the corresponding regions in the 
right hemisphere across the midline, since the atlases from which our regions were derived only focused on the right hemisphere

ID Lobe Region Abbreviation MNI (L/R) Reference

1 Posterior occipital Primary visual cortex V1 (−6, −92, −2)/(9, −90, 2) Wang et al. (2015)

2 Posterior occipital Secondary visual cortex V2 d: (−10, −99, 12)/(14, −96, 
15) 
v: (−9, −83, −11)/(10, −81, 
−8)

3 Posterior occipital Third visual complex V3 d: (−18, −97, 16)/(24, −94, 
16) 
v: (−17, −79, −12)/(18, −77, 
−11)

4 Ventral temporal hV4 (−25, −80, −14)/(26, −79, 
−12)

5 Ventral temporal Ventral occipital cluster VOC (−25, −66, −10)/(26, −64, 
−9)

6 Ventral temporal Parahippocampal cortex PHC (−27, −52, −9)/(28, −49, −9)

7 Lateral occipital–temporal Lateral occipital complex LOC (−47, −71, −2)/(48, −68, −3) Zhen et al. (2015)

8 Superior parietal Ventral intraparietal area SPLA (−30, −41, 53)/(30, −41, 53) Mars et al. (2011)

9 Superior parietal Anterior superior parietal cortex SPLB (−12, −50, 63)/(12, −50, 63)

10 Superior parietal Anterior part of the medial wall 
of the intraparietal sulcus

SPLC (−28, −55, 55)/(28, −55, 55)

11 Superior parietal Posterior intraparietal sulcus 
(IPS3)

SPLD (−19, −63, 53)/(19, −63, 53)

12 Superior parietal Posterior intraparietal sulcus 
(IPS1, IPS2)

PPC/SPLE (−21, −78, 43)/(21, −78, 43)

13 Inferior parietal Parietal opercular region IPLA (−49, −25, 30)/(49, −25, 30)

14 Inferior parietal Anterior supramarginal gyrus IPLB (−53, −32, 44)/(53, −32, 44)

15 Inferior parietal Posterior supramarginal gyrus IPLC (−50, −44, 43)/(50, −44, 43)

16 Inferior parietal Anterior angular gyrus IPLD (−46, −55, 45)/(46, −55, 45)

17 Inferior parietal Posterior angular gyrus IPLE (−37, −67, 39)/(37, −67, 39)

18 Dorsomedial frontal Supplementary motor area SMA (−10, 4, 59)/(10, 4, 59) Sallet et al. (2013)

19 Dorsomedial frontal Presupplementary motor area preSMA (−14, 23, 52)/(14, 23, 52)

20 Dorsomedial frontal Prefrontal area 9 Area9 (−10, 50, 29)/(10, 50, 29)

21 Dorsomedial frontal Frontal polar area 10 Area10 (−16, 58, 4)/(16, 58, 4)

22 Dorsolateral frontal Dorsolateral prefrontal cortex PFC/
Area9/46d/v

23 Dorsolateral frontal Middle frontal gyrus Area46 (−31, 48, 11)/(31, 48, 11)

24 Dorsolateral frontal Posterior middle frontal gyrus Area8A (−30, 9, 52)/(30, 9, 52)

25 Dorsolateral frontal Anterior dorsal premotor area antPMd (−24, 3, 55)/(24, 3, 55)

26 Dorsolateral frontal Lateral superior frontal gyrus Area8B (−22, 32, 39)/(22, 32, 39)

27 Striatum Limbic target (−15, 11, −7)/(15, 12, −7) Tziortzi et al. 
(2014)28 Striatum Executive target (−18, 10, 5)/(19, 10, 5)

29 Striatum Rostral motor target (−25, 0, 9)/(27, 0, 8)

30 Striatum Caudal motor target (−27, −5, 6)/(28, −5, 7)

31 Striatum Parietal target (−29, −11, 1)/(30, −9, 2)

MNI (L/R), The Montreal Neurological Institute (MNI) coordinates of the centroids of the left/right region; d, dorsal; v, ventral.
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basis of the maximum probability map of visual topography derived 
from a large subject population (Wang et al., 2015) and LOC based 
on the maximum probability map for object-selective regions defined 
by the contrast between objects and scrambled objects (Zhen et al., 
2015). We defined parietal, frontal, and striatum areas on the basis 
of probabilistic templates of anatomical connectivity and functional 
interactions (Mars et al., 2011; Sallet et al., 2013; Tziortzi et al., 2014) 
(Table 1). Note that the PFC, specifically, the dorsolateral PFC, was 
defined as the combination (logical “or”) of dorsal and ventral BA9/46 
(Mars et al., 2011; Sallet et al., 2013; Tziortzi et al., 2014).In particular, 
V1 included 1,592 voxels, LOC included 10,213 voxels, PPC included 
598 voxels, and PFC included 3,838 voxels in the standard space.

2.5.3 | Multivariate pattern analysis

We used pyMVPA for classification analyses (Hanke et al., 2009). We 
first wrapped the ROIs in standard space into the individual’s space. 
All MVPAs were performed on an individual’s space. The multivoxel 
activity patterns for each stimulus position were analyzed by means 
of a linear support vector machine (SVM) in combination with a re-
cursive feature elimination (RFE) procedure (De Martino et al., 2008) 
to estimate the most discriminative voxels. C parameter used in SVM 
was set −1, which provides automatic scaling of the value accord-
ing to the norm of the data. We first divided preprocessed functional 
data into “trials” and labeled them according to stimulus position 
(here eight positions treated as conditions, 30 trials per position, a 
total of 240 trials). For all eight positions, correct trials were divided 
into a training set and a test set using a leave-one-run-out method, 
which resulted in 15 different splits. The training set (14 runs) was 
used for deriving maximally informative patterns with the iterative 
algorithm, and the test set (one run) was only used to assess the 
performance of classification. The feature selection algorithm (RFE) 
procedure was performed without an F test; especially, we used a 
RFE to identify those voxels that contributed most strongly to the 
discrimination of positions. In the first iteration, SVM classifiers were 
trained and tested including all cortical voxels included in the ROIs 
defined on the basis of the probabilistic atlases (Sallet et al., 2013; 
Wang et al., 2015) in a “leave-one-out” cross-validation procedure. 
Classification accuracy was calculated and 20% of the voxels with the 
lowest average absolute weights were removed from the feature set. 
Using only the surviving voxels in the next iteration, new classifiers 
were again trained and tested until a stopping criterion. The itera-
tion was stopped when performance did not increase in the next 10 
iterations. The RFE was performed separately for each time point. 
Final accuracies at each voxel were computed as the mean over all 
splits for the test set only. Then, we computed Spearman’s correlation 
between multivoxel activity patterns for different positions in final 
saved voxels during RFE, that is, similarity values, on the full dataset, 
with values ranging from −1 to 1. In order to find the true type I error 
rate, nonparametric Monte Carlo simulations were used to determine 
the significance of the performances of individual participants; espe-
cially, we configured to shuffle the stimuli labels, but only once and 
only for samples that were labeled as being part of the training set 

in a particular cross-validation fold. This is used to perform a cross-
validation analysis under the H0 hypotheses. Next, we assigned the 
null distribution estimator. The statistical significance threshold was 
set at p < .05. For group level, we used binomial tests to test whether 
the prediction accuracies of the ROIs were significantly better than 
chance-level performance. Importantly, we used several parameters 
and different feature selection procedures (the RFE procedure or a 
certain number of the most active voxels in ROIs), and we obtained 
similar results in each case.

2.5.4 | Granger causality analysis

After performing RFE with cross-validation, the number of voxels 
most contributing to categorization differed between individuals. 
To maintain consistent ROIs across subjects, we generated ROIs for 
Granger causality analyses with spheres of 4 mm radius centered at 
the voxels with the most sensitivity during the decoding analysis in the 
individual subject’s space. Granger causality analysis was performed 
in MATLAB using the Granger causality GUI toolbox (http://www.
dcs.warwick.ac.uk/~feng/causality.html). Briefly, we estimated the 
Granger causality for a pair of brain regions during the categorization 
and fixation trials after removing the first two time points (4-s) per 
trial, in order to eliminate the effect of transients. Next, we calculated 
the average Granger causality across runs (Luo et al., 2013).

2.5.5 | Linking Granger causality with behavior

We assessed behavioral performance in each run using reaction 
time (RT), as RT is sensitive to the stimulus distance from the cat-
egory boundary (Figure 1c). For each participant, we ranked 15 runs 
according to RT and sorted them into 11 groups in ascending order, 
with each group consisting of five neighboring runs. A standardized 
Granger causality measure was calculated from the “raw” Granger 
causality values during categorization (GCc) and fixation (GCf) using 
the following formula: (GCc − GCf)/(GCc + GCf). Next, the standard-
ized Granger causality and behavioral performance in each group were 
averaged across runs and across participants. The average standard-
ized Granger causality between the IPS1/2 and V1 for each group was 
plotted as a function of the mean RT z-score for the group, and the 
relationship between these two variables was assessed by Spearman’s 
rank correlation.

3  | RESULTS

3.1 | Behavioral performance in the delayed 
visuospatial categorization task

We presented stimuli either 2.7 or 6.5 dva from the category bound-
ary (Figure 1a). Participants categorized sample stimuli that were 
2.7 dva (mean 89.5% correct, standard deviation [SD] 4.5%) or 6.5 dva 
(mean 90.0% correct, SD 4.9%) from the category boundary with 
about 90% accuracy. There was no difference in the accuracy of 
participants for sample stimuli at these different distances from the 
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category boundary (t = 0.496, p = .628), but there was a significant dif-
ference in RT (t = 2.230, p = .044; Figure 1c).

3.2 | Stimulus location decoding in higher-order and 
early visual areas

Visuospatial categorization requires representations of stimulus 
locations and category information. Using MVPA, we first investi-
gated the representation of stimulus locations at various stages of 
visual processing, that is, in the PFC, IPS1/2, LOC, and V1. Although 
the resolution of spatial representations varies from coarse to fine 
scales across visual cortex, previous studies have shown that MVPA 
methods can successfully recover even fine-scale features from 
cortical activity sampled at coarser resolutions using fMRI (Harrison 
& Tong, 2009).

For all classifications, ensemble activities pooled over the 6- to 
10-s time points during the delay period (using the recursive algo-
rithm) significantly predicted stimulus locations (all p-values <.002), 
with a prediction accuracy reaching 29%, 24%, 20%, and 17% in V1, 
LOC, IPS1/2, and PFC, respectively (Figure 2a), where chance-level 
performance is 12.5%. There was reliable performance in V1, LOC, 
and IPS1/2 across participants (p < .05, binomial test), but not in PFC 
(p = .146).

Next, we measured the dynamics of stimulus location representa-
tions in the higher-order and early visual areas by performing the de-
coding analysis on individual fMRI time points (Figure 2b). Classification 
accuracy in V1 increased above chance and reached its peak within 
6-s (t = 7.56, p = 1.12 × 10−5) relative to stimulus onset, and remained 
significantly elevated until 12 s (all p-values <.00625, corrected for 
multiple comparisons). In comparison, the classification accuracies of 
stimulus location in the LOC, IPS1/2, and PFC were lower than in V1 
(LOC: t = 4.97, p = 4.24 × 10−4; IPS1/2: t = 5.84, p = 1.13 × 10−4; PFC: 
t = 6.81, p = 2.91 × 10−5), but nonetheless rose above chance level 
within 6-s of stimulus onset (LOC: t = 5.26, p = 2.70 × 10−4; IPS1/2: 
t = 3.87, p = 2.62 × 10−3; PFC: t = 4.07, p = 1.85 × 10−3) and reached 

a peak at 8-s. Classification accuracy remained above chance until 
10 s in LOC and IPS1/2, and until 8-s in PFC, respectively (all p-values 
<.00625). There was no significant bias in classification accuracies (all 
p-values >.1) for any stimulus position, in any brain area.

Finally, we computed the similarity between multivoxel activity 
patterns elicited by stimuli presented 5.4, 9.9, and 12.9 dva apart. We 
included stimuli within the same category and in different categories, 
to eliminate category influence (Figure 3a). There was significant spa-
tial information based on pattern similarity in V1, LOC, and IPS1/2 (all 
p-values <.05), but not for the PFC (Figure 3b–e). The higher pattern 
similarity values in V1 for stimuli 5.4 dva apart (compared with 9.9 and 
12.9 dva apart) presumably reflect the small receptive field size of V1 
neurons.

3.3 | Category coding in higher-order and early 
visual areas

The above decoding results indicate that both higher-order and early 
visual areas are involved in the representation of stimulus locations. 
If V1, LOC, IPS1/2, and PFC activity can also represent learned cat-
egories, then the similarity between multivoxel activity patterns elic-
ited by stimuli within the same category should be greater than that 
elicited by stimuli in different categories. To test this premise, we 
first computed six parameters: three parameters for within-category 
similarities (WCS) and three parameters for between-category simi-
larities (BCS). These WCS and BCS parameters represent angles be-
tween stimuli of 5.4, 9.9, or 12.9 dva, and each parameter reflects 
the average of the similarity values calculated for each pair of stimuli 
at that particular angle of stimulus separation (Figure 4a). For exam-
ple, we calculated the 5.4 dva BCS parameter by averaging similari-
ties between pairs of stimulus positions that were 5.4 dva apart and 
crossed the category boundary, and we calculated the 5.4 dva WCS 
parameter by averaging similarities between pairs of stimulus posi-
tions that were 5.4 dva apart and crossed a line perpendicular to 
the category boundary. We then generated three category indices 

F IGURE  2 Decoding stimulus location in higher-order and sensory cortical areas. (a) The classification accuracy of the location of sample 
stimuli during the delay period (6–10 s) for V1, lateral occipital cortex (LOC), IPS1/2, and prefrontal cortex (PFC). (b) Time-resolved decoding 
of individual fMRI time points for V1 (red circles), LOC (turquoise squares), IPS1/2 (green triangles), and PFC (magenta inverted triangles). Note 
that stimulus location was successfully decoded from both higher-order and sensory cortex during the delay period. Error bars indicate standard 
error of the mean, *p < .05
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measuring the difference between WCS and BCS parameters at 5.4, 
9.9, and 12.9 dva stimulus separation (i.e., BCS was subtracted from 
WCS), respectively. Positive category index values indicate more sim-
ilar multivoxel activity patterns for stimuli within the same category, 
whereas negative values indicate more similar activity patterns for 
stimuli in different categories. We found category-related signals in 
V1 as well as higher-order visual areas. Mean category indices were 
significantly above zero in IPS1/2 at the 6-  to 8-s time points for 
stimuli 12.9 dva apart and again later, at the 12- to 14-s time points, 
for stimuli 5.4 dva apart. In comparison, V1 only showed significant 
positive category indices at the 10- to 14-s time points for stimuli 
5.4 dva apart (all p-values <.05, Figure 4b). This suggests that cat-
egory signals based on coarse discriminations first arise in IPS1/2, 
whereas significant category signals based on fine discriminations 
first arise in V1.

In this experiment, we defined a particular category boundary 
to divide stimuli, but it would have been possible to define different 
boundaries to divide stimuli. To control for nonspecific effects, we 
determined which of the four possible category boundaries (which 
exhaustibly divide the eight stimulus positions into two equal 
groups) results in the greatest difference between average pattern 
similarities (i.e., greatest category indices) for the four positions on 
each side of the boundary, for each participant. Notably, for the 
majority of participants, the actual category boundary was optimal 
(i.e., it yielded the greatest category indices), and not the other three 
“irrelevant” boundaries, in IPS1/2 at the 6-  to 8-s time points for 
stimuli 12.9 dva apart, and in V1 at the 10-s time point for stimuli 
5.4 dva apart (IPS1/2, 6-s: n = 9 of 12, p = 3.92 × 10−4; IPS1/2, 8-s: 
n = 8 of 12, p = 2.78 × 10−3; V1, 10 s: n = 7 of 12, p = .014, binomial 
test; Figure 6a and b). Although mean category indices for the actual 
category boundary were significantly above zero in the LOC at the 

F IGURE  3 Similarity between 
multivoxel activity patterns for stimuli 
separated by different distances in V1, 
lateral occipital cortex (LOC), IPS1/2, and 
PFC. (a) Summary of the analysis scheme 
for pairs of stimuli 5.4, 9.9, and 12.9 dva 
apart. For example, we computed the 
5.4 dva condition across the eight pairs of 
stimulus positions that were 5.4 dva apart. 
(b–e) Representation of stimulus positions 
at time points greatly above chance 
decoding performance is shown. V1 and 
IPS1/2 encoded spatial information, and 
their contribution varied as time elapsed, 
whereas LOC encoded spatial information 
similarly throughout the delay period
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8- to 10-s time points, and in the PFC at the 8-s time point, for stim-
uli 5.4 dva apart, the actual category boundary was not optimal (i.e., 
it did not yield the greatest category indices) in LOC and PFC across 
subjects when compared with the “irrelevant” boundaries, that is, 
category-selective signals could not be decoded from LOC and PFC 
in our DVSC task. This control analysis confirms that IPS1/2 and V1 
contained learned category signals.

In order to further verify that category processing based on coarse 
spatial discriminations occurred in IPS1/2 at the early stage of trials, we 
compared the average similarity of multivoxel activity patterns for stim-
uli 14 dva apart near the category boundary to the pattern similarity 
for stimuli 14 dva apart but far from the boundary, at the 6-s time point 
when IPS1/2 signals had contributed most to categorization performance 
(Figure 5a). Greater pattern similarity was found for stimuli near the cat-
egory boundary (t = 4.17, p = 1.58 × 10−3, paired t test), indicating that 
IPS1/2 signals did not readily distinguish categories early in trials when 
stimuli appeared near the boundary (Figure 5b). Additional support for this 
conclusion was derived from the following comparisons of IPS1/2 mea-
sures: (i) WCS for stimuli 5.4 dva apart, and BCS for stimuli 5.4 dva apart, 
all near the boundary; and (ii) BCS for stimuli 14 dva apart near the bound-
ary, and either WCS or BCS for stimuli 5.4 dva apart near the boundary. 
None of these comparisons were significantly different (all p-values >.1). 
Taken together, our results demonstrate that IPS1/2 signals mainly coded 
category information based on coarse visuospatial discriminations at the 
early stage of trials, whereas V1 signals coded category information based 
on fine-scale discriminations at an intermediate/late stage of trials.

3.4 | Controlling for retinotopy

To address a possible contribution of retinotopy to our proposed 
categorical effects in primary visual cortex, we subdivided V1 to 

exploit the known retinotopy and then measured the relation-
ship between retinotopic and categorical representations (while 
holding stimulus positions constant but changing their category 
membership). That is, we constructed a two-way ANOVA model 
to test whether retinotopic position and category membership 
interact with each other in left dorsal V1 (lV1d), left ventral V1 
(lV1v), right dorsal V1 (rV1d), and right ventral V1 (rV1v), respec-
tively. An interaction here means that the activity in a particular 
subdivision of V1 depends on the category to which the stimulus 
belongs. Specifically, we separated data from the different stimulus 
positions into two groups based on category membership in exper-
iments 1 and 2. Group 1 includes positions in the upper left (posi-
tions 1 vs 2) and lower right (positions 5 vs 6) visual field quadrants, 
which belonged to the same category in experiment 1 but different 
category in experiment 2 (Figure 3a). Group 2 includes positions 
in the upper right (positions 3 vs 4) and lower left (positions 7 vs 
8) visual field quadrants, which belonged to the same category in 
experiment 2 but different category in experiment 1. We averaged 
similarities between pairs of stimulus positions that were 5.4 dva 
in the two groups, respectively. To minimize the possible effects 
of individual subject variations, we used the same areas based on 
the maximum possibility atlas for each participant. There were sig-
nificant or marginally significant interactions between stimulus po-
sition and category at 8- to 14-s time points (8 s: lV1v, p = .069; 
10 s: rV1d, p = .058; 12 s: lV1d, p = .026, rV1d, p = .009, rV1v, 
p = .014; 14 s: lV1v, p = .045, rV1d, p = .053, rV1v, p = .008; no sig-
nificant interaction at 6 s [all p-values >.25]). Post hoc tests (t tests,  
p-values <.05) showed that group 1 is more similar in experiment 
1 when its stimuli belonged to the same category, whereas group 
2 is more similar in experiment 2 when its stimuli belonged to the 
same category (Figure 6). These results suggest that V1 responses 

F IGURE  4 Category coding for higher-order and sensory areas. (a) Summary of the analysis scheme for stimuli within and between 
categories. For example, we computed the 5.4 dva category index value by measuring the difference between the within-category similarities 
(WCS) for the pairs of stimuli 5.4 dva apart, farthest from the category boundary, and the between-category similarities (BCS) for the pairs 
of stimuli 5.4 dva apart, on either side of the category boundary (BCS subtracted from WCS). (b) Coding of category information in V1 and 
IPS1/2 for coarse and fine discriminations. The IPS1/2 showed early category tuning for the 12.9 dva condition and late category tuning for the 
5.4 dva condition. V1 category tuning for the 5.4 dva condition started at an intermediate stage of the delay period. Arrowheads show onset of 
significant category signals
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F IGURE  5 Coarse category coding in IPS1/2 and control for possible attention effects. (a) Summary of the analysis scheme to test 
categorization and spatial attention. (b) IPS1/2 showed greater pattern similarity for the pairs of stimuli that were 14 dva apart and near the 
boundary (vs both stimuli far from the boundary), suggesting that early in trials, IPS1/2 signals did not readily distinguish categories when stimuli 
were near the boundary. (c) Greater pattern similarity for pairs of stimuli located at different distances from the boundary (with one stimulus 
near the boundary), suggesting that IPS1/2 responses better reflected category processing than spatial attention in our task
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F IGURE  6 Multivoxel activity patterns in V1 subdivisions depend on stimulus category not just retinotopic location. There were significant 
or marginally significant interactions between stimulus position groups (group 1: 1 vs 2, 5 vs 6, red bars; group 2: 3 vs 4, 7 vs 8, green bars) and 
category (experiment 1: two leftmost bars; experiment 2: two rightmost bars, for each time point) at 8- to 14-s time points, suggesting that 
V1 responses in our task reflected (at least in part) category processing and not just retinotopic organization. Long square brackets indicate 
interaction between stimulus position and category, and short square brackets indicate within categorization rule effect: (*).05 <  p < .1, *.01 <  
p < .05, **p < .01
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in our task (at least in part) reflected category processing and not 
just retinotopic organization.

3.5 | Controlling for attention

Previous studies have shown that IPS1/2 plays a central role in spatial 
attention (Bisley & Goldberg, 2010; Petersen & Posner, 2012). In the 
current study, more similar pattern was found between stimuli along 
a category line than those away from a category line. One may argue 
that IPS1/2 effects only represent visual spatial attention, given that 
attention is a spotlight along a decision line (shaped as a spotlight 
line). Previous studies revealed that “spotlight” of attention covered 
a larger section that may be as big further away from the decision line 
(Muller & Kleinschmidt, 2004). Even if spatial attention existed at the 
boundary in the current research, it may strongly modulate activity 
elicited by the stimulus close to the boundary, rather than the stimu-
lus far away, thereby differentiating their activity patterns. Thus, if 
IPS1/2 effects were due to selective attention, then one might ex-
pect greater pattern similarities for stimuli located at the same dis-
tance from the category boundary, compared to stimuli located at 
different distances from the boundary. Thus, we compared the av-
erage multivoxel activity pattern similarities for two sample stimuli 
when one stimulus was near the category boundary (Figure 5a, “dif-
ferent distance”) to the pattern similarities for two stimuli when both 
were far from the boundary (with stimuli in different categories for 
all comparisons; Figure 5a, “same distance”). We found that stimuli 
located at different distances to the category boundary had more 
similar activity patterns than stimuli at the same distance from the 
boundary, at the 6-s time point after stimulus onset when IPS1/2 
signals contributed most to categorization performance (t = 2.56, 
p = .027; Figure 5c). We obtained a similar result when we retrained 
subjects to use a new category boundary. This suggests that IPS1/2 
responses better reflected category processing than spatial attention 
in our task.

3.6 | Signal transmission between IPS1/2 and V1

In order to determine how neural signals that encode visual–spatial 
categories were transmitted between IPS1/2 and V1, we used Granger 
causality because of the data-driven nature of this method, and the 
fact that this method has been successfully applied to fMRI data in 
investigations of effective connectivity (Hamilton, Chen, Thomason, 
Schwartz, & Gotlib, 2011; Wen et al., 2012). We found a significantly 
greater causal influence from IPS1/2 to V1 for categorizations in gen-
eral compared with the reverse direction from V1 to IPS1/2 (t = 4.14, 
p = 1.64 × 10−3; Figure 8a), showing that category processing involves 
top-down feedback from IPS1/2 to V1.

Because the MVPA showed V1 signals carried category informa-
tion during fine-scale discriminations, we compared the Granger cau-
sality for trials in which the sample stimulus was near the boundary 
(requiring fine discriminations) to trials in which the sample stimulus 
was far from the boundary (requiring coarse discriminations). We 
found that V1 had a significantly greater causal influence on IPS1/2 

when categorization required fine discriminations relative to coarse 
discriminations (p = .037, Figure 8c). This suggests that there are bi-
directional interactions between IPS1/2 and V1 when categorization 
relies on fine discriminations.

To show that interactions between IPS1/2 and V1 relate to the 
behavioral performance of participants, we first divided task runs into 
groups based on RT (see Materials and Methods) and then calculated 
the Granger causal influence between IPS1/2 and V1 for each RT 
group. If IPS1/2 feedback to V1 improves categorization, then greater 
Granger causality from IPS1/2 to V1 should correlate with shorter 
RTs in the DVSC task. Indeed, we found a strong negative correlation 
between the causal influence from IPS1/2 to V1 and RT (r = −.57, 
p = .03; Figure 8b). This means that the stronger the causal influence 
from IPS1/2 to V1, the better the behavioral performance. There was 
no significant correlation between the causal influence from V1 to 
IPS1/2 and behavioral performance (r = −.10, p = .77). Considered 
alongside the MVPA results, this supports the proposal that coarse 
category processing occurs first in IPS1/2 and, with IPS1/2 feedback, 
category representations emerge later in V1 when fine discriminations 
are necessary.

3.7 | Learning-based plasticity in IPS1/2 and V1

In order to show that the aforesaid categorization mechanisms are 
flexible, and to further validate that the multivoxel activity pat-
terns in IPS1/2 and V1 were due to the learned categorization 
rule, we retrained participants recruited in experiment 1 to group 
the same stimuli into new categories defined by a boundary per-
pendicular to the original boundary (Figure 1b, dotted line). After 
retraining, IPS1/2 and V1 selectivity shifted dramatically away 
from the previous category boundary, to now reflect the new cat-
egory information. Consistent with the results from experiment 1 
(Figure 7a and b), the multivoxel activity patterns of the partici-
pants in experiment 2 were best classified according to the new 
category boundary, and not the old boundary, in IPS1/2 and V1 
(IPS1/2, similarities for stimuli 12.9 dva apart, at 6-s: n = 6 of 12, 
p = .054; V1, similarities for stimuli 5.4 dva apart, at 10 s: n = 6 
of 12, p = .054; binomial test; Figure 6c and d). Additionally, in 
experiment 2 with the new category boundary, there was signifi-
cantly greater top-down Granger causal influence from IPS1/2 to 
V1 for categorizations in general (compared with influence from 
V1 to IPS1/2; t = 3.74, p = 3.26 × 10−3; Figure 8c), and stronger 
influence from IPS1/2 to V1 was associated with better catego-
rization performance (faster RTs; r = −.66, p = .01; Figure 8d). 
Together, these results indicate a profound learning-based plas-
ticity of category representations in IPS1/2 and V1, in which early 
IPS1/2 signals contained coarse category information, whereas 
later V1 signals contained category information pertaining to 
finer-scale discriminations. The strong correlation between the 
top-down IPS1/2 to V1 influence and behavioral results further 
suggests that the IPS1/2 and V1 abstract experience-dependent 
category representations cooperatively, reaffirming our fMRI de-
coding results.
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3.8 | Decoding activity patterns in other brain areas

After identifying IPS1/2 and V1 category representations in the above 
analyses, we repeated the same MVPA procedure for 27 other regions 
of interest, including two areas in the occipital cortex, three areas in 
the ventral occipital–temporal cortex, nine areas in the parietal cortex, 
eight areas in the dorsal frontal cortex, and five regions in the stria-
tum, in order to test whether other regions may carry category infor-
mation. None of these areas showed reliable category signals during 
either coarse or fine discriminations.

4  | DISCUSSION

Our results indicate that IPS1/2 and V1 are important for encod-
ing category information during the delay period of the delayed 
match-to-category task. These areas played distinct roles in catego-
rization: IPS1/2 contained category information at an early stage of 
the delay period during coarse discriminations and at a late stage 
when fine discriminations were necessary, whereas V1 contained 
category information at an intermediate stage during fine discrimi-
nations. When category signals emerged in the IPS1/2, the IPS1/2 

provided feedback to V1: The stronger the influence from IPS1/2 
to V1, the better the categorization performance. Moreover, the 
IPS1/2 and V1 category representations reorganized when par-
ticipants learned new categories. These findings demonstrate the 
learning-based plasticity of visuospatial category representations in 
human IPS1/2 and V1 as well as the flexibility of IPS1/2-V1 inter-
actions, which enable the abstraction of new category information 
from multiple spatial scales.

Previous studies in macaques have shown category-selective ac-
tivity of neurons in the PPC, particularly in the lateral intraparietal area 
(LIP) (Freedman & Assad, 2006; Swaminathan & Freedman, 2012). LIP 
neurons were first shown to respond to categories defined by motion 
direction, and more recent work suggests that LIP neurons can rep-
resent learned associations between a broad range of visual stimuli 
(Fitzgerald, Freedman, & Assad, 2011). Macaque LIP exhibits a number 
of response characteristics similar to the human IPS1/2 region (Konen 
& Kastner, 2008; Szczepanski, Konen, & Kastner, 2010). Our study 
shows that IPS1/2 also represents category information like LIP, and 
goes beyond previous work by showing category information can be 
decoded as early as V1.

Although the classical view of V1 is as a purely sensory area, re-
cent fMRI results have revealed that contextual information as well 
as internal states can influence V1 responses (Muckli, 2010). Available 
evidence suggests that V1 contributes to selective attention, working 
memory, subjective perception, and perceptual learning (Kamitani & 
Tong, 2005; Li et al., 2008; Roelfsema et al., 1998; Super et al., 2001; 
Yan et al., 2014). A recent study suggests that perceptual learning may 
occur on a conceptual level, similar to object category learning (Wang 
et al., 2016). Because these, and other, cognitive and perceptual op-
erations often require processing of fine-scale information, it may be 
necessary to draw upon the high-resolution visual map in V1.

When learning new categories, interactions between early sensory 
and higher-order cortical areas would allow the integration of informa-
tion from multiple visual maps at different spatial scales, to build sta-
ble category representations. Consistent with this, learned category 
information has been shown at multiple cortical levels, including the 
PFC (Ferrera et al., 2009; Freedman et al., 2001; Li et al., 2009), PPC 
(Braunlich, Gomez-Lavin, & Seger, 2015; Freedman & Assad, 2006; 
Sarma, Masse, Wang, & Freedman, 2016; Swaminathan & Freedman, 
2012), extrastriate visual cortex, where activity in V3 and V3A changed 
with perceptual category learning (Aizenstein et al., 2000; Goncalves 
et al., 2015) and now V1 in our study. Feedback signals have been 
demonstrated between each of these cortical levels (Buschman 
& Miller, 2007; Chen et al., 2014; Moldakarimov, Bazhenov, & 
Sejnowski, 2014; Piech, Li, Reeke, & Gilbert, 2013; Saalmann, Pigarev, 
& Vidyasagar, 2007), and computational modeling work suggests that 
ultimately the feedback can result in learning in V1, for instance, from 
plasticity in top-down inputs or top-down gating of lateral interactions 
in V1 (Chen et al., 2014; Moldakarimov et al., 2014; Piech et al., 2013).

How do the interactions between IPS1/2 and V1 give rise to cat-
egory representations based on fine-scale features? One possibility 
consistent with our data is that the sample stimulus causes V1 neurons 
with receptive fields at the stimulus location to undergo short-term 

F IGURE  7  IPS1/2 and V1 category sensitivity before and after 
retraining. (a and b) Polar plot of the decoded boundary for the 
12.9 dva condition at the six-second time point for IPS1/2, and for 
the 5.4 dva condition at the 10-s time point for V1. Extension of gray 
sector from the center of the plot represents number of participants 
showing that particular decoded boundary value, before retraining.  
(c and d) Same format as in a and b, except that data now reflects the 
retraining of participants to use a category boundary perpendicular to 
the original one. Note that IPS1/2 and V1 activity showed a learning-
based shift in category sensitivity, but not other areas at any time 
point
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plasticity or to show persistent activity (as spiking or oscillatory activ-
ity), that is, to retain a memory of the stimulus location. Because PPC 
neurons have relatively large receptive fields (e.g., in macaque LIP, 10 
dva receptive fields are common), this may limit their ability to gen-
erate category-selective signals based on fine-scale information, ini-
tially giving rise to only weak category-selective activity. Nonetheless, 
these PPC neurons can provide some feedback on categories to V1, 
possibly via extrastriate cortex. The feedback signals would have their 
greatest effect on those V1 neurons that retained a memory of stim-
ulus location (because the stimulus had previously potentiated syn-
apses or depolarized neurons, bringing them closer to action potential 
threshold). Thus, these V1 neurons would show increased excitability, 
reflecting category-selectivity built on fine-scale information, which 
could be transmitted to PPC to refine its own category representation. 
Another possibility does not require V1 to maintain information on the 
location of the sample stimulus. Instead, high spatial resolution may 
still be achievable when there is partial overlap of the large receptive 
fields of multiple PPC neurons. Although any one of these PPC neu-
rons would be insufficient, their combined output may have sufficient 
resolution when read out in V1, leading to enhanced responses of a 

select group of V1 neurons. In this case, V1 category signals would be 
a direct result of PPC feedback.

Although a number of studies have demonstrated that the PFC 
can encode category information (Crowe et al., 2013; Freedman & 
Assad, 2006; Freedman et al., 2001; Li et al., 2009; Swaminathan & 
Freedman, 2012), we only found moderate category-related mod-
ulations of PFC multivoxel pattern activity, which did not survive 
the control for nonspecific boundary effects. In comparison, IPS1/2 
showed reliable and robust category signals during our DVSC task. 
One explanation is that our task was not sufficiently demanding to 
warrant significant engagement of the PFC. That said, our results are 
consistent with prior nonhuman primate work, in which stronger and 
more reliable category signals were found in the PPC relative to PFC 
(Swaminathan & Freedman, 2012).

In addition to category processing, the PPC plays a role in selec-
tive attention (Bisley & Goldberg, 2010; Petersen & Posner, 2012) and 
movement planning (Buneo & Andersen, 2006; Cui, 2014). However, 
it is unlikely that spatial attention or motor intention confounded the 
category signals we reported in IPS1/2 (Bisley & Goldberg, 2010). 
First, our control analysis showed that IPS1/2 activity in our DVSC 

F IGURE  8  Interactions between IPS1/2 and V1 and their correlation with categorization performance. (a–c) Categorization data for the 
original category boundary. (d–f) Categorization data for the new category boundary after retraining. (a) Granger causal influences between 
IPS1/2 and V1 during categorization in general, for the original boundary condition. (b) We grouped task runs according to RT. Population 
average standardized Granger causality for each group plotted against standardized mean RT for each group. Stronger influence from IPS1/2 to 
V1 was associated with better categorization performance (faster RT). Linear fits are shown, where r is Spearman’s correlation coefficient and p 
is the significance level. (c) Granger causal influences between IPS1/2 and V1 when categorizing stimuli near the category boundary and far from 
the boundary. (d–f) Same format as (a–c), except data now reflect categorization using the new category boundary after retraining
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task better reflected category processing than spatial attention to 
visual stimuli near the category boundary. Second, evidence from 
nonhuman primate studies suggests that PPC neurons can exhibit 
category signals even when stimuli are presented outside their recep-
tive field (Freedman & Assad, 2009). This suggests that PPC neurons 
can independently encode spatial and nonspatial information. Third, 
although there may be an anticipation that behavioral responses will 
either be “yes” or “no,” our results cannot be explained only by an in-
tention embedded within the motor planning system because there 
is an explicit dissociation of the categorization of the sample stimulus 
from the participant’s response (which can only be precisely planned 
after the test stimulus) in our task. Finally, all category effects in our 
study reflect a contrast between different stimuli, to exclude a com-
mon intention/anticipation effect.

It is noteworthy that the paradigm we used cannot exclude the 
possibility of attention priming effects, whereby seeing one location 
in one spatial location primed the activation of the other locations 
to some degree. Additionally, although fMRI furnishes time-series 
data with high spatial precision, two features are especially prob-
lematic: (i) poor time resolution; and (ii) BOLD responses reflect 
delayed neural activity due to a convolution with an HRF, and may 
have significant interregional variability. Thus, the current applica-
tions of Granger causality to fMRI should be treated cautiously and 
require carefully chosen experimental paradigms. Finally, previous 
visual working memory studies have been argued that activity in 
early visual area is likely a top-down priming signal generated in 
anticipation of the upcoming probe stimulus to facilitate the com-
parison between the remembered sample stimulus and the probe 
stimulus (Lui & Pasternak, 2011; Serences, 2016). That is, the loca-
tion of the sample stimulus and its surrounding locations belonging 
to the same spatial category could be activated when it was near the 
end of the delay period. Thus, increased WCS may be found in V1 
at 10s relative to 8s and in IPS1/2 at 12 s relative to 10s (fine dis-
crimination signal found in V1 at 10s, in IPS1/2 at 12a). However, no 
significant differences were found in these analyses (both ps >.15). 
Another possible explanation is perhaps that there were top-down 
rehearsals in V1 to identify which category the remembered sam-
ple stimulus was belonged to. Due to poor time resolution of fMRI, 
further studies, such as intracranial electroencephalography stud-
ies, are required to test these possibilities. In summary, our study 
suggests that category processing based on coarse discriminations 
occurs first in the higher-order cortical area, IPS1/2, which is ide-
ally positioned to transform sensory information into more abstract 
representations. Feedback from IPS1/2 then enables category pro-
cessing based on fine discriminations in early visual areas, including 
V1, which is well suited for processing fine-scale features that often 
aid in categorization.
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