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ABSTRACT: The centroid effective frequency representation of path integrals as
developed by Feynman and Kleinert was originally aimed at calculating partition
functions and related quantities in the canonical ensemble. In its path integral
formulation, only closed paths were relevant. This formulation has been used by the
present authors in order to calculate the many-body Wigner function of the
Boltzmann operator, which includes also open paths. This usage of the theory
outside of the original intention can lead to mathematical divergence issues for
potentials with barriers, particularly at low temperature. In the present paper, we
modify the effective frequency theory of Feynman and Kleinert by also including
open paths in its variational equations. In this way, a divergence-free approximation
to the Boltzmann operator matrix elements is derived. This generalized version of
Feynman and Kleinert’s formulation is thus more robust and can be applied to all
types of barriers at all temperatures. This new version is used to calculate the
Wigner functions of the Boltzmann operator for a quartic oscillator and for a double well potential and both static and dynamic
properties are studied at several temperatures. The new theory is found to be essentially as precise as the original one. Its advantage
is that it will always deliver a well-defined, even if approximate, Wigner function, which can, for instance, be used for sampling initial
conditions for molecular dynamics simulations. As will be discussed, the theory can be systematically improved by including higher-
order Fourier modes into the nonquadratic part of the trial action.

■ INTRODUCTION

The Wigner transform of the Boltzmann operator, introduced
by Wigner almost a century ago,1 is an important tool for
analyzing quantum effects in statistical mechanics; see, e.g.,
selected papers in ref 2. It has, for instance, served as an
inexpensive tool for sampling quantized initial conditions for
molecular dynamics simulations; see, e.g., refs 3−6.
Unfortunately, it is only for systems of very limited

dimensionality that it is possible to accurately obtain the
Wigner transform of the Boltzmann operator. Due to its
usefulness, the Wigner transform and the problem of its
computation is, however, the subject of intense ongoing
research.6−11 Consequently, many approximate schemes for
computing the Boltzmann Wigner transform also of large
systems have now been put forth.3,5,6,12−16 Many of these
methods rely on introducing various harmonic approximations
in the otherwise intractable mathematical expressions.3−6,12

This enables a sufficient simplification of the equations so that
an approximate, multidimensional Wigner transform can be
computed.
The harmonic models sadly show a serious shortcoming

when they are applied to problems involving potential barriers

in that the Wigner transform diverges at low temperature and/
or large potential curvature.3−5,12 More specifically, it is the off-
diagonal part of the density operator matrix elements

η ρ η⟨ − | ̂| + ⟩q q
2 2 (1)

that becomes meaningless when ℏ|Ω|β > π. Here q is a
coordinate, η is the off-diagonal distance, ρ̂ is the density
operator, Ω is the imaginary frequency, and β = 1/(kBT) where
T is the absolute temperature. Under such conditions this
matrix element essentially becomes exp(−αη2) with α < 0; see,
e.g., refs 3 and 12.
The momentum part of the Wigner transform is the Fourier

transform of the off-diagonal part of the density operator.
From the previous paragraph it can be seen that it becomes ill-
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defined when ℏ|Ω|β > π. Although all moments of p can still be
calculated even when α < 0, the Wigner function cannot be
used for sampling momenta. This is a serious limitation of the
harmonic models and ways to modify them have been
proposed. For example, Liu and Miller12 put forth an ad-hoc
extrapolation of the Gaussian momentum exponent α into the
forbidden regime, so that a well-defined sampling function
exists for all temperatures and frequencies. Poulsen and co-
workers have simply chosen to set the momenta to zero and
skip the sampling when ℏ|Ω|β > π, which is a continuous
extrapolation of the ℏ|Ω|β ≤ π case; see, e.g., refs 3, 15, and 17.
The harmonic scheme of Poulsen et al.3,15 for calculating

Wigner transforms is an adoption of the effective frequency
theory of Feynman and Kleinert.18,19 This scheme has been
applied quite successfully to a number of problems in
condensed phase involving the quantization of several hundred
degrees of freedom. More specifically, the method has been
used for calculating dynamic structure factors15,20−22 and
diffusion coefficients in liquids.17,23,24 Despite its relative
success, this scheme may be considered as an illegitimate
extension of the effective frequency theory of Feynman and
Kleinert in the sense that the latter is a theory for
approximating path integrals involving only closed paths,
while Poulsen et al.3 nevertheless applied it to path integrals
which include open paths as well.
Strictly speaking, the extension discussed above is uncontrol-

lable, meaning that divergence problems show up since the
effective frequencies are not optimized for open paths. As
already explained, these problems appear for barrier potentials
at low temperature and this is the reason why the theory has
not been applied to reaction rate problems, where a so-called
thermalized flux Wigner distributions must be computed.12

Reaction rate theory is a central subject in chemistry and it is
therefore highly desirable to solve this problem.
The subject of the present paper is to fix the barrier problem

by developing an effective frequency theory tailored to path
integrals also involving open paths. It will be the first rigorous
effective frequency model which can calculate off-diagonal
elements of the Boltzmann operator and can be combined with
general potentials at all temperatures. The theory derived here
may be regarded as a first step toward making the effective
frequency theory applicable also to reaction rate problems. The
derivation is relatively similar to the original one by Feynman
and Kleinert;18,19 the main difference is the inclusion of open
paths, which makes the mathematics slightly more involved.
This paper is structured such that after the above

“Introduction” there is a long section on “Methods” where
we, based on the Feynman−Kleinert (FK) closed path
approach, derive new iterative equations by generalizing the
FK approach to include also open paths. This gives us the
Generalized Feynman−Kleinert (GFK) approach. Thereafter
follows a “Results” section before we end with “Discussion and
Conclusions”.

■ METHODS
For simplicity, we formulate the GFK theory in one dimension.
The new theory is generalized to several dimensions in the
same way as the original Feynman−Kleinert theory; see ref 3.
In what follows we, for simplicity, frequently refer to open
paths but then actually meaning both open and closed paths
unless it is clear from the context that we only consider open
paths. We will consider a particle with mass M moving in the
potential V(x) at an inverse temperature β = 1/kBT.

The open path effective frequency theory is derived by first
considering the Feynman path integral for the Boltzmann
operator:

∫ ∫
β

τ τ

− ̂

= ′ ′ | ′⟩⟨ | − [ ] ℏ
β

=

ℏ =

H

x x x x x S x

exp( )

d d D ( ) exp( ( ) / )
x x

x x

(0)

( )

(2)

with

{ }∫τ τ τ τ[ ] = ̇ +
βℏ

S x
M

x V x( ) d
2

( ) ( ( ))
0

2

(3)

The centroid of a path, xc, is the average value of the path:

∫β
τ τ=

ℏ

βℏ
x x

1
d ( )c

0 (4)

We next express the Boltzmann operator using localized
operators, Δ̂(xc), whose path integral representations are each
restricted to paths with a certain centroid. We write

∫β− ̂ = Δ̂H x xexp( ) d ( )c c (5)

where

∫ ∫ τ δ τ

Δ̂

= ′ ′ | ′⟩⟨ | ̅ − − [ ] ℏ
β

=

ℏ =

x

x x x x x x x S x

( )

d d D ( ) ( ) exp( ( ) / )

c

x x

x x

c
(0)

( )

(6)

We now introduce a new quantity, the of f-diagonal trace as

∫ ∫ τ δ τ

Δ

= ′ ′
̅ − − [ ] ℏ

β

=

ℏ =

x

x x x x x S x

( )

d d D ( ) ( ) exp( ( ) / )

c

x x

x x

c
(0)

( )

(7)

which differs from a standard trace by also including open
paths. Due to the delta-function, it is unitless.a In the following
we will use the short-hand notation

∫ τ δ τΔ = ̅ − − [ ] ℏx x x x S x( ) D ( ) ( ) exp( ( ) / )c c (8)

instead of eq 7. There is no ambiguity in this expression since
we consider both closed and open paths. Thus, in the following
∫Dx(τ) always means integration over closed and open paths.
The idea is now to exploit the introduced locality when
calculating the above quantities.
In the high temperature limit, Δ̂(xc) is dominated by paths

that only probe a small neighborhood around their centroids.
This suggests substituting the actual potential in eq 3 by a trial
potential of the form

τ τ= + Ω −ΩV x L x M x x x( ( )) ( )
1
2

( )( ( ) )x L x c c c( ), ( )
2 2

c c (9)

which is of the same form as used by Feynman and Kleinert.
Such a potential should work extremely well at high
temperatures. The same form will, however, be used for all
temperatures.
For each centroid, two unknown parameters L(xc) and

Ω2(xc) must be determined. As we shall see, their values can
respectively be thought of as representing a smeared potential
and its second derivative similarly smeared and both evaluated
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around xc. The smearing width will be derived from the “size”
of all paths (open and closed) associated with that centroid.
Once L(xc) and Ω2(xc) have been found, we can integrate

out all path variables in eq 6 except the centroid; see below.
This makes the effective frequency theory powerful: the
original multidimensional path integral becomes one-dimen-
sional and the Wigner transform can be calculated (see eq 48
in ref 3). Thus, as shown in Appendix A, the Wigner transform
of Δ̂(xc) becomes

β
β

β

β

π β

β

Δ̂ [ ]

= −
Ω

Ω

Ω

Ω ℏ

× − − −
Ω

Ω ℏ

ℏ

ℏ

ℏ

ℏ

( )
( )

( )

x q p

L x
x

x

x

a x x

a x
q x

x

M x
p

( ( )) ,

exp( ( ))
( )

sinh ( )

tanh ( )

( ) ( )

exp
1

2 ( )
( )

tanh ( )

( )

tr c W

c
c

c

c

FK c c
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c

c

c

2

2

2
2

1/2

2
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{
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i
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jjjjjjjjj
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zzzzzzzzz
(10)

where tr stands for trial and aFK
2(xc) is given by

β
β β

=
Ω

ℏΩ ℏΩ
−a x

M x
x x

( )
1
( )

( )
2

coth
( )
2

1FK c
c
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2

l
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i
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jjjj

y
{
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|
}oo
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(11)

aFK
2(xc) comes from Feynman and Kleinert’s original theory

and has dimensions length squared. For imaginary Ω(xc) the

exponent in the momentum part contains β|Ω |ℏ( )xtan ( )c2
which diverges when ℏ|Ω(xc)|β = π; see ref 3. We point out
that eq 10 is the same in the original FK theory and the new
generalized effective frequency theory presented here (GFK).
The values of Ω(xc) and L(xc) as functions of xc on the other
hand differ between the two theories.
Let us now determine L(xc) and Ω2(xc) for a given centroid

xc. The task is to replace V(x(τ)) in Δ̂(xc) or Δ(xc) with
τ+ Ω −L x M x x x( ) ( )( ( ) )c c c

1
2

2 2 in the best possible way. After

replacement, the off-diagonal trace Δ(xc) is transformed into
Δtr(xc), where

∫ τ δ τΔ = ̅ − − [ ] ℏx x x x S x( ) D ( ) ( ) exp( ( ) / )tr c c tr
xc

(12)

{ }∫
τ

τ τ τ

[ ]

= ̇ + + Ω −
βℏ
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M

x L x M x x x

( )

d
2

( ) ( )
1
2

( )( ( ) )

tr
x

c c c
0

2 2 2

c

(13)

The off-diagonal trace corresponding to the full Boltzmann
operator is approximated as

∫ ∫Δ ≈ Δ =x x x xd ( ) d ( )c c c tr c (14)

∫ ∫
∫

τ δ τ

τ τ

̅ − − [ ] ℏ

= − [ ] ℏ

x x x x S x

x S x

d D ( ) ( ) exp( ( ) / )

D ( ) exp( ( ) / )

c c tr
x

tr
x

c

c

(15)

where we notice that the last equality above is perfectly
meaningful since the value of xc in Str

xc[x(τ)] is determined by xc
in the path integration ∫Dx(τ).
In order to make ∫ dxcΔtr(xc) be as close as possible to

∫ dxcΔ(xc) we use the Jensen inequality.25 We start by writing
the exact path integral as

∫ ∫ ∫
∫

∫

τ τ

τ τ τ τ

Δ = − [ ] ℏ = Δ

×
−{ [ ] − [ ]} ℏ × − [ ] ℏ
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(16)

or

∫ ∫
τ τ

Δ = Δ

× ⟨ −{ [ ] − [ ]} ℏ ⟩

x x x x

S x S x

d ( ) d ( )

exp( ( ) ( ) / )

c c c tr c
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x
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c

(17)

where the average of a function f is calculated by

∫
∫

τ
τ τ τ

⟨ [ ]⟩ =
[ ] × − [ ] ℏ

Δ
f x

x f x S x

x x
( )

D ( ) ( ) exp( ( ) / )

d ( )tr
tr
x

c tr c

c

(18)

The Jensen inequality25 rests on the convexity of the
exponential function and states that

λ φ λ φ λ φ λ φ

λ λ

+ ≥ +

+ =

exp( ) exp( ) exp( ),

1

1 1 2 2 1 1 2 2

1 2 (19)

where φ1 and φ2 are arbitrary real numbers. Its integral variant
is25

∫ ∫
∫

λ φ λ φ

λ

≥

=

( )x x x x x x
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d ( ) exp( ( )) exp d ( ) ( ) ,

d ( ) 1
(20)

Using eq 20 in its multidimensional version with λ[x(τ)] =
exp(−Str

xc[x(τ)]/ℏ)/∫ dxcΔtr(xc), so that ∫Dx(τ) λ[x(τ)] = 1,
and φ[x(τ)] = −(S[x(τ)] − Str

xc[x(τ)])/ℏ, we obtain

∫ ∫
τ τ

Δ ≥ Δ

× −⟨[ [ ] − [ ]⟩ ℏ

x x x x

S x S x

d ( ) d ( )

exp( ( ) ( ) / )

c c c tr c

tr
x

tr
c (21)

We will thus seek the values of L(xc) and Ω2(xc) that maximize
the right-hand side of eq 21. For this purpose we derive an
expression for Δtr(xc) in Appendix A using results from ref 3
and obtain
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Next we wish to evaluate
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∫ ∫ ∫
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The quantity
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appearing in eq 23 is also an expectation value, using again the
weight-function exp(−Str

xc[x(τ)]/ℏ) but now evaluated for a
f ixed centroid xc as opposed to in eq 18 where xc is integrated
over.
We may write

{
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where we need to calculate the different terms. Let us first look
at the average square position found in the last term:

∫τ τ δ τ
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To evaluate this, we write the paths explicitly using their
Fourier representation. As will be seen, once this special term
has been found, all other quantities follow straightforwardly.
The paths in eq 26 include all closed and open paths x(τ) with
a common centroid xc.
We wish to find a Fourier representation suitable for

describing open paths where xc occurs explicitly as a Fourier
mode. We also need to evaluate the time derivative of x(τ) so
that we can calculate the kinetic energy of the path. This means
that we need to interchange the infinite summation and
differentiation operations in our Fourier series expression. This
is permissible if x(τ) is continuous and x′(τ) is integrable.26

Thus, we cannot adopt the Fourier series of x(τ) directly by
regarding it as a βℏ-periodic function, since this function is
discontinuous at its open ends. We can instead achieve our
requirements by considering a continuous extension of x(τ) as
follows.
We extend our open paths to new ones, x̃(τ), defined on the

double time interval 0 < τ < 2βℏ. We shall require that our
extended paths be identical to the old ones in the original time
window: x̃(τ) = x(τ), 0 < τ < βℏ and further that they are
symmetric around τ = βℏ, i.e., x̃(τ) = x̃(2βℏ − τ), which fully

determines x̃(τ). By this prescription there is a one-to-one
correspondence between the x(τ) and x̃(τ) paths. Further, due
to the symmetry, the centroids of x(τ) and x̃(τ) are identical.
The x̃(τ) paths can be defined for all real τ by letting x̃(τ) be

2βℏ-periodic. The x̃(τ) paths are closed paths, and if we
restrict them to be physical, continuous paths, they fulfill all
our requirements. We may then write the Fourier series
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where bn = 0 for all n, due to the reflection property of x̃(τ)
around τ = βℏ. If we restrict this Fourier series to 0 < τ < βℏ,
we obtain our desired open path representation
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The basis functions are orthogonal:

∫ τ π τ
β

π τ
β

δ β
ℏ ℏ

= × ℏ
βℏ m n

d cos cos
1
2 mn

0

i
k
jjjj

y
{
zzzz

i
k
jjjj

y
{
zzzz

(29)

Clearly, a0 is the common centroid of x(τ) and x̃(τ):

∫ ∫β
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Likewise, it follows from eq 28 that
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In Appendix B, we derive eq 28 again but by using the
normal modes of the open polymer. We also show how to set
up a general path integral using the path parametrization in eq
28. If we write ω = π

βℏn
n , the trial action can now be evaluated

as (xc = a0)
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Returning now to eq 26, we writeb

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.1c05860
J. Phys. Chem. A 2021, 125, 9209−9225

9212

pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.1c05860?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


∫

∑ ∑

∫

∫

∫

∫

τ τ δ τ τ

τ β ω β

β ω β

ω τ β ω

β ω

β
ω τ

ω β
ω τ

ω

⟨ ⟩ = ̅ − × × − [ ] ℏ Δ

=
∏ − ∑ [ + Ω ] −

∏ − ∑ [ + Ω ] −

=
∏ [ + ∑ ] − ∑ [ + Ω ]

∏ − ∑ [ + Ω ]

= +
+ Ω

= +
+

+ Ω

=
∞

=
∞

=
∞

=
∞

=
∞

=
∞

=
∞

=
∞

=
∞

=

∞

=

∞

( )
( )

( )
( )

x x x x x S x x

a x x L x

a x L x

a x a x

a x

x
M x

x
M x

( ) D ( ) ( ) ( ) exp( ( ) / )/ ( )

d ( ) exp ( ) ( )

d exp ( ) ( )

d cos( ) exp ( )

d exp ( )

2 cos ( )
( )

1 1 cos(2 )
( )

tr
x

c tr
x

tr c

n n
M

n n c
a

c

n n
M

n n c
a

c

n n c n n n
M

n n c
a

n n
M

n n c
a

c
n

n

n c
c

n

n

n c

2 2

1
2

2 1
2 2

2

1 2 1
2 2

2

1 1
2

2 1
2 2

2

1 2 1
2 2

2

2

1

2

2 2
2

1
2 2

c c

n

n

n

n

2

2

2

2

(33)

Using the result (see page 83 in ref 27)
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it is shown in Appendix A that
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Here the smearing width aFK
2(xc), given in eq 11, has appeared.

In the closed path theory we would find the simpler result:
⟨x2(τ)⟩tr

xc = xc
2 + aFK

2(xc). Naturally, for closed paths, the
quantum fluctuations are independent of τ. According to eq
35, however, for open paths, fluctuations are smallest for
intermediate times τ ∼ βℏ/2 where ⟨x2(τ)⟩tr

xc ∼ xc
2 + aFK

2(xc),
while they increase exponentially as τ → 0, βℏ.
Since both the second and third terms in eq 35 vanish for

high temperatures, it seems reasonable to define a new time-
dependent open-path smearing width as
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The last term in this quantity diverges for imaginary Ω(xc)
when |Ω(xc)|βℏ = π and becomes infinite when |Ω(xc)|βℏ → π
from below. The old smearing width aFK

2(xc) on the other
hand does not diverge until |Ω(xc)|βℏ = 2π. Here we find the
reason as to why the new theory is well-behaved and the old
not. As |Ω(xc)|βℏ → π from below, the momentum sampling
should start to get problematic, but it does not because at the

same time a2(xc, τ) goes to infinity thereby making |Ω(xc)|
smaller in size, since the latter is the Hessian of the potential
averaged over a2(xc, τ); see below. The reduced size of |Ω(xc)|
pushes |Ω(xc)|βℏ away from π.
Returning to eq 25, we see that we need to find
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Inserting eq 35 in eq 37 and integrating over τ, we obtain
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The average smearing width over the whole open path thus
becomes
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We now turn our attention to the term ⟨V(x(τ))⟩tr
xc in eq 25.

An easy way to find it is to consider the Fourier representation
of the potential:
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(41)

or (see eq 33)
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Inserting the inverse Fourier transform of the potential V(x)

∫̃ = −
−∞

∞
V k x V x kx( ) d ( ) exp( i )

(43)
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This is a Gaussian smearing of the potential around the
centroid xc = a0. We shall call it Va

2
(xc,τ)(xc). Hence,
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Equation 25 can now be written

{
}

∫

∫

τ τ

τ τ

τ

β τ

β

⟨ [ ] − [ ]⟩

= ⟨ ⟩ −

− Ω ⟨ − ⟩

= − ℏ +

− ℏ Ω

β

β

τ

ℏ

ℏ

S x S x

V x L x

M x x x

L x V x

M x a x

( ) ( )

d ( ( )) ( )

1
2

( ) ( ( ) )

( ) d ( )

2
( ) ( )

tr
x

tr
x

tr
x

c

c c tr
x

c a x c

c c

0

2 2

0
( , )

2 2

c c

c

c

c
2

(46)

Putting the pieces together, eq 23 becomes
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We call the right-hand side of this inequality I = I[Ω2(xc),
L(xc)]. Thus, I is a functional of the functions Ω2(xc) and
L(xc). We need to make it stationary with respect to variations
in L(xc) and Ω2(xc) for all values of xc. First we will determine
the potential L(xc) by requiring
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With this choice, consider the functional variation with respect
to L(xc). The variation vanishes since
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Next we turn to the variation of Ω2(xc). The right-hand side
depends directly on Ω2(xc) but also indirectly through a2(xc),
α(xc), and ∫ 0

βℏdτ Va
2
(xc,τ)(xc)/ℏ. Hence there are four

contributions to changes in I when varying Ω2(xc). The
functional derivative of I with respect to Ω2(xc) is
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Next, we calculate the result of variations in Ω2(xc) coming
from a2(xc). We write it symbolically
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The third term is
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Finally, the fourth term is
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The sum of these four terms must vanish. As we shall see, we
can make the first and third terms sum to zero. Likewise with
the second and fourth. Looking at the first pair, we get
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We already have expressions for a2(xc) and α(xc) in eqs 39 and
22, respectively. From these we can verify that eq 54 is fulfilled.
Next, let us look at the sum of the second and fourth terms.

The equation we get is
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Using the chain rule, we may write
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Since a2(xc) is the path-averaged smearing width, we have
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Thus, we may write
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Equation 56 therefore finally becomes
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where we have utilized the equality
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which follows from manipulations on eq 44.
Equation 59 is our iterative equation which is used together

with the expression for a2(xc, τ) in eq 36. The iteration starts by
first fixing a centroid xc and choosing a value for Ω2(xc).
Iteration then goes on until convergence.
In eq 59 we need to evaluate ∂a2(xc, τ)/∂Ω2(xc). By

differentiating eq 36, the following expression may be found

τ β

τ

β

τ β τ β

β β

∂
∂Ω

= ℏ
Ω

×
− −

+
ℏ ℏΩ −

Ω ℏΩ

× ℏΩ − ℏΩ −

− ℏΩ ℏΩ −

β( )( )

a x
x M x

y

y

x

M x x

x x

x x

( , )
( ) 16 ( )

coth( )

sinh ( )

2 ( ) sinh( ( ) )

2 ( )
2

coth ( )
2

( ) coth( ( ) ) 1

c

c c

y
y

y

c

c c

c c

c c

2

2

3 2
2

sinh ( )
2

2
2

3

2

l
m
ooooo

n
ooooo

|
}
ooooo

~
ooooo

l
moo
noo

i
k
jjj

y
{
zzz

i
k
jjjj

i
k
jjj

y
{
zzz
y
{
zzzz

|
}oo
~oo (61)

where we have set ℏΩ(xc)β/2 = y for brevity.
For the case of an imaginary frequency, the expressions for

a2(xc, τ), a
2(xc), and ∂a2(xc, τ)/∂Ω2(xc) change. By replacing

Ω(xc) with i|Ω(xc)|, the new expressions become

Figure 1. Quartic oscillator Wigner functions for β = 2. Notice the different scale for the classical calculation (cl).
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■ RESULTS
We will apply our new effective frequency theory to two
problems, viz. a quartic oscillator and a symmetric double well.
The results will be compared with predictions from the original
effective frequency theory, classical statistical mechanics as well
as accurate calculations. We will use natural units so that ℏ = 1
and we consider a particle with mass m = 1.
The Quartic Oscillator. Here we consider a quartic

potential V(q) = q4/4. In this case we do not encounter any
imaginary frequency problem. Hence, the original effective

frequency theory is always well-defined. The inverse temper-
atures that we study are β = 2 and 8. In Figure 1, computed
Wigner functions are shown for β = 2 obtained from an
accurate calculation, a classical calculation, and the original and
new effective frequency models, termed FK and GFK,
respectively.
Notice that the Wigner functions are not normalized to

unity when integrated. They are Wigner transforms of the
Boltzmann operator itself. In Figure 1 good agreement is seen
between all four predictions, albeit the classical calculation
yields clear deviations from the other results.
The results for the case β = 8 are shown in Figure 2.
It is clearly seen that the classical result shows large

deviation from the other three results. Visually, the two
effective frequency theories agree well with each other and also
with the accurate quantum result.
In order to make the comparisons between methods more

precise, we have adopted the following measure of deviation of
an approximate Wigner function, W(q, p), from the accurate
Wigner function Wacc(q, p):
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In Table 1 such error values are shown for the quartic
oscillator at both β = 2 and β = 8.

Figure 2. Quartic oscillator Wigner functions for β = 8. Notice the different scale for the classical calculation (cl).

Table 1. Quartic Potentiala

FK GFK Cl

β = 2 0.02 0.03 0.44
β = 8 0.07 0.10 9.47

aDeviations from the accurate Wigner function are shown for original
Feynman−Kleinert effective frequency theory (FK), our generalized
effective frequency theory (GFK) and classical theory (Cl).
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It is again confirmed that the two effective frequency
theories are very close to each other. Moments of the Wigner
functions are presented in Table 2.

Compared to the accurate calculations and original effective
frequency model, the new theory is seen to give slightly larger
momenta as the temperature is lowered, while the classical
ones are clearly too small.
We will now consider the off-diagonal behavior of the

density matrix, i.e., how η behaves in ρ− ̂ +η ηq q
2 2

. We

define

∬
∬

η
η η ρ

η ρ
⟨ ⟩ =

⟨ − | ̂| + ⟩

⟨ − | ̂| + ⟩

η η

η η

q q q

q q q

d d

d d
2

2
2 2

2 2 (67)

and show the corresponding values in Table 3 for FK, GFK,
and accurate calculations.

The off-diagonal behavior of the density matrix is seen to be
better for GFK than for FK.
We end this section by showing the position autocorrelation

functions, obtained by running classical dynamics using our
Wigner functions to sample initial conditions (often referred to
as the “Classical Wigner” model). In Figures 3 and 4 we show
results for β = 2 and 8, respectively. The figures also contain
accurate and purely classical dynamics results. The results from
the two effective frequency theories are practically speaking
identical.
Particle in a Double Well. We now turn to a problem

with a barrier, namely, the double well, and we choose the
potential to be = − +V q q q( ) 1

2
2 1

10
4. The double well

problem is substantially more challenging than what the
quartic potential is. For this potential the momentum part of
the Wigner function of the original effective frequency theory
becomes ill-defined in the interval β ∈ [5.1, 5.9]. We therefore
choose to consider inverse temperatures outside, but
reasonably close to, this range. We also consider the results
of the so-called local Gaussian approximation (LGA) proposed
by Liu and Miller.12 This scheme utilizes the following
approximation to the Boltzmann operator Wigner transform:

β

β β

≈ ⟨ | − ̂ | ⟩
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P x p x H x
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where u(x) is the local frequency u(x)2 = V″(x)/m and

Q(u(x)) is given by
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Table 2. Quartic Oscillatora

FK GFK accurate Cl

⟨q2⟩, β = 2 0.53 0.53 0.53 0.48
⟨p2⟩, β = 2 0.73 0.79 0.73 0.50
⟨q2⟩, β = 8 0.45 0.43 0.46 0.24
⟨p2⟩, β = 8 0.57 0.61 0.56 0.12

aMoments of the Wigner function from original Feynman−Kleinert
effective frequency theory (FK), our generalized effective frequency
theory (GFK), accurate calculations and classical theory (Cl).

Table 3. Quartic Oscillatora

FK GFK accurate

⟨η2⟩ β = 2 1.45 1.32 1.32
⟨η2⟩ β = 8 1.77 1.66 1.59

a⟨η2⟩ of the density matrix from the original Feynman−Kleinert
effective frequency theory (FK), our generalized effective frequency
theory (GFK) and accurate calculations.

Figure 3. Correlation functions for the quartic oscillator at β = 2. The
three Wigner functions used as sampling functions for initiating the
classical dynamics are derived from the original Feynman−Kleinert
effective frequency theory (FK), our generalized effective frequency
theory (GFK), and classical statistical mechanics (classical). Accurate
quantum mechanical results are also shown (accurate).

Figure 4. Correlation functions for the quartic oscillator at β = 8. The
three Wigner functions used as sampling functions for initiating the
classical dynamics are derived from the original Feynman−Kleinert
effective frequency theory (FK), our generalized effective frequency
theory (GFK), and classical statistical mechanics (classical). Accurate
quantum mechanical results are also shown (accurate).
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Equation 68 is always well-defined. Also, the phase-space
trace of P(x, p) is exact so the Wigner function is correctly
normalized. In Figures 5−7 we show the Wigner distributions
for β = 4, 5, and 8, respectively, for the four methods that we
compare, namely, accurate, FK, GFK, and LGA.
For β = 4, it is seen that the Wigner function derived from

the original Feynman−Kleinert theory possesses a too narrow
momentum distribution near the barrier top in comparison to
the accurate result. The situation is similar for the LGA Wigner
function. Both of these functions also have a too large
maximum value of P(x, p). In comparison, the GFK function
behaves better. In the case of β = 5, where ℏ|Ω(xc)|β is closer
to π, the same observations hold but they are more
accentuated. For β = 8, the LGA Wigner function decays
very rapidly along the p axis and deviates substantially from the
accurate one.

It is hard to judge how close the approximate Wigner
functions are to the accurate one. The comparison is further
complicated by the fact that only the exact function can be
negative. Again we may turn to our error estimate. In Table 4,
we present error values calculated using eq 66.
Again we see that the results for the two effective frequency

theories are quite close to each other and much better than the
classical results. Note that for β = 5, as opposed to for the
other β-values, FK is sligthly worse than GFK. This is because
β = 5 is quite close to the β-range where FK becomes ill-
defined. The LGA approximation is seen to perform slightly
worse than the two effective frequency theories.
We may also consider moments of the Wigner function; see

Table 5.
The original Feynman−Kleinert effective frequency theory is

seen to give results quite close to the accurate ones. Our new

Figure 5. Double well Wigner functions for β = 4. Although not shown, the classical Wigner function has a peak value of around 13.5.

Figure 6. Double well Wigner functions for β = 5. Although not shown, the classical Wigner function has a peak value of around 25.
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method systematically slightly overestimates the momentum of
the system and similarly slightly underestimates ⟨q2⟩, while the
classical results are substantially worse. The LGA approx-
imation is clearly seen to work well. In fact, the LGA model
predicts the most correct moments, being slightly closer to the
accurate ones than the original FK model.
In Table 6 we show the average value of η2 for the double

well at various temperatures. When β is near the interval [5.1,
5.9], we see the divergence behavior in ⟨η2⟩ as obtained from

FK theory. Also, the LGA approximation performs poorly: It
predicts too large values of ⟨η2⟩ which is equivalent to a very
slowly decaying density matrix in its off-diagonal direction. The
GFK model predicts values of ⟨η2⟩ being in much better
agreement with the accurate values. Thus, the GFK method
outperforms the LGA and original effective frequency model
when it comes to predicting the off-diagonal behavior of the
density matrix.
As in the previous section, we show the position

autocorrelation functions, obtained from the Classical Wigner
model. This is done in Figures 8 and 9 for β = 4 and 8,
respectively.
The results for the two effective frequency theories and the

LGA result agree quite well with each other. They are all
clearly better than the classical results. We conclude that it
does not matter which of the three theories you adopt for the
position autocorrelation functions. Due to the Classical Wigner
model itself, the results obtained are essentially equally far
away from the accurate result.

■ DISCUSSION AND CONCLUSIONS
A new effective frequency model for imaginary time path
integrals has been proposed. Since the new theory is a
generalization of the Feynman−Kleinert (FK) theory in that it
also includes open paths, we term it the Generalized
Feynman−Kleinert theory (GFK). More specifically, GFK

Figure 7. Double well Wigner functions for β = 8. Notice the different scale for the LGA calculation. Although not shown, the classical Wigner
function has a peak value of around 150.

Table 4. Double Well Resultsa

FK GFK LGA Cl

β = 4 0.14 0.14 0.16 2.0
β = 5 0.26 0.18 0.25 3.4
β = 8 0.28 0.35 0.52 12
β = 10 0.35 0.42 0.67 29

aDeviations from accurate Wigner function results calculated from eq
66. Results are shown for the original Feynman−Kleinert effective
frequency theory (FK), our generalized effective frequency theory
(GFK), local Gaussian approximation (LGA),12 and purely classical
theory (Cl).

Table 5. Double Well Results for Moments of the Wigner
Functionsa

FK GFK LGA accurate Cl

⟨q2⟩, β = 4 1.71 1.66 1.71 1.71 2.18
⟨p2⟩, β = 4 0.48 0.54 0.48 0.49 0.25
⟨q2⟩, β = 5 1.65 1.59 1.65 1.65 2.23
⟨p2⟩, β = 5 0.44 0.51 0.44 0.44 0.20
⟨q2⟩, β = 8 1.53 1.48 1.55 1.55 2.34
⟨p2⟩, β = 8 0.40 0.46 0.39 0.36 0.12
⟨q2⟩, β = 10 1.47 1.43 1.52 1.52 2.38
⟨p2⟩, β = 10 0.39 0.44 0.37 0.33 0.10

aResults are shown for the original Feynman−Kleinert effective
frequency theory (FK), our generalized effective frequency theory
(GFK), local Gaussian approximation (LGA),12 accurate calculations,
and classical theory (Cl).

Table 6. Double Well Results for ⟨η2⟩ of the Density
Matrixa

FK GFK LGA accurate

⟨η2⟩, β = 4 6.72 2.36 3.68 2.63
⟨η2⟩, β = 5 133 2.53 5.14 2.97
⟨η2⟩, β = 6 106 2.63 6.97 3.22
⟨η2⟩, β = 8 7.13 2.76 11.79 3.56

aResults are shown from original Feynman−Kleinert effective
frequency theory (FK), our generalized effective frequency theory
(GFK), local Gaussian approximation (LGA),12 and accurate
calculation.
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“trains” the effective frequency trial action also on open paths
as opposed to the original model which was developed for
closed paths only. This removed the divergence problem
inherent in the original Feynman−Kleinert theory, when
obtaining the Wigner functions for barrier problems. The
inclusion of open paths in the variational procedure was shown
to lead to a more accurate off-diagonal behavior of the density
matrix. The GFK theory is, however, not generally more
accurate than the original closed-path model of Feynman−
Kleinert. On the contrary, it was seen to provide quadratic
moments that are slightly worse than those predicted from the
original FK model (and LGA model as well).

What are the reasons for the observations mentioned just
above? We first point out that the two effective frequency
theories utilize the same trial action. GFK is thus not more
elaborate. It, however, “trains” its trial action on a larger class
of paths. It is therefore not surprising that when comparing
moments such as, e.g., ⟨x2⟩ and ⟨p2⟩, which may be calculated
using only closed paths, the FK theory is more precise, since it
is optimized for precisely such paths. The present study,
however, suggests that when calculating such quantities the
differences between the two models are very small. On the
other hand, in studying quantities depending on the off-
diagonal behavior of the density matrix, GFK outperforms FK
for temperatures close to where the FK theory leads to
divergence issues.
The results of this paper, suggest that the GFK theory

provides a “Jack of all trades” Wigner transform approach,
since its density matrix and Wigner transform plots are always
consistent (but not always the most accurate). This should be
contrasted to the FK theory with its divergence issues and the
LGA model which predicts an errorneous rapid decay of its
double well Wigner function along the momentum axis.
We end by pointing out immediate possible generalizations.

Instead of including just the centroid, we could include
additional Fourier modes in the anharmonic part of the trial
action. For instance, we could choose to use the two lowest
modes a0 and a1, which turns the trial action into

{ }∫τ τ τ τ[ ] = ̇ +
βℏ

ΩS x M x V x( ) d
2

( ) ( ( ))tr
a a

a a L a a
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This is a generalization of eq 13. Thus, the action is now
expanded harmonically around a time-dependent path y(τ) = a0
+ a1 cos(ω1τ); see Figure 10.
All developments proceed essentially as before and the

required expressions can be calculated with the path integral
technique outlined in Appendix B.

Figure 8. Position autocorrelation functions for the double well at β =
4. The four Wigner functions used as sampling functions for initiating
the classical dynamics are derived from the original Feynman−
Kleinert effective frequency theory (FK), our generalized effective
frequency theory (GFK), local Gaussian approximation (LGA), and
classical statistical mechanics (classical). Accurate quantum mechan-
ical results are also shown (accurate).

Figure 9. Position autocorrelation functions for the double well at β =
8. The four Wigner functions used as sampling functions for initiating
the classical dynamics are derived from the original Feynman−
Kleinert effective frequency theory (FK), our generalized effective
frequency theory (GFK), local Gaussian approximation (LGA), and
classical statistical mechanics (classical). Accurate quantum mechan-
ical results are also shown (accurate).

Figure 10. Trial action x(τ) expanded around a path y(τ).
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By proceeding as just outlined but including more and more
modes, the trial action approaches the exact action. In
multidimensional applications, we could apply this multimode
theory to the most important degrees of freedom, but use the
single mode version detailed in this paper for the other degrees
of freedom. Further, we could apply similar ideas as presented
here for developing trial actions for path integrals involving
thermalized flux operators. In this case, besides the centroid,
we would impose further constraints on the open paths by
requiring the paths to pass the dividing surface at τ = βℏ/2;
see, e.g., refs 4 and 28. As shown in the Supporting
Information, such further restrictions can be implemented by
inserting delta functions into the off-diagonal path integral.

■ APPENDIX A

Miscellaneous Results
The purpose of this appendix is to derive eqs 10, 22, and 35.
We first derive eq 10. We start from eq 10 in ref 23 which gives
the Feynman−Kleinert approximation to the Wigner transform
of the Boltzmann operator. It reads
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where α = α(xc) is related to the Feynman−Kleinert smearing
width by α = 2MΩ(xc)aFK2(xc)/ℏ. The centroid potential is

= +
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Let Δ̂tr(xc) denote the operator you get from Δ̂(xc) by
replacing the true potential by the Feynman−Kleinert trial
potential in eq 9. From the definition of Δ̂(xc) in eq 8, it
follows that by adopting the FK trial potential

∫β− ̂ [ ] = Δ̂ [ ]H q p x x q p(exp( )) , d ( ( )) ,W c tr c W (73)

and so by comparing with eq 72 we get
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which is eq 10.
We next derive eq 22. By performing an inverse Wigner

transform on eq 74, we get
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The off-diagonal trace is just integrating ⟨x′|Δ̂tr(xc)|x⟩ over
both x and x′. The result is eq 22.
Finally we derive eq 35. By combining eqs 33 and 34, we

obtain
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Using coth(x) = coth(x/2) − 1/ sinh(x), we rewrite the third
line so that
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Here the old smearing width from the original Feynman−
Kleinert theory has appeared. It is

β
β
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and fulfils ⟨x2(τ)⟩tr = aFK
2(xc) + xc

2 if only closed paths are
considered. The first part of eq 77 can be simplified by using
cosh(2x) = 2 cosh2(x) − 1 = 1 + 2 sinh2(x). We then have
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(78)

or
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which is eq 35.

■ APPENDIX B

Path Integral Using Open Path Fourier Modes
Here we show how to write the path integral representation of
the Boltzmann operator using Fourier modes. Normally, this is
done assuming closed paths, using the so-called Matsubara
frequency representation.19 Here, we do it for open paths,
which to our knowledge is much less explored. As an example,
we consider the calculation of the off-diagonal trace Δ =
∫ dxcΔ(xc) for a one-dimensional particle with mass M
moving in a potential V(x) at an inverse temperature β = 1/
kBT. In Cartesian coordinates, using N beads, we have
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Using the high temperature approximation (writing β′ = β/
(N − 1))
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we obtain
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where we have introduced some short-hand notation: xN⃗ = (x1,

..., xN) and ⃗ = ∑ +=
− +V x V x( ) ( )N k

N
k

V x V x
2
1 ( ) ( )

2
N1 . We next

introduce the normal modes of the kinetic energy, which is
written in the form ∑k=1

N−1(xk+1 − xk)
2.29 The jth normal mode

is
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where the orthonormal N × N matrix Q has components
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The eigenvalue of νj is

λ
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It follows that
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By expressing eq 82 in terms of normal modes, it becomes
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(87)

We have written νN⃗ = (ν0, ..., νN−1) and utilized that ∫ dνN⃗ =
∫ dxN⃗ since the determinant of the Jacobian of the mapping
between νN⃗ and xN⃗ is unity. For mathematical convenience we
will define ηN⃗ = (1/N)1/2ν ⃗N. It follows that η0 is the centroid of
the path. We can write
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One final coordinate transformation is needed. We set
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and
η=a0 0 (90)

Again we write a⃗N = (a0,..,aN−1). Equation 88 tranforms into
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Using the identity (see proof at the end of this section)
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Equation 91 can be simplified to
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where ω = π
βℏj
j
, j = 0, ..., N − 1. Equation 93 is the Fourier

representation of the path integral.
We next consider the equation for aj (j ≠ 0):
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Fix a value of j. If N is large in eq 94, this expression may be
written (use sin(x)/x → 1, x → 0)
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We have discretized the time axis as τ β= ℏ
−

k
k

N

1
2 , k = 1, ..., N.

For j = 0, we obtain similarly
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We recognize eqs 95 and 96 as eq 31 and eq 30, respectively.
Thus, we have rederived the Fourier representation of x(τ).
We may also consider the expression for xk in terms of the

normal modes in the limit N→∞. Again, let τ β= ℏ
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(97)

To proceed, we need to show that γ(j , N) ≡
π· −π( ) N N j2 sin ( ( 1)) /j

N2
1/2 can be set equal to unity for

large N. This is correct as long as j ≪ N. At first sight, this is
not possible since j runs all the way up to N − 1. However, all
realistic paths x(τ) that contribute to the path integral have a
frequency cut-off j ≤ jmax which results from the kinetic energy
part of the path integral. Therefore, if j is so big that γ(j, N) is
not unity, then j will by far exceed jmax if N is big enough. Thus,
if j > jmax then only aj = 0 contributes to the path integral and it
will not matter if we put γ(j, N) = 1 in eq 97.
If N becomes large in eq 97 and k likewise so that
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−k
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1
2 is constant, then we get the following expression

for x(τk):
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This is eq 28.
We finally show how to express the potential energy part of

the path integral in terms of Fourier modes as done in eq 93.
The part is
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This rewriting should be acceptable for large N. When N→∞,
this becomes
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Then we may finally write the total path integral in eq 93 as
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(101)

where we have taken the limit N → ∞.
Equation 101 is the central result of this appendix. If we

restrict the centroid a0 to be a0 = xc and consider a potential
τ τ= + Ω −V x L x M x x x( ( )) ( ) ( )( ( ) )c c c

1
2

2 2, then we may

show that eq 101 rederives the result in eq 22.
We remember that eq 101 is the Boltzmann path integral

over all open paths. If we want to calculate matrix elements
such as, e.g., ⟨x| exp(−βĤ)|y⟩ we can apply eq 101 if we add
two extra integrations δ(y − x(0)) = ∫ dθ1 exp(iθ1(y − x(0)))/
2π = ∫ dθ1 exp(iθ1(y − a0 − a1 − ...))/2π and δ(x − x(βℏ)) =
∫ dθ2 exp(iθ2(x − a0 + a1 − a2 + ...))/2π. In this Gaussian
integral, we first integrate out all (a0, a1, ...), followed by
integrating out θ1 and θ2. In this way, also eq 75 can be derived
by simply fixing the centroid a0 to be a0 = xc.
Let us finally return to the identity in eq 92. To prove it, we

start with the result 1.392.1 in ref 30
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Letting x → 0, we obtain
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Next, let n = 2m be even. Observe that the arguments of the
sine functions go through half the unit circle, symmetrically

around π/2. By using =π π−( )( )sin sink
n

n k
n

( ) , we may limit the

sine arguments to the first quarter of the unit circle only,
instead squaring the result. Thus
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or
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(105)

which was to be proved.
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■ ADDITIONAL NOTES
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partition function for an N-bead polymer which is held
together by harmonic springs with force constants k = M(N −
1)2/(βℏ)2 and moves in the external potential V(x) at inverse
temperature β/(N − 1). Its center of mass is fixed at xc. See
Appendix B for the details of this derivation.
bWhen evaluating eq 33, the determinant of the Jacobian
which is associated with the mapping from Cartesian
coordinates to Fourier modes is not needed, since we are
calculating the ratio of two path integrals.
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