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Correlated changes of nucleic or amino acids have provided strong information about the structures and interactions
of molecules. Despite the rich literature in coevolutionary sequence analysis, previous methods often have to trade off
between generality, simplicity, phylogenetic information, and specific knowledge about interactions. Furthermore,
despite the evidence of coevolution in selected protein families, a comprehensive screening of coevolution among all
protein domains is still lacking. We propose an augmented continuous-time Markov process model for sequence
coevolution. The model can handle different types of interactions, incorporate phylogenetic information and sequence
substitution, has only one extra free parameter, and requires no knowledge about interaction rules. We employ this
model to large-scale screenings on the entire protein domain database (Pfam). Strikingly, with 0.1 trillion tests
executed, the majority of the inferred coevolving protein domains are functionally related, and the coevolving amino
acid residues are spatially coupled. Moreover, many of the coevolving positions are located at functionally important
sites of proteins/protein complexes, such as the subunit linkers of superoxide dismutase, the tRNA binding sites of
ribosomes, the DNA binding region of RNA polymerase, and the active and ligand binding sites of various enzymes.
The results suggest sequence coevolution manifests structural and functional constraints of proteins. The intricate
relations between sequence coevolution and various selective constraints are worth pursuing at a deeper level.
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Introduction

Coevolution is prevalent at species, organismic, and
molecular levels. At the molecular level, selective constraints
operate on the entire system, which often require coordi-
nated changes of its components. The most well-known
example is the compensatory substitution of nucleic acid
pairs in RNA secondary structures [1–6]. Interacting nucleo-
tides vary between AU, CG, and GU pairs in different species
in order to maintain the hydrogen bonds.

Coordinated changes of amino acid residues have also been
investigated. Typically these studies acquired one (or two)
family(ies) of aligned sequences and examined covariation
between aligned positions or of the entire sequences. Some of
these have applied different covariation metrics including
correlation coefficients [7–8], mutual information [9–13], and
the deviance between marginal and conditional distributions
[14]. These studies demonstrate that sequence covariation is
powerful in detecting protein–protein interactions [7,12],
ligand-receptor bindings [7,12], and the folding structure of
single proteins [10,13]. In addition to direct physical
interactions, distant coevolving amino acid residues are
reported to be energetically coupled [14] or subject to the
functional constraints of the proteins [8].

A major drawback of many covariation metrics is the lack
of phylogenetic information. The sequences manifesting the
same level of covariation may arise from either a few
independent substitutions in early ancestors or correlated
changes along multiple lineages [15,16]. In RNA structure
prediction, many authors have thereby extended the con-
tinuous-time Markov process (CTMP) of sequence substitu-
tion [17] to coevolving nucleic acid pairs [3,4,6,18]. However,
direct application of these models to protein coevolution is
intractable due to the large number of parameters (a 400 3

400 matrix) in the CTMP of amino acid pairs. This problem
was addressed by replacing amino acids in a CTMP with
simplified, surrogate alphabet sets such as the presence/
absence of a protein in each species [16] or the charge and
size of amino acid groups [19]. Yet this simplification deviates
from the standard CTMP of sequence substitution, in which a
rich set of empirical models are available.
All the previous studies of detecting protein coevolution

target a few proteins or protein domains, such as myoglobin
[19], PGK [7], Ntr family [12], PDZ domain family [14], Gag,
Hsp90, and GroEL proteins [8]. The availability of large-scale
protein sequences and their phylogenetic information allows
us to perform a systematic screening on all the known protein
families. Such large-scale screening will give comprehensive
information of coevolution among all the protein domains
and provide insight about their physical/functional couplings.
We propose a general coevolutionary CTMP model which

requires neither simplification of states nor prior knowledge
about interactions, and has only one extra free parameter.
Sequence substitution of the two sites is modeled by a
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continuous-time Markov process. The null (independent)
model hypothesizes that two sites evolve independently. The
alternative (coevolutionary) model is obtained from the null
model by reweighting the independent substitution rate
matrix to favor double over single changes. We apply this
model to all the inter- and intra-domain position pairs in all
the known protein domain families in Pfam database [20].
Strikingly, from a large number of pairwise comparisons the
coevolving domain pairs are highly enriched with domains in
the same proteins, protein complexes, or possessing the same
functions. Moreover, the coevolving positions demonstrate a
tendency of spatial coupling and are mapped to functionally
important sites of their proteins.

Results

Overview of the Coevolutionary Model
We extend the CTMP sequence substitution to model

coevolution of amino acid position pairs. The state tran-
sitions of a CTMP at an infinitesimal time interval follow a
matrix differential equation (Equation 1). The instantaneous
transition rates are specified by a 20 3 20 substitution rate
matrix Q. A CTMP of an amino acid pair is obtained by
concatenating the sequence states of two amino acid
positions. The substitution rate matrix of two independent
amino acid positions can be directly derived from the CTMP
of single sites. However, the rate matrix of a general two-
component CTMP has much fewer constraints and a larger
dimension (400 3 400). We simplify the substitution rate
matrix by penalizing all the entries of single changes and
rewarding all the entries of double changes with the same
weight factors. This coevolutionary model introduces very
few extra free parameters, thus it is easy to learn and less
vulnerable to overfitting. By applying this general coevolu-
tionary model to RNA sequences, we successfully predicted
RNA secondary and tertiary interactions [21].

Figure 1 illustrates the procedures of evaluating the
coevolutionary likelihood scores. Given the aligned sequences
of two positions in different (or identical) protein domains,
their joint phylogenetic tree, and the joint substitution rate
matrix, we can calculate the marginal likelihood of the
observed sequences on the leaves by summing over the

sequence states of internal nodes. The level of fitness of the
coevolutionary model to the data is measured by the log-
likelihood ratio between the coevolutionary and independent
models. For each pair of positions in the two families of
aligned sequences (or one family of sequences against itself),
we can calculate their log-likelihood ratio and mark putative
coevolving position pairs.
Very often there are multiple coevolving positions between

two domains (or within one single domain). To assess the
likelihood score of the entire domain pair, we employ a
probabilistic graphical model with variables corresponding to
specific positions of the protein domains in an ancestral or
contemporary species. Using a spanning tree approximation,
we evaluate the joint likelihood score in terms of the pairwise
and singlet likelihoods (Equation 5). The method of assessing
the likelihood score of multiple coevolving pairs is novel and
does not appear in our previous work [21]. Details about the
coevolutionary models of position pairs and the entire
domain pairs are described in Materials and Methods.

Coevolving Protein Domains Are Functionally Coupled
The entire Pfam database of aligned protein domain

sequences was downloaded [20] (April 2006 version). Overall
the dataset contained 8,183 domain families. The automati-
cally generated ‘‘full alignment’’’ of each domain family was
chosen in order to maximize the coverage and number of
sequences in the data. The topology and branch length of the
phylogenetic tree for each domain family were also down-
loaded from Pfam.
We considered the 3,722,468 domain family pairs (12% of

all family pairs) which co-appeared in no less than 20 species.
Out of the 3,722,468 domain family pairs, 179,117 (4.81%) co-
appear in the same proteins or share the same GO
annotations (bottom level in the GO hierarchy) in more than
half of the member proteins that have GO annotations.
Among each domain family pair, we considered all position
pairs. In total there were 1.171 3 1011 all-versus-all inter-
domain position pairs.
We calculated the log-odds score for each position pair in

each of the 3,722,468 domain pairs. We set the threshold of
the log-odds scores to be 9.0 according to p-values of random
CTMP simulation, false discovery rates of multiple hypotheses
testing, and functionally coupled domain pairs inferred by
the model. First, by randomly simulating 1 million sequences
using CTMP (see Materials and Methods) we found the p-
value for log likelihood ratio 9.0 is less than 6.0310�5. Second,
by randomly sampling sequences from the 3,543,351 func-
tionally unrelated family pairs (see Materials and Methods),
we plotted the dependence of false discovery rates and log-
odds thresholds (Figure S1). Threshold 9.0 yielded the false
discovery rate 33.00%. Third, when determining the thresh-
old, there was a tradeoff between the number of functionally
related domain pairs and the fraction of these ‘‘true
positives’’ among all the positive calls (Figure S2). With
threshold 9.0 the true positive rate was about 45%. In
addition, the results of functional and spatial coupling in the
subsequent sections are robust against the choice of threshold
�9.0. For instance, the top 100 coevolving domain pairs (Text
S1) and the distance distribution of inter-domain coevolving
position pairs (Figure 2) remain unchanged when the
threshold increases to 17.0.
With a threshold 9.0, we obtained 3,953 position pairs
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Author Summary

The sequences of different components within and across genes
often undergo coordinated changes in order to maintain the
structures or functions of the genes. Identifying the coordinated
changes—the ‘‘coevolution’’—of those components in the context
of evolution is important in predicting the structures, interactions,
and functions of genes. The authors incur a large-scale screening on
all the known protein sequences and build a compendium about
the coevolving relations of all protein domains—subunits of
proteins. The majority of the coevolving protein domains either
belongs to the same proteins, appears in the same protein
complexes, or shares the same functional annotations. Furthermore,
coevolving positions in the same proteins or protein complexes are
spatially coupled, as they tend to be closer than random positions in
the 3-D structures of the proteins/protein complexes. More
strikingly, many coevolving positions are located at functionally
important sites of the molecules. The results provide useful insights
about the relations between sequence evolution and protein
structures and functions.
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distributed over 582 domain family pairs. We then ranked the
582 inferred domain pairs according to the log-odds scores of
the joint model for multiple coevolving positions. The sorted
coevolving domain family pairs, their coevolving positions,
and the log-odds scores are reported in Text S1.
The coevolving protein domains are highly enriched with

functionally coupled domain pairs. Of the 582 domain family
pairs (44.16%), 257 share proteins or bottom-level GO
annotations in more than half of their members. The
enrichment of functionally coupled domain pairs is more
than a 9-fold increase compared to the entire dataset (4.81%).
The hypergeometric p-value for acquiring �257 functionally
coupled domain family pairs by randomly choosing 582
domain family pairs is less than 2.22 3 10�174 (see Materials
and Methods). The functional coupling of the domains,
however, may be a trivial consequence of many co-occurring
species. To exclude this possibility, we considered the family
pairs that overlapped in more than 200 species. The hyper-
geometric p-value for enrichment is less than 7.04 3 10�45,
allowing the null hypothesis of co-occurring species to be
rejected. Furthermore, 85 out of the top 100 coevolving
domain family pairs are functionally coupled. The enrich-

Figure 1. Framework of the Coevolutionary Model

(Top row) The independent rate matrix Qindep is derived from the single amino acid rate matrix. Entries corresponding to both amino acid changes are
zeros and entries corresponding to single amino acid changes have the same rates as the single amino acid rate matrix (e.g., Qindep[HR,HA]¼Q[R,A] [
qRA). The coevolutionary rate matrix Qcov is obtained by reweighting the independent rate matrix. Entries of single amino acid changes are penalized by
multiplying e and entries of both amino acid changes are rewarded by replacing zeros with r.
(Second row) Suppose two protein domains M1 and M2 interact at certain positions. We acquire the homologous domains of M1 and M2 across four
species (S1 � S4) and align each family of sequences.
(Third row) We acquire the joint phylogenetic tree of the two families of sequences. For each pair of positions, we place the joint sequences on the
leaves of the tree as the observed states of the CTMP. The conditional probability of interval t is given by eQt.
(Fourth row) The joint likelihood of a CTMP along a tree is the product of prior and conditional probabilities. The marginal likelihood of each pair of
aligned positions is obtained by summing over all possible states of internal nodes. It can be efficiently evaluated by dynamic programming.
(Bottom row) The log-likelihood ratio between the coevolutionary and independent models specifies how likely the observed sequences arise from
coevolution relative to the null (independent) model.
doi:10.1371/journal.pcbi.0030211.g001

Figure 2. Distance Distribution of Amino Acid Residues between Two

Domains

Solid blue: coevolving positions. Dotted red: background.
doi:10.1371/journal.pcbi.0030211.g002
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ment of functionally coupled domains suggests that cova-
riation at multiple positions is a strong indicator for
functional coupling.

Table 1 lists the functional categorization of coevolving
domain families that are functionally coupled among the 582
inferred pairs. The majority of the domain pairs appear in
the same proteins or protein complexes, whereas only a small
fraction of them (26 out of 257) are in the same functional
pathways. Coevolving domains primarily appear in a few
classes of proteins: ribosomal proteins, RNA polymerase,
metabolic enzymes, translational apparatus, bacteria conjugal
transfer proteins, and virus proteins. Most of these proteins
are universally essential from bacteria to human. Proteins
which exhibit substantial variability, such as transcription
factors, signaling proteins, and receptors are under-repre-
sented.

Sequence covariation without phylogenetic information
can be captured by mutual information. To demonstrate the
importance of phylogenetic information, we applied the same
inter-domain large-scale screening using pairwise mutual
information (see Materials and Methods). We counted the
number of inferred domain family pairs that were function-
ally coupled (true positives) or not (false positives). Figure 3
shows the Receiver Operating Characteristic curves of
coevolutionary and mutual information scores. The results
indicate the coevolutionary model consistently outperforms
the mutual information score in identifying functionally
related domains. With 582 inferred domain pairs, coevolu-
tionary scores identified 257 functionally coupled domain
pairs, whereas mutual information only identified 161 func-
tionally coupled domain pairs. In addition, the top 100
domain pairs inferred by mutual information contained only
40 functionally coupled pairs compared to 85 for coevolu-
tionary scores.

Coevolving Positions Are Spatially Coupled
Besides functionally coupling coevolving domains, a

natural question is whether the coevolving amino acids are
also spatially coupled. Of the 582 coevolving domain family
pairs, 156 contain the domain pairs co-crystalized in the same

proteins or protein complexes. We extracted the 196 protein/
protein complex structures of the 156 coevolving domain
family pairs from the Protein Data Bank [22] and mapped the
coevolving positions to the amino acid residues in their PDB
structures (see Materials and Methods). Figure 2 shows the
distance distribution between the 4,849 coevolving position
pairs and the background distance distribution of all
6,072,873 position pairs between the two domains in the
same PDB structures. Clearly, coevolving position distance
(solid blue) tends to be shorter and more narrowly distributed
compared to the background distribution (dotted red). The p-
value of the Kolmogorov-Smirnov test is ,2 3 10�16. The
significant difference of distance distributions suggests
coevolving positions are spatially coupled. The distances of
all coevolving positions in the PDB structures are reported in
Text S1.
A remarkable example of the spatially coupled coevolving

pair is between position 157 of the alpha-hairpin domain
(accession number PF00081) and position 61 of the C-
terminal domain (accession number PF02777) in iron/
manganese superoxide dismutase. This domain pair ranks
82nd on the list (see Text S1).
The amino acids at positions PF00081–157/PF02777–61

exhibit strong covariation between NF and FQ (N: asparagine,
F: phenylaninine, Q: glutamine, see Figure S3). Strikingly, the
distances between the two positions in 13 out of the 14
homologous proteins are less than 4Å, suggesting their
physical interactions.
Figure 4 shows the structures of superoxide dismutase

proteins in cyanobacteria (Anabaena sp., PDB id 1gv3, [23]),
and human (PDB id 1ap5, [24]) and marks the coevolving
amino acid residues. Figure 4 was generated by PyMOL. The
two coevolving position pairs (identical in sequence) link the
two subunits of the homo-tetramer. Between cyanobacteria
(NF) and human (FQ), phenylaninine (F) is swapped from the
C-terminal domain to the alpha-hairpin domain, and
asparagine (N) is replaced by glutamine (Q) in the same
amino acid group. Hence, compensatory substitution be-
tween NF and FQ is likely to occur.

Table 1. Functional Categorization of Coevolving Domain Family
Pairs That Are Functionally Coupled

Function Count

Ribosomal proteins 91

RNA polymerase 33

Carbon metabolism enzymes, same proteins 19

Carbon metabolism enzymes, different proteins 12

B12 dependent enzymes, same proteins 7

B12 dependent enzymes, different proteins 5

Translational apparatus, same proteins 7

Translational apparatus, different proteins 4

Virus proteins 8

Conjugal transfer proteins 4

Transcription factors 4

Vitamin biosynthesis enzymes 5

Dynamin 3

RNA polymerase-ribosomal proteins 69

Others 55

doi:10.1371/journal.pcbi.0030211.t001

Figure 3. Receiver Operating Characteristic Curves of Detecting Func-

tionally Related Domain Pairs

Solid blue: coevolutionary scores. Dotted red: mutual information.
doi:10.1371/journal.pcbi.0030211.g003
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Unlike PF00081–157/PF02777–61, the majority of the
coevolving positions are not in direct contact: only 4.2%
(203 out of 4,849) coevolving position pairs are less than 8Å
apart. Sequence covariation tends to occur between multiple
distant sites of two domains. In large proteins or protein
complexes constituting multiple domains (e.g., RNA polymer-
ase or ribosome), sequence covariation between positions
from multiple domains also occurs. This multi-way covaria-
tion reflects the structural or functional constraints beyond
direct pairwise interactions such as hydrogen bonds. Table S1
gives examples of the multiple coevolving positions and
domains.

Coevolving Positions Are at Functionally Important Sites
The spatially distant coevolving positions may reflect

certain structural or functional constraints of the entire
proteins/protein complexes (e.g., [8,14,25]). To verify the

functional importance of coevolving positions, we examined
the coevolving positions from 25 proteins or protein
complexes that were derived from the top 100 family pairs
and had known structures. Intriguingly, the functionally
important sites in about half of these proteins/protein
complexes examined (13 out of 25) either overlapped or
were near (�10 Å) coevolving positions. Table 2 shows the
functional sites near or located at the coevolving positions in
the 13 proteins.
We use four examples to illustrate the spatial relations

between inter-domain coevolving positions and functional
sites of proteins.
There are 43 coevolving positions from ten protein

domains in the 30S ribosomal subunit. Ribosomes synthesize
proteins by binding tRNAs at three sites: the P (donor) site,
the A (acceptor) site, and the E (exit) site. Figure 5 marks the
coevolving amino acid residues (colored spheres) and the 16S

Figure 4. Coevolving Positions in Fe/Mn Superoxide Dismutase

Left: cyanobacteria. Right: human. Coevolving positions from the two domains are marked by red and blue, respectively.
doi:10.1371/journal.pcbi.0030211.g004

Table 2. Functional Sites Overlapped/Near Inter-Domain Coevolving Positions

Protein Site PDB ID Reference

Carbamoyl-phosphate synthase ADP binding sites 1bxr [30]

PEP utilizing enzyme Ligand binding sites 1dik [31]

RNA polymerase DNA binding region 1i3q [27]

Amino acid dehydrogenase Ligand binding site and active site 1l1f [32]

Elongation factor Nucleotide and ligand binding sites 1n0u [33]

Aspartate/ornithine carbamoyltransferase Active site 1ml4 [34]

Malic enzyme Active site 1do8 [35]

Phosphoglucomutase/phosphomannomutase Active site 1k2y [28]

S-adenosyl-L-homocysteine hydrolase NADH binding site 1a7a [36]

Ribosome small subunit tRNA binding sites 1fjg [26]

UDP-glucose/GDP-mannose dehydrogenase GDP-mannuronic acid binding site 1mfz [37]

Iron/manganese superoxide dismutases Subunit linkers 1gv3, 1ap5 [23,24]

Mannitol dehydrogenase Mannitol and NADH binding sites 1lj8 [38]

doi:10.1371/journal.pcbi.0030211.t002
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rRNA nucleotides of the tRNA binding sites (colored ribbons)
in Thermus thermophilus 30S ribosomal subunit ([26], PDB id
1fjg). Each tRNA binding site is close to some coevolving
amino acid residues. Specifically, the S9 portion of the P site,
the S12 portion of the A site, and the S7, S11 portion of the E
site partially coincide with the coevolving positions.

There are 151 coevolving positions from ten protein
domains in RNA polymerase. Figure S4 marks the coevolving
positions in yeast RNA pol II ([27], PDB id 1i3q). These
positions are located at the inner core of the macromolecule
surrounding the cleft. This region directly binds to DNA
(Figure 10 in [27]) and is structurally homologous between
eukaryotes RNA Pol II and bacterial RNA polymerase (Figure
12 in [27]).

There are eight coevolving positions from two protein
domains in phosphoglucomutase, an enzyme that transfers
the phosphoryl group of glucose or mannose from position 6
to position 1. Figure 6 marks the coevolving positions, active
sites, and ligand binding sites in Pseudomonas aeruginosa
phosphoglucomutase ([28], PDB id 1k2y). All except one of
the coevolving position pairs are close in protein structure.
Moreover, both coevolving positions and functionally im-

portant sites are located at the crevice of the heart-shaped
enzyme. Functional sites including the active site, the sugar
binding loop, the metal binding loop, and the phosphate
binding site are all close to the coevolving positions.
There are 16 coevolving positions from two proteins in

aspartate/ornithine carbamoyltransferase, an enzyme of the
amino acid synthesis pathway [29]. Six out of 16 coevolving
positions are close in at least three out of seven homologous
protein structures. Specifically, positions 508 in the Asp/Orn
binding domain and 346 in the carbamoyl-P binding domain
are in contact (distance �4 Å) in all seven proteins. Figure S5
marks the coevolving positions and the active site in human
enzyme ([29], PDB id 1c9y). Coevolving positions partially
overlap with the active binding sites.
Other functional sites overlapped with, or close to

coevolving positions, include ADP binding sites in carbamo-
yl-phosphate synthase [30]; Mg2þ/pyruvate and nucleotide
binding sites of PEP utilizing enzyme [31]; NAD, GLU binding
sites, and active site of glutamate/leucine/phenylalanine/valine
dehydrogenase [32]; nucleotide and sodarin binding sites of
elongation factor [33]; active site of aspartate/ornithine
carbamoyltransferase [34]; active site of malic enzyme [35];

Figure 5. Coevolving Positions and Functional Sites in Ribosome Small Subunit

Colored spheres: coevolving positions from different domains. Red ribbon: P-site. Cyan ribbon: A-site. Magenta ribbon: E-site.
doi:10.1371/journal.pcbi.0030211.g005
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NADH binding site of S-adenosyl-L-homocysteine hydrolase
[36]; GDP-mannuronic acid binding site of UDP-glucose/
GDP-mannose dehydrogenase [37]; and mannitol and NADH
binding sites of mannitol dehydrogenase [38]. The annota-
tions of the coevolving sites on the PDB structures of all 25
protein families are given in Text S2.

The Effect of Gene Duplication and Deletion
Each protein domain family has a different phylogenetic

tree due to its distinct history of duplication and deletion.
The coevolutionary model, however, requires a joint phylo-
genetic tree of the two families. To calculate the likelihood
score, we have to extract a common subtree of the two
phylogenetic trees that correspond to the coevolving part
along the lineages of the two families. This problem is
difficult due to the huge number of possible choices. A
common approach to compare two distinct domain (gene)
trees is to reconcile them with a common species tree:
mapping each node in a gene tree to a node in the species
tree. There are likely multiple paralogous domains mapped to
the same species. Since domains belonging to different
species are unlikely to coevolve, we only need to consider
the domains in the same species as candidates of the
coevolving partners. For simplicity, we also hypothesize that
there is at most one pair of coevolving partners from each
(ancient and contemporary) species. The problem of building
a joint phylogenetic tree then becomes the problem of
choosing the coevolving partners in each node of the species
tree.

This problem is still difficult since there are many possible
combinations of coevolving partners. We employed a
heuristic to construct a joint tree of two domain families
and to identify the coevolving partners in each species. The
goal of this heuristic is to make the joint tree respect the
phylogenetic trees of individual domain families and the
species where they reside, to maximize the coverage of the
species in the joint tree, and to reduce the spurious
covariation from paralogous members. The heuristic is
described in Materials and Methods and Text S3.
Despite the advantages of the heuristic, certain covariation

from early divergence is amplified when the topology of the
domain tree does not conform with the species tree. A typical
example is the position pairs between many RNA polymerase
and ribosomal proteins (Figure S6). The pair comprises two
amino acid pair sequences denoted by 1 and 2. The apparent
recurrence of sequence 1 in bacteria, plants, and algae
actually arises from the early divergence between bacteria/
chloroplast and eukaryotes/archaea. This covariation can be
structurally and functionally important, since it reflects the
difference of transcription and translation apparatus be-
tween prokaryotes and eukaryotes. However, it deviates from
the original purpose of identifying recurrent covariation
across lineages.
To further reduce this type of covariation, we trimmed the

part of the domain tree which mismatched the topology of
the species tree at kingdom level. The enrichment of
functionally coupled domain pairs is similar to the untreated
version: 219 out of 642 inferred position pairs and 82 out of

Figure 6. Coevolving Positions and Functional Sites in Phosphoglucomutase

Red and blue spheres: coevolving positions from the two domains. Cyan ribbon: active site. Magenta ribbon: sugar binding loop. Brown ribbon: metal
binding loop. Green ribbon: phosphate binding site.
doi:10.1371/journal.pcbi.0030211.g006
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top 100 inferred pairs were functionally coupled. Most pairs
between RNA polymerase domains and between RNA
polymerase and ribosomal proteins were absent in the
inferred pairs. Although covariation between these domain
pairs does not re-occur, it is still important. It is attributed to
early divergence of life, and as described previously, main-
tains the structurally conserved region in RNA polymerase.
The inferred domain pairs by removing covariation from
early divergence are reported in Text S4.

Intra-Domain Coevolving Positions Are Spatially Coupled
and Functionally Important

Our model can also detect the coevolving positions within
the same protein domains. Unlike inter-domain screening,
the two amino acid residues share a common phylogenetic
tree. Hence spurious covariation arising from selection of
paralogous proteins does not happen.

We calculated the log-odds score for each intra-domain
position pair of all 8,183 domain families in Pfam. With a
threshold value 5.0 (CTMP simulation p-value ,3.5 3 10�4),
we obtained 1,444 position pairs from 110 domain families.
We also calculated the log-odds scores of the entire domains
with multiple coevolving positions and ranked the 110
domains accordingly. The sorted domains, their coevolving
positions, and the log-odds scores are reported in Text S5.

Two questions arising from inter-domain screening also
need to be answered in intra-domain analysis. First, whether
or not coevolving positions within the same domains are
spatially coupled. Second, whether or not these coevolving
positions overlap with or are close to functionally important
sites of proteins. We extracted 401 protein structures of the
110 protein domains from the Protein Data Bank and
calculated the distances between intra-domain coevolving
positions. As a comparison we also calculated the distances
between all position pairs in the same domain families. Figure
7 shows the intra-domain distance distributions of coevolving
positions and the background. Similar to Figure 2, the
distances of coevolving positions (solid blue) tend to be

shorter and narrowly distributed. Both coevolving and
background distributions for intra-domain positions are
substantially shorter than those for inter-domain positions,
as amino acids in the same domains are typically close. Yet
the difference between the two distributions is still significant
(p-value for Kolmogorov-Smirnov test ,2 3 10�16). About
50% of coevolving positions are less than 10Å apart, whereas
only about 20% of background position pairs are within 10Å.
The proximity of intra-domain coevolving positions is
consistent with previous studies such as [11].
To check the functional importance of coevolution, we

examined the intra-domain coevolving positions from the 38
domain families that contain the position pairs with log-odds
scores �8.0. The coevolving positions from 13 of these 38
domain families overlap with or are close to the functional
sites of proteins. The reported functional sites are primarily
active or ligand binding sites of enzymes since they are easy to
identify in the literature. The coevolving positions on other
proteins (such as virus coat proteins) might also carry
functional information but are not evident by screening the
literature. Table 3 shows the functions of intra-domain
coevolving sites.
Two remarkable instances are domains delta-aminolevu-

linic acid dehydratase (PF00490) and photosynthetic reaction
centre protein (PF00124). In the PF00490, there are five
coevolving positions. All of them are physically close (,10Å)
in all three protein structures of the domain family. These
positions partially coincide with the active sites and Mn2þ-
binding sites of Pseudomonas aeruginosa dehydratase protein
([39], PDB id 1b4k). In PF00124, there are 41 coevolving
positions. Some of these positions are close to the oxygen
evolving center of Thermosynechococuus elongatus PSII protein
([40], PDB id 1s5l), which oxydizes water in photosynthesis.
Other functional sites overlapped with, or close to, coevolving
positions include proteolytic active site and RNA recognition
site of 3C cysteine protease [41]; zinc fingers of Siah ubiquitin
ligase [42]; active site and oxamate binding site of pyruvate
formate lyase [43]; active site of peptidase family S41 [44]; Zn
binding site of S-Ribosylhomocysteinase [45]; active site of
UTP-glucose-1-phosphate uridylyltransferase [46]; active site
of family 4 glycosyl hydrolase [47]; active site of phosphor-
ylase family [48]; NAD binding site of lactate/malate dehy-
drogenase [49]; and Dha binding site of Dak1 domain [50].
The complete annotations of intra-domain coevolving sites
on the PDB structures are in Text S6.

Physical Interactions Are Not Necessarily Coevolved
Analysis in the preceding sections suggests that coevolving

domains are likely to be functionally coupled, and coevolving
position pairs tend to be spatially coupled and located at
functionally important sites. Yet the question in the reverse
direction—whether physically interacting amino acid resi-
dues are coevolved—are still not answered. Since the majority
of the coevolving positions are not in direct contact, we
expect the overlap set between physical interactions and
coevolving positions to be small. We extracted 223,392
physical interactions from Pfam. Interactions corresponding
to the same aligned positions in the domain families were
collapsed together. To reduce computational time we only
considered the interactions where covarying amino acid pairs
(sequences that are distinct at both positions, for example, NF
and FQ) comprise more than half of the members in the

Figure 7. Distance Distribution of Amino Acid Residues within the Same

Domain

Solid blue: coevolving positions. Dotted red: background.
doi:10.1371/journal.pcbi.0030211.g007
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domain families. Only about 20% of the interactions (45,007
out of 223,392) passed this filtering criterion. We evaluated
the log-odds scores of these 45,007 interactions. The
distribution of the log-odds scores is centered around 0
(mean 0.209) with standard deviation 12.96. Only a small
fraction of interactions (2.6%) have log-odds scores higher
than 9.0. The results indicate covariation is not necessary for
physical interactions. The majority of physical interactions
are dominated by conserved sequences or sequences with
unilateral changes.

Discussion

In this study we propose a probabilistic graphical model to
detect coevolution of amino acid residues and invoke large-
scale screenings on all the inter-domain, intra-domain
position pairs, and known domain residue interactions.
Despite the large number of pairwise comparisons executed,
the inferred results strongly suggest that coevolving domains
and positions are functionally and spatially coupled. The
majority of coevolving protein domains appears in the same
proteins or shares the same functional categorization.
Coevolving positions between and within protein domains
are substantially closer than the background distribution.
Moreover, the coevolving positions in many proteins coincide
with functionally important sites such as the subunit linkers
of hydrogen peroxide dismutase, tRNA-binding sites of
ribosomes, and active sites of phosphoglucomutase.

Most top-ranking coevolving domain pairs are involved in
fundamental functions of life: ribosomal proteins, RNA
polymerase, carbon metabolism, vitamin B12 dependent
enzymes, and so on. This is probably because these ancient
proteins have strict structural constraints. Our model
implicitly favors the case where covarying sequences maintain
the structural constraints. In addition, the stringent filtering
criteria of sequence covariation and a wide coverage of
species required for significant scores may also exclude the
lineage-specific coevolution. To detect coevolution in these
variable families (such as transcription factors, receptors, and
signal transduction proteins), a targeted search on more
extensive sampling of a specific clade and relaxed criteria for
covariation are probably required.

Since simultaneous changes of multiple nucleic or amino
acids are unlikely, there must exist ‘‘transition states’’
between optimal configurations during evolution. These
transition states may disappear in contemporary species
due to their deleterious effects. In RNAs, however, we do
observe non-pairing or wobbling bases in a stem. Transition
states also appear in the coevolving protein domains. For
example, although position pair PF00081–157/PF02777–61 in
superoxide dismutase is dominated by NF and FQ pairs, there
are also a few other states including FF, FE, FP, and FR. FF can
serve as a transition state between NF and FQ. Intriguingly,
the distance between an FR pair is 9.46 Å (PDB id 1coj),
indicating the two residues are not in contact. This suggests
the transition states of amino acids may be accommodated by
structural variation.
Our inferred results, in agreement with previous studies of

protein coevolution, reveal a fundamental difference be-
tween protein and RNA coevolution. Typically RNA coevo-
lution occurs in disjoint nucleic acid pairs that form
hydrogen bonds and are in direct contact in the 3-D
structure. In contrast, there are often multiple coevolving
amino acid residues in a protein, and some of them are
distant in the 3-D structure. Coevolution of multiple and
distant amino acid residues probably results from multiple
selective constraints. Some possible explanations include the
coupling of binding energy via pathways in the protein,
interactions with intermediate molecules such as water, and
the global constraints pertaining to the conformation of a
region in a protein.
The diverse causes of protein coevolution also make

validation of computational methods problematic. Unlike
RNAs, there is no gold standard for a coevolutionary protein
dataset. We validated the findings with indirect evidence such
as the enrichment of functionally coupled domains defined
by GO categories, distance distribution in protein structures,
and annotations of the functions of the coevolving sites. More
appropriate validation procedures and datasets may become
available as we have better understanding of protein
coevolution.
The existence of paralogous genes adds difficulty in

analyzing coevolution. When there are multiple paralogous
domains in a family, we have to assign coevolving partners

Table 3. Functional Sites Overlapped/Near Intra-Domain Coevolving Positions

Protein Site PDB ID Reference

Photosynthetic reaction centre protein Oxygen evolving center 1s5l [40]

3C cysteine protease Proteolytic active site, RNA recognition site 1hav [41]

Siah ubiquitin ligase Zinc fingers 1k2f [42]

Pyruvate formate lyase Active site, oxamate binding 1cm5 [43]

Peptidase family S41 Active site 1fc6 [44]

Delta-aminolevulinic acid dehydratase Mn̂f2þg binding site 1b4k [39]

S-Ribosylhomocysteinase (LuxS) Zn binding site 1ie0 [45]

Phosphoglucomutase/phosphomannomutase Sugar binding site 1k2y [28]

UTP–glucose-1-phosphate uridylyltransferase Active site 1jv1 [46]

Family 4 glycosyl hydrolase Active site 1u8x [47]

Phosphorylase family Active site 1jds [48]

Lactate/malate dehydrogenase, NAD binding domain NAD binding site 1b8p [49]

Dak1 domain Dha binding site 1oi2 [50]

doi:10.1371/journal.pcbi.0030211.t003
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from all possible combinations. Our heuristic method
reduces, yet cannot eliminate, spurious covariation from
paralogous families. A better algorithm of dealing with
paralogous genes is needed.

To facilitate large-scale screening we applied several
simplifying assumptions and procedures. First, we applied
the same sequence substitution rate matrix (the Dayhoff
matrix) to all the domain families. Rate variation across
domains or different sites within the same domains may
create spurious covariation [15]. Second, like other phyloge-
netic methods of detecting coevolution, the accuracy of the
results generated by our model depends on the accuracy of
the phylogenetic trees, which is under debate. Third, due to
the difficulty of acquiring the parameters of sequence
evolution and positive and negative sets of coevolution, the
simulation p-values and false discovery rates are subject to
error. Refined analysis of specific protein families are needed
in order to correct the false predictions from large-scale
screening.

The distribution of log-odds scores of known physical
interactions shows most interacting amino acid residues do
not possess covarying sequences, consistent with a recent
finding in a yeast protein–protein interaction study [51]. The
discrepancy between physical interactions and sequence
covariation is attributed to many possible causes. Some
interactions may be lineage-specific or have highly conserved
sequences. Others may undergo unilateral changes within the
same amino acid groups.

Coevolution probably only occurs in a small fraction of
physical interactions. Nevertheless, we also demonstrate that
coevolution manifests spatial and functional constraints
other than direct interactions. Hence, the complex relations
between coevolution and selective constraints are worth
pursuing at a deeper level.

Materials and Methods

Sequence substitution model of pairwise coevolution. The se-
quence substitution of a single amino acid is modeled by a CTMP [17].
Denote by x(t) the sequence composition at time t. P(x(t)) is a 1 3 20
probability vector of x(t) and follows a Markov process at an
infinitesimal time interval:

dPðxðtÞÞ
dt

¼ PðxðtÞÞQ: ð1Þ

where Q is a 20320 substitution rate matrix. Each row of Q must sum
to 0 in order to make components of P(x(t)) sum to 1. In this work we
used the Dayhoff matrix of amino acid substitution [52]. The
transition probability P(x(t)jx(0)) at a finite time interval t is given
by the matrix exponential eQt, which is the solution of Equation 1:

PðxðtÞ ¼ bjxð0Þ ¼ aÞ ¼ eQt½a; b�: ð2Þ

Define x(t) ¼ (x1(t),x2(t)) as the joint state of two amino acids. The
sequence substitution follows the same equation for the single-site
evolution (Equation 1), but the dimensions of the probability vector
(13 400) and the rate matrix (4003 400) are much bigger. If two sites
are independently evolved, then the joint rate matrix Qi

2 can be
derived from the rate matrix of single sites [18]:

Qi
2½ða1; a2Þ; ðb1; b2Þ� ¼

Q½a1; b1� if a2 ¼ b2;
Q½a2; b2� if a1 ¼ b1;
�Q½a1; b1� � Q½a2; b2� if a1 ¼ b1; a2 ¼ b2;
0 otherwise:

8>><
>>:

9>>=
>>;
ð3Þ

Qi
2[(a1,a2), (b1,b2)] specifies the sequence substitution rate of the

independent model from state (a1,a2) to state (b1,b2). InQi
2, the rate of a

single amino acid change is equal to the corresponding rate in the
single site rate matrix Q, and the rates of double amino acid changes
are all zero. For example, Qi

2[HR,HA]¼Q[R,A] and Qi
2[HR,GX]¼0. This

is intuitive since off-diagonal entries of Qi
2 specify the transition

probabilities at an infinitesimal time interval. At an infinitesimal time
interval, at most one transition occurs for two independent CTMPs.
Each diagonal entry of Qi

2 is again�1 and multiplies the sum of other
entries in the same row.

A true coevolutionary model should reward transitions into the
sequence states of selective advantages and penalize the transitions of
opposite directions. Due to the difficulty of finding this true model,
we constructed a simplified model by reweighting the entries of the
independent rate matrix to penalize single transitions and to reward
double transitions:

Qc
2½ða1; a2Þ; ðb1; b2Þ� ¼

eQi
2½ða1; a2Þ; ðb1; b2Þ� if ða1 ¼ b1Þ _ ða2 ¼ b2Þ;

rða1 ;a2Þ if ða1 6¼ b1Þ ^ ða2 6¼ b2Þ;
�
X

Qc
2½ða1; a2Þ; ðb91; b92Þ� if ða1 ¼ b1Þ ^ ða2 ¼ b2Þ:

8<
:

9=
;

ð4Þ

Transitions of single amino acids are penalized by multiplying a
fixed number e , 1. Transitions of double amino acids from the same
state (a1,a2) are rewarded by replacing zeros with an identical quantity

rða1 ;a2Þ ¼
�Qi

2½ða1; a2Þ; ða1; a2Þ� �
X

eQi
2½ða1; a2Þðb1; b2Þ�

361
:

Its value forces the diagonal entries in Qc
2 to be identical to Qi

2. Q
c
2

favors the sequences that have strong covariation between distinct
states.

Coevolutionary model of multiple positions. To rank the coevolv-
ing domain pairs (or single domains), we need to assess the likelihood
scores which take all the coevolving positions between the two
domains into account. We treated the model of all coevolving
positions as a probabilistic graphical model in both space and time
(Figure 8, top row). Each vertical edge on the phylogenetic tree
specifies the temporal dependency between parent and child nodes,
whereas each horizontal edge designates the spatial dependency
between coevolving positions. These two types of dependencies
create a grid-like network with many loops.

It is in general difficult to evaluate the marginal likelihood of this
network. We simplified the problem by adopting two approximations.
First we approximated the spatial dependency network by its
maximum spanning tree (Figure 8, middle row), with the weight of
each edge corresponding to its pairwise log-odds score. This
approximation removes the loops created by horizontal edges. The
likelihood of an undirected tree model can be obtained from the
singlet and pairwise marginal probabilities [53,54]:

Pðx1; . . . ; xnÞ ¼
Y

/ijðxi; xjÞY
wdi�1
i ðxiÞ

: ð5Þ

where /ij and wi are marginal pairwise and singlet probabilities
corresponding to edges and nodes and di is the number of edges
incident to node i. This formula can be obtained by assigning
consistent directions to the edges and expressing the joint probability
as the product of the prior probability of the root and the conditional
probabilities of other nodes. The expression in Equation 5 is
independent of edge direction assignments.

We assumed the conditional probability from the coevolving
positions in a parent species to the same set of positions in a child
species followed a form similar to Equation 5:

Pðx1ðtÞ; . . . ; xnðtÞjx1ð0Þ; . . . ; xnð0ÞÞ ¼
Y

PðxiðtÞ; xjðtÞjxið0Þ; xjð0ÞÞY
PðxiðtÞjxið0ÞÞdi�1

: ð6Þ

whereas P(xi(t),xj(t)jxi(0),xj(0)) and P(xi(t)jxi(0)) were given by the
coevolutionary CTMP. Pairwise terms /ij(xi,xj) and singlet terms
wi(xi) in Equation 5 were replaced by conditional probabilities
P(xi(t),xj(t) j xi(0),xj(0)) and P(xi(t) j xi(0)).

The first approximation is still intractable since it has to sum over
all possible states of all coevolving positions. To further simplify the
problem, we performed marginalization for each singlet and pairwise
term separately and combined these terms using Equation 5. The
marginal likelihoods of singlet and pairwise terms were calculated
using Felsenstein’s dynamic programming algorithm [55]. For
instance, the marginal likelihood in the middle row of Figure 8 is
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approximated as

PðD99123Þ’
PðD912ÞPðD923Þ

PðD92Þ
: ð7Þ

where PðD912Þ;PðD923Þ and PðD92Þ are the pairwise and singlet
marginal likelihood evaluated by dynamic programming.

The marginal likelihood of the independent model is the product
of the marginal likelihood for each position and can be exactly
evaluated. The likelihood ratio in the bottom row of Figure 8 is

LR D123ð Þ’ PðD912ÞPðD923Þ
PðD92ÞPðD1ÞPðD2ÞPðD3Þ

: ð8Þ

Pfam data pre-processing. It is costly to evaluate the coevolu-
tionary likelihood scores. Hence we applied three filtering criteria on
all 1.171 3 1011 inter-domain position pairs and all 8.29 3 107 intra-
domain position pairs. First, we discarded the sequences that
contained gaps in more than half of their members. Second, we
discarded the conserved sequences where one amino acid pair
occurred in more than 75% of the members. Third, for each of the
remaining position pairs, we identified a maximal set of covarying

amino acid pairs (amino acid pairs which are distinct at both
positions, e.g., NF and FQ), and counted the number of occurrences
for each amino acid pair. We only considered the sequences where
the maximal set of covarying amino acid pairs constituted more than
80% of the members. The first two criteria filtered out the position
pairs dictated by gaps and conserved amino acid pairs. The third
criterion filtered out the sequences which were expected to have low
log likelihood ratios since the coevolutionary model (Equation 4)
penalized the sequences with many unilateral changes (e.g., NF and
FF). In all, 3,379,517 inter-domain position pairs and 196,198 intra-
domain position pairs passed these criteria.

To further reduce computation time and error, we applied the
Padé polynomial approximation for matrix exponentiation [56] and
pre-computed eQt on each branch length quantized by the following
intervals: [0, 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.5, 0.8, 1.0]. To learn the
penalty weight e, we chose the joint sequences of the coevolving
superoxide dismutase position pairs (PF00081–157/PF02777–61) as
the training set and carried out a one-dimensional line search that
maximizes its log-odds score. The optimal e ¼ 0.7.

Building a joint phylogenetic tree of two domain families. To
evaluate the coevolutionary likelihood of an inter-domain position
pair, a joint phylogenetic tree and representatives from each species
in each domain are needed. We selected the species that contained
both domains and built a binary species tree on selected species by
extracting the hierarchy from the National Center for Biotechnology
Information taxonomy [57]. The topology of the species tree was used
as the joint tree. For each domain family, we then applied a heuristic
to select one representative domain for each species that reduces
spurious covariation across paralogous lineages. The idea is to label
each internal node of the domain family tree as a speciation or
duplication event (using a reconciliation algorithm, [58]) and to pick
up an orthologous subtree that maximizes species coverage. We then
incrementally updated the branch length in the mapped species tree.

The procedures of building a joint tree and selecting representa-
tives are described in Text S3.

Large-scale screening using mutual information. As a comparison
we calculated mutual information between the 3,379,517 inter-
domain position pairs that passed the filtering criteria. Denote x1
and x2 the sequence composition of sites 1 and 2, P12(x1, x2) the
frequency of (x1, x2) among the aligned sequences, and P1(x1) and
P2(x2) the marginal frequencies of x1 and x2. The mutual information
between x1 and x2 is

MIðx1; x2Þ ¼
X

P12ðx1; x2Þlog
P12ðx1; x2Þ
P1ðx1ÞP2ðx2Þ

� �
: ð9Þ

where 0log0 [ 0.
Implementation of screening. The large-scale screenings, including

filtering position pairs by sequence covariation, building the joint
phylogenetic tree for domain family pairs, calculating pairwise
coevolutionary scores, and evaluating the joint likelihood scores of
the entire domains/domain pairs were implemented in C programs
and executed on Rackable Linux Cluster (2048 AMD Opteron
Processors, 2.2 GHz). The total CPU time was 24,000 h for inter-
domain screening, 1,600 h for intra-domain screening, and 300 h for
evaluating the log-odds scores of known interactions. The C codes and
sequence data are available per request to the corresponding author.

Evaluating significance. The p-value of the coevolutionary like-
lihood scores: the significance of log-odds scores was evaluated by
random CTMP simulation. In each trial, we first randomly selected a
domain family and acquired its phylogenetic tree. A subtree of 50–
200 nodes was randomly extracted. We then generated the sequence
pairs at leaves by simulating two independent CTMPs using the
Dayhoff matrix and the selected tree. The log-odds score of the
sampled sequence pairs was calculated. The p-value was the fraction
of the 106 random trials which yielded the log-odds scores � threshold
h. The p-value of h ¼ 9.0 is 6.0 310�5.

The false discovery rate of coevolving position pairs: We evaluated
the false discovery rate of multi-hypotheses testing using the
approximation procedures in [59]. Given a log-odds score threshold
h, we calculated the false positive rate (p-value) by the following
procedure. We uniformly selected a random domain family pair
which intersected in more than 20 species and did not share the same
proteins or bottom-level GO annotations in more than half of their
members, and then uniformly drew two random positions. The false
positive rate P(h) is the probability of finding a position pair with log-
odds score � h. Notice P(h) is considerably smaller than the p-value of
CTMP simulation since many position pairs were filtered out by the
pre-processing procedure. Denote m the total number of position

Figure 8. A Space-Time Model of Multiple Coevolving Positions

(Top) A space-time model of three positions in three species. There are
three pairwise interactions (1 2), (2 3), (3 1) in each species. P(D123) is the
marginal likelihood of the observed sequences.
(Middle) First approximation of P(D123). Extract the maximum spanning
tree from the three pairwise interactions; ((1 2), (2 3)). P9(D123) is the
marginal likelihood according to the approximated model.
(Bottom) Second approximation of P(D123). Decompose the model into
pairwise and singlet terms (Equation 7).
doi:10.1371/journal.pcbi.0030211.g008
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pairs and m(h) the number of position pairs with log-odds scores
exceeding h. The false discovery rate q(h) on threshold h is
approximated by

qðhÞ’PðhÞ � m
mðhÞ : ð10Þ

The total number of position pairs m¼ 1.173 1011. With threshold
h¼ 9.0, p(h)¼ 1.1143 10�8, and m(h)¼ 3,953. Thus, q(h)¼ 1.1143 10�8

1.17 3 1011/3953¼ 0.33.

Figure S1 shows the dependency of q(h) and h. q(h) varies from 0.33
to 0.03 as h varies from 9.0 to 30.0.

The p-value of enrichment of functionally coupled family pair: we
used the standard hypergeometric p-value to assess the significance of
enrichment of functionally coupled domain family pairs among
inferred domain family pairs. Define N the total number of family
pairs considered, n the number of inferred family pairs, K the total
number of family pairs that were functionally coupled, and k the
number of inferred family pairs that were functionally coupled. The
hypergeometric p-value was the probability of randomly drawing n
from N pairs (without replacement) where more than k pairs were
functionally coupled:

p ¼

X K
i

� �
N � K
n� i

� �

N
n

� � : ð11Þ

Acquiring protein structure data and calculating residue distances.
We downloaded 196 protein structure data from the 582 inter-
domain family pairs and 401 protein structures from 110 intra-
domain families from the Protein Data Bank [22]. We mapped a
position in a domain to an amino acid residue in its PDB structure by
aligning the domain sequence and PDB sequence of each chain in the
PDB using ClustalW [60]. The closest distance between the atoms
from the two amino acid residues was reported. If a protein domain
could be mapped to multiple chains of a PDB, then from all possible
amino acid residue pairs we reported the one with the smallest
distance.
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