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Abstract
Congenital abnormalities of the kidney and urinary tract (CAKUT) are a
highly diverse group of diseases that together belong to the most common
abnormalities detected in the new-born child. Consistent with this diversity,
CAKUT are caused by mutations in a large number of genes and present a
wide spectrum of phenotypes. In this review, we will focus on duplex
kidneys, a relatively frequent form of CAKUT that is often asymptomatic but
predisposes to vesicoureteral reflux and hydronephrosis. We will
summarise the molecular programs responsible for ureter induction, review
the genes that have been identified as risk factors in duplex kidney
formation and discuss molecular and cellular mechanisms that may lead to
this malformation.
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Introduction
The urinary tract, composed of the kidneys, ureters, bladder 
and urethra, represents the main excretory system of the  
mammalian organism. Development of the urinary system, made 
up of more than 40 different cell types, needs to proceed in a  
highly organised manner. Given this complexity, it is not  
surprising that mutations in developmental genes can lead to a 
wide variety of abnormalities that are usually grouped together 
as congenital abnormalities of the kidneys and urinary tract  
(CAKUT). Defects affecting the kidneys range from renal  
agenesis (a complete lack of kidney development) to hypoplasia 
(reduced size), dysplasia (abnormally developed tissue), cystic 
dysplasia, and terminal differentiation defects. Lower urinary 
tract malformations include vesicoureteral reflux (VUR), hypo-
spadias (opening of the urethra at the lower side of the penis)  
and posterior urethral valves that often lead to outflow obstruc-
tions. Although individual malformations are considered 
rare diseases, CAKUT, taken together, have an incidence of 
about 3 to 6 in 1000 live births and thus belong to the most  
frequent abnormalities detected in the new-born child1. An  
in-depth presentation of all subclasses and their aetiology would 
be far beyond the scope of this review and therefore interested  
readers are referred to other publications that present an  
overview of CAKUT phenotypes and the genetics underlying 
them2–6. Here, we will instead concentrate on duplex (or  
multiplex) kidneys, a very frequent subclass of CAKUT, which  
is often neglected in the literature.

Development of the urinary system
To understand the aetiology of duplex kidneys, it is important 
to consider how the urinary system forms. From a develop-
mental point of view, the urogenital tract derives from two  
independent germ layers with kidneys and ureters arising from 
the intermediate mesoderm (IM) and the bladder and urethra  
developing from cloacal endoderm7. Accordingly, malfor-
mations of the urinary system can be further classified into  
congenital abnormalities of the upper and lower urinary tract 
(and the latter are sometimes abbreviated as CALUT). Despite 
this developmental distinction, it should be noted that some 
authors group malformations of the ureter as part of congenital  
abnormalities of the lower urinary tract.

Kidney development in mammals commences with the formation 
of the nephric duct (ND) at the anterior (rostral) pole of the IM. 
As development proceeds, epithelial cells of the ND proliferate 
and actively migrate towards the caudal end of the nephrogenic  
cord8–10. Eventually, the ND fuses with the cloaca, a process  
that involves dedicated apoptosis and requires GATA3 and  
LHX1 as well as retinoic acid and RET and FGF signalling9–13.

As the ND elongates caudally, a series of tubules forms 
within the nephrogenic cord. The most anteriorly positioned  
pronephric tubules are considered an evolutionary remnant 
and are non-functional in mammals. Subsequently, a wave of 
mesonephric tubules develop that fall into two groups. While  
rostrally positioned tubules are connected to the ND and serve  
as an embryonic kidney, more caudally located tubules do not  
drain into the ND and are non-functional14,15. Both pronephros  

and mesonephros are transitory structures in the mammalian 
embryo and disappear (pronephros) or are remodelled  
(mesonephros) at later stages of development.

The metanephros represents the permanent kidney in mammals 
and develops at the most caudal position of the IM. Metanephros 
development is first detectable as a population of slightly 
condensed mesenchymal cells within the nephrogenic cord 
which express a set of molecular markers (HOX11, SIX2, 
GDNF, EYA1)15,16. In normal development, signalling from the  
metanephric mesenchyme (MM) induces the formation and  
outgrowth of a single ureteric bud (UB) from the ND, which 
will invade the MM and undergo a first stereotypic dichotomous  
branching event (T-shaped ureter). The collecting duct system 
(ureteric tree) forms through further rounds of branching that 
often include tri-tips, which, however, eventually resolve into  
ureter bifurcations17,18. In return, signals released from the  
ureter will induce the MM to differentiate into nephrons, the  
functional units of the kidney. For further details on this process,  
we refer the reader to recent reviews19–22.

Development of the urinary system is not restricted to kidney  
formation but also involves extensive developmental remodel-
ling of the lower tract. An excellent and detailed description of 
this complex process can be found in 7. In brief, the emerging 
UB is initially connected to the cloaca via the distal part of  
the ND, also termed the common nephric duct (CND).  
Downgrowth of the urorectal septum leads to a separation 
of the cloaca into a ventrally located urogenital sinus and a  
dorsally positioned anorectal sinus7,23–25. The cranial urogenital 
sinus will further elongate to develop into the bladder, whereas 
its posterior portion will form the urethra. As development  
proceeds, apoptosis eliminates the CND, leading to the 
fusion of the ureter with the future bladder, thus creating the  
ureterovesical junction26.

Classification and epidemiology of duplex kidneys
Duplex systems can have a variety of phenotypes, and multiple 
classification systems have been proposed to categorise this  
pathology (Figure 1)27. In incomplete duplication, the two poles 
of a duplex kidney share the same ureteral orifice of the bladder.  
Such duplex kidneys with a bifid pelvis or ureter arise when an 
initially single UB bifurcates before it reaches the ampulla. 
This is likely caused by a premature first branching event that  
occurred before the ureter has reached the MM. Much more  
frequent are complete duplications, which occur when two 
UBs emerge from the ND. In most cases, the lower pole of the  
kidney is normal and the upper pole is abnormal28,29, an obser-
vation explained by the fact that the ectopic UB frequently  
emerges anteriorly to the position of the normal UB and drives 
the formation of the upper pole of a duplex kidney. Inverted  
Y-ureteral duplication is a rare condition in which two ureteral 
orifices drain from a single normal kidney. Inverted Y-ureteral  
duplication is believed to be caused by the merging of two 
independent UBs just before or as they reach the kidney  
anlagen30. A very rare H-shaped ureter has also been reported31. 
Although the vast majority of cases involve a simple duplication, 
multiplex ureters with up to six independent buds have also been 
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Figure 1. Classification of duplex kidney anatomy. Compared with 
a normal kidney (a), complete duplication produces a duplex kidney 
with two poles that drain into two ureters (b). Incomplete duplication 
leads to a Y-shaped ureter (c). Blind ureters do not drain into the 
bladder (d). In the rare case of inverted Y-ureteral duplication, two 
ureters fuse before entering the kidney (e).

Mackie and Stephens42. Correct positioning of the ureter into the  
bladder is important to allow formation of a normal trigone (the  
triangle formed by the two ureter orifices and the urethra) and 
prevent ureter reflux caused by a malfunctioning valve or a  
too-short ureter tunnel. Because the vast majority of duplex  
kidneys arise from an ectopic bud in a rostral position, it is  
usually the upper pole of the kidney that is affected by VUR and  
hydronephrosis.

Estimates suggest a prevalence of duplex kidneys of between 
0.2 and 2% in the general population, and females are affected  
twice as frequently as males38,43. The reasons for this sex bias 
are unknown. About 40% of patients with duplex kidneys have 
been reported to exhibit pathological manifestations43. However,  
because duplex kidneys are frequently asymptomatic and  
therefore predominantly detected in patients who seek medical 
assistance, the actual percentage of patients with symp-
toms is likely to be lower. Symptoms associated with duplex  
kidneys can include pain, haematuria, dysuria and difficulty or 
abnormal frequency of micturition38,43. Specific manifestation 
of the pathology depends on the anatomy of each duplication 
event44. Furthermore, duplex kidneys are linked to a number 
of renal disorders, including pelvi-calyceal dilatation, cortical  
scarring, VUR, hydronephrosis, ureterocoeles on the non-duplex 
side, caliculi or yo-yo reflux (in the incomplete duplication  
cases)38,43.

Molecular pathways controlling ureter induction
If duplex kidney formation is rooted in the formation of two  
ureteric tips, how can we explain the outgrowth of supernu-
merary buds on a molecular level? Interactions between MM 
and the ND are crucial to ensure the induction of the ureter 
from the ND, and a key pathway controlling this process is the  
GDNF/RET signalling axis (Figure 3)45. GDNF, a distant mem-
ber of the transforming growth factor beta (TGFβ) superfamily 
of signalling molecules, is specifically expressed within the MM,  
whereas its cognate receptor RET is expressed along the entire 
length of the ND. Binding of GDNF to RET is greatly facilitated 
by the co-receptor GFRα1. The requirement for these genes in  
ureter outgrowth has been extensively demonstrated by using 
gene targeting in mice, and homozygous mutations in either of  
these genes leads to a failure of ureter induction and consequently 
renal agenesis46–50. Binding of GDNF to the receptor tyrosine  
kinase RET induces autophosphorylation and recruitment of the 

Figure 2. Morphogenesis of duplex kidney. Duplex kidneys form through the induction of two ureteric buds from the nephric duct that will 
invade the metanephric mesenchyme. Subsequently, apoptosis of the common nephric duct (CND) leads to the insertion of both ureters into 
the developing bladder with the orifice of the initially posteriorly positioned ureteric bud ending up in a superior position.

described32–37. In some cases, the additional ureter or ureters are 
ectopic and fail to connect to the bladder or the kidney (blind  
ending ureter)33.

The aetiology of most duplex kidneys can be traced back  
to the very first induction steps of the ureter. In the majority of  
cases, an additional UB emerges in a rostral position to the  
normal outgrowth. By contrast, in adults, the upper (abnormal) 
kidney pole drains into the bladder at a site distal to the  
orifice of the lower kidney pole38. This paradoxical phenomenon, 
known as the Weigert–Meyer rule29, can be explained by the  
significant amount of remodelling occurring at the future ure-
ter–bladder junction during development. Indeed, as apoptosis 
eliminates the CND, the ureter inserts into the developing 
bladder and moves upwards (Figure 2)7,39–41. An initially  
anteriorly positioned ureter thus ends up with a more distal 
insertion site in the bladder, a model that has been proposed by 
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Figure 3. Molecular interactions during kidney development. 
GDNF-RET signalling is at the core of the signalling network in 
kidney development and is responsible for ureteric bud (UB) 
emergence. GDNF expression is positively modulated by factors 
expressed in metanephric mesenchyme (PAX2, EYA1 and SALL1) 
and negatively (probably in an indirect manner) by SOX11, FOXC1, 
FOXC2 and ROBO2 in anterior domains of the nephrogenic 
cord. Ectopic formation of the UB is prevented by the factors  
expressed in nephric duct (SLIT2, SPRY1 and GATA3) and in the 
enveloping mesenchyme (BMP4 and FAT4). Influence from other 
upstream factors leads to the formation of a complex regulatory 
landscape.

tyrosine phosphatase SHP251,52, which results in the activation of 
several intracellular signalling cascades, including RAS/MAPK, 
PLCγ/Ca2+, PI3K-AKT53, and culminates in the transcriptional 
activation of a set of downstream target genes54. Ureter  
branching appears to involve, in particular, the ERK/MAPK  
pathway, and mice lacking the kinases Mek1 and Mek2 fail 
to form a properly branched ureteric tree55. Activated RET  
signalling induces not only proliferation but also cellular  
motility. Indeed, experiments in chimeric mice demonstrated that  
wild-type cells move towards the tip of the UB but that Ret  
mutant cells are left behind56. This cellular sorting mechanism 
ensures a strong and directed response that, under normal circum-
stances, results in the outgrowth of a single UB.

Factors regulating Gdnf expression
Given the crucial function of Gdnf in ureter induction, we need to 
consider how the expression of this gene is regulated. Activation 
of Gdnf in the mesenchyme relies on a set of transcription  
factors, including SALL1, PAX2 and EYA1. Deletion of either of 
these factors in mice leads to a lack of ureter induction and con-
sequently to renal agenesis57–59. Heterozygous mutations in each 

of these genes have been shown to be involved in CAKUT5,6, 
and SALL1, in particular, has also been linked to duplex kidney 
formation60. In addition, Gdnf mRNA levels appear to be regu-
lated post-transcriptionally via its 3’ untranslated region (UTR). 
Indeed, replacement with a heterologous UTR sequence resulted 
in increased Gdnf expression levels that were associated with ND 
remodelling defects independent of apoptosis61.

In the mouse, Gdnf expression commences in rostral domains of 
the nephrogenic cord at embryonic day 9.5 (E9.5), about 1 day  
before ureter induction. The ND, however, does not respond to 
the GDNF signal in those anterior regions and this is likely to 
be due to two reasons: First, the anterior IM has relatively high 
levels of BMP signalling, which is known to suppress ureter  
branching (see the ‘Restricting Ret activation’ section below).  
Second, SLIT/ROBO signalling, a pathway that is known for 
its role in axon repulsion62, appears to repulse Gdnf-expressing  
cells from the ND, thus causing a physical separation of these  
two structures in anterior regions63. Robo2 knockout mice lack  
this separation and show ectopic buds along the entire length of 
the ND64. The physical separation of ND and Gdnf-expressing  
cells may explain why in Foxc1, Foxc2 and Sox11 mouse mutants, 
which all display a dramatic expansion of Gdnf expression, the 
ND does not respond in the anterior domain64–66. Instead, only the  
region just rostrally to the normal site of induction responds 
by forming a second ureter. Mutations in ROBO2, SLIT2 and its  
associated GTPase-activating protein SRGAP2 are found in  
patients with VUR and duplex systems67,68.

By the time of ureter induction (E10.5 in mice), mesenchymal  
cells that express Gdnf become restricted to the caudal 
part of the MM (Figure 4). Three possible mechanisms for  
this restriction could be envisaged: (1) Active suppression of  
Gdnf expression in more rostral domains could occur. Since 
the expression of Foxc1 and Sox11 overlaps with the Gdnf  
domain, active suppression of the latter seems unlikely. (2)  
Gdnf-positive cells at the rostral end could undergo cell death. 
The pro- and mesonephros are known to be subject to massive  
apoptosis, although this seems to affect, in particular, the  
epithelial cells of tubules. However, preliminary data from our 
lab suggest that mesenchymal cells positioned just rostrally of 
the Gdnf-expressing domain also undergo apoptosis. (3) Finally, 
rostrally positioned Gdnf-positive cells may undergo directed  
migration towards the caudal end. The proposed distinct origin 
of ND and MM from the anterior and posterior IM, respec-
tively, would argue against this possibility16. However, Slit/Robo  
signalling and members of the SoxC class genes have been  
implicated in cell migration62,69. Perhaps Gdnf restriction is a 
combination of several mechanisms, including cell clearance  
through apoptosis and directed cell migration of anteriorly 
positioned Gdnf-positive cells. A careful analysis of mouse  
mutants showing an expansion of the Gdnf expression domain,  
perhaps coupled with live imaging in explant cultures, may help  
to address this open question.

Pathways in nephric duct–specific activation
PAX2 not only is involved in the activation of GDNF but also 
is required for the expression of ND-specific genes. A key  
target appears to be the transcription factor GATA3, which in  
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Figure 4. Possible causes of caudal Gdnf domain restriction. (a) At early stages during development, Gdnf expression can be found in 
rostral domains of the intermediate mesoderm but over time becomes caudally restricted. Three mechanisms could explain this observation: 
(b) active suppression of Gdnf expression in more rostral domains (c), apoptosis of Gdnf-expressing cells (d), or migration of the cells towards 
the caudal end of the intermediate mesoderm. E, embryonic day.

turn transcriptionally activates Ret. Tissue-specific knockout  
mice that lack Gata3 within the ND show an altered response 
to local growth factors (GDNF and FGF) and display premature 
cell differentiation and differential cell adhesion properties. As a  
result, cells with sufficient levels of GATA3 and RET segregate 
from GATA3-deficient cells and expand, forming ectopic buds  
and kidneys70.

Beta-catenin, a multifunctional protein involved in cell–cell 
adhesion and transcriptional regulation, appears to be one of the  
factors involved in this growth. Conditional inactivation of  
β-catenin in the ND leads to a range of kidney defects, including  
duplex kidney formation71. Molecular markers affected in 
these mutants were the transcription factors EMX2 and SOX9, 
both of which are known to be involved in ureter budding72,73.  
However, ectopic budding was observed only in cases where 
loss of β-catenin expression was mosaic74. Hypoxia-induced  
reduction of β-catenin has also been shown to cause duplex  
kidneys amongst other CAKUT phenotypes75. Beta-catenin  
action during kidney induction is mediated at least partly  
through the transcription factor GATA370.

Sox17 mutations have been identified in a cohort of human  
patients with CAKUT, including a duplicated pyeloureteral  
system. The authors demonstrated that the mutation influenced  
protein stability and reduced β-catenin activity76. It is therefore  
possible that the mutated SOX17 protein leads to lower β-catenin 
and, in turn, reduced GATA3 levels.

In parallel to GATA3, LHX1 (LIM1) appears to be essential in 
permitting normal budding77. Tissue-specific deletion of LIM1  
in ND derivatives leads to renal hypoplasia and hydronephrosis 

and an impaired extension of the ND. Some conditional mutants  
of Lim1 also display incomplete duplication of kidney ureters 
where both poles of a duplex kidney merge before entering the 
bladder. This form of duplex kidney was traced back to the first  
UB branching event, where defective UB forms a Y-shaped rather 
than a T-shaped structure9.

Restricting Ret activation
To limit ureter outgrowth to a single site, a series of negative  
regulators that suppress the RET signalling cascade are in  
place. BMP signalling, in particular, seems to be a suppressor 
of ureter outgrowth and branching, and heterozygous Bmp4  
mutations in mice lead to a wide range of CAKUT pheno-
types, including duplex kidneys78. BMP and FGF signalling 
are known antagonists in epithelial branching of the lung79 but 
also kidney development80. Since FGF and RET receptors are  
receptor tyrosine kinases that use similar intracellular signal  
transduction pathways, we can reason that the antagonistic 
action of BMP acts in analogous fashion on RET signalling. 
To permit ureter outgrowth specifically at the site of the future  
kidney, MM cells express the BMP inhibitor Gremlin (Grem1), 
which counteracts the BMP function81. Heterozygous BMP4  
and GREM1 mutations have both been identified in human  
patients with CAKUT82,83, although it is not clear whether variants 
in these genes also predispose to duplex kidney formation.

A number of other genes involved in duplex kidney formation 
appear to affect the BMP/Gremlin axis. Mutants for the intra-
flagellar transport proteins IFT25 or IFT27, which are believed 
to increase GLI3R, a repressor of SHH signalling, show a high 
penetrance of duplex kidney formation (~50%)84. Similarly,  
constitutive expression of a truncation mutation in Gli3 (Gli3Δ699), 
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which is found in Pallister–Hall syndrome and is likely to  
sensitise tissue for SHH signalling, causes CAKUT with duplex 
kidneys85. The phenotype has been linked to an increased  
sensitivity of the ND by lowering BMP4 signalling.

Of interest, several genes that are implicated in the formation of  
cilia (for example, Cep290, Dync2h1, Tbc1d32 and Tmem67)  
have also been implicated in duplex kidney formation86. The  
primary cilia is an organelle that has a key function in cellular  
signalling87, and SHH signalling, in particular, is directly linked 
to this organelle. Because SHH signalling has been proposed  
to be involved in duplex kidney formation (88 and above), it 
is tempting to speculate that the above cilia-related genes also  
influence this pathway.

In addition to extracellular modulators, cytoplasmic antagonists 
exist to suppress ureter outgrowth. Most notably, Sprouty  
(Spry1) suppresses MAPK signalling in the absence of GDNF, 
and inactivation in mice results in the formation of multiple  
UBs89. Signalling through the angiotensin receptor appears 
to be important in suppressing Spry1 expression90 but also in  
activating Ret expression, and Agtr2 knockout mice show a  
range of CAKUT phenotypes, including a duplex system91. To 
date, no pathogenetic SPRY1 mutations have been identified in  
patients with CAKUT, and it is currently unclear to what extent 
this gene contributes to duplex kidney formation in human  
patients. Interestingly, in the absence of Spry1, GDNF signalling 

is no longer required for ureter induction, and Spry1-/-/Gdnf-/-  
double knockout mice develop normal kidneys. In this con-
text, FGF10, which normally plays only a minor role in kidney  
development, becomes indispensable for kidney induction, and 
triple mutants (Fgf10-/-/Spry1-/-/Gdnf-/-) display renal agenesis92.  
FGF signalling thus can be considered a reinforcing signal that 
contributes to enhanced epithelial growth and budding. FGF  
signalling serves as the main pathway in branching morpho-
genesis of other organs such as the lung93, and we can speculate  
that GDNF/RET signalling has taken over the ancestral function  
of FGF in epithelial branching of the kidney.

Finally, tissue-specific knockout of Fat4 within the nephrogenic 
cord results in a duplex kidney phenotype that can be rescued 
by reducing the dose of GDNF (Gdnf+/-). Recent molecular  
experiments demonstrated that FAT4 directly binds to RET and 
restricts its activity in the ND/UB by disrupting the formation of 
RET-GFRA1-GDNF complex94,95.

There are a number of other genes which have been shown to 
be implicated in duplex kidney formation but for which the  
molecular events leading to supernumerary buds are not 
well defined. Because in these cases the causative nature of  
mutations for duplex kidney formation is less established, we 
refrain from a mere listing of genes at this place. The interested  
reader is referred to Table 1 of genes involved, the associated  
phenotypes and corresponding references.

Table 1. Genes involved in duplex kidney formation.

Group Genotype Mechanism Reference

GDNF domain

Robo2-/- Abnormal Gdnf expression domain 
 
MM fails to separate from WD

Grieshammer et al.64 
Wainwright et al.63

Slit2-/- Abnormal Gdnf expression domain Grieshammer et al.64

Foxc1-/- MM fails to reduce in size Kume et al.65 
Komaki et al.96

Sox11-/- MM fails to reduce in size Neirijnck et al.66

Increased 
sensitivity of WD

Bmp4+/- Lack of inhibition of WNT11, a target of GDNF Miyazaki et al.78 
Michos et al.81

Ift25-/-, Ift27-/- Increased sensitivity of WD through Gremlin-BMP4 
cascade

Desai et al.84

Gli3Δ699/Δ699 Increased sensitivity of WD through Gremlin-BMP4 
cascade

Blake et al.85

Agtr2-/Y Disrupted renin-angiotensin signalling leads to aberrant 
UB morphogenesis

Nishimura et al.91 
Yosypiv et al.90

p53-/-, p53UB-/- Increased response of WD to GDNF signal. Two ureters 
fuse in the later development and resemble a 
bifurcation

Saifudeen et al.97 
El-dahr et al.98

Fat4-/- Fjx1-/- Premature branching with incomplete duplication due 
to overactive GDNF-RET signalling

Saburi et al.94 
Zhang et al.95
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Group Genotype Mechanism Reference

Hoxb7-Cre  
β-catenin-/c

Ectopic activation of UB branching pathway in WD Marose et al.74

Spry1-/- Increased sensitivity of WD to GDNF-RET signalling Basson et al.89

Gata3ND-/- The entire length on WD is covered by ectopic UBs, 
most of which subsequently regress

Grote et al.70

Cell polarity 
defect

T-Cre Wnt5afl/Δ Double UB, abnormal morphology of posterior WD, 
defects in IM morphogenesis

Yun et al.99

Ror2-/- Similar to Wnt5a phenotype Yun et al.99

Cell adhesion 
defect

L1-/Y Either incomplete or complete duplication. Double UB 
on WD or accessory budding from the main ureter

Debiec et al.100

Unknown

Pax2+/- Premature branching with incomplete duplication, 
linked with inactivation of GDNF expression

Brophy et al.101
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