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ABSTRACT: Antifreeze (glyco) proteins (AF(G)Ps) are
potent inhibitors of ice recrystallization and may have
biotechnological applications. The most potent AF(G)Ps
function at concentrations a thousand times lower than
synthetic mimics such as poly(vinyl alcohol), PVA. Here, we
demonstrate that PVA’s ice recrystallization activity can be
rescued at concentrations where it does not normally function,
by the addition of noninteracting polymeric depletants, due to
PVA forming colloids in the concentrated saline environment
present between ice crystals. These depletants shift the
equilibrium toward ice binding and, hence, enable PVA to
inhibit ice growth at lower concentrations. Using theory and
experiments, we show this effect requires polymeric
depletants, not small molecules, to enhance activity. These results increase our understanding of how to design new ice
growth inhibitors, but also offer opportunities to enhance activity by exploiting depletion forces, without re-engineering ice-
binding materials. It also shows that when screening for IRI activity that polymer contaminants in buffers may give rise to false
positive results.

Antifreeze proteins are ice binding proteins that control ice
crystal growth and are found in a variety of extremophile

organisms.1 Their ability to modulate ice growth means they
have generated interest in application areas where ice growth is
a problem, especially in the cryopreservation of donor cells and
tissues. Several classes of synthetic mimics2−5 of antifreeze
proteins have been developed, including glycopeptides,6,7

poly(ampholytes),8−10 and amphipathic molecules/assem-
blies.11−14 Poly(vinyl alcohol) has emerged as a particularly
active mimic, shows molecular weight dependent activity,15−18

and may have application in cryopreservation.19,20 Molecular
modeling suggests that PVA’s activity is due to the precise
spacing of its hydroxyl groups, which match the spacing in the
prismatic plane of ice, and this effect increases with molecular
weight due to entropy/enthalpy compensation.21,22 There have
been investigations into whether antifreeze proteins bind to ice
reversibly or irreversibly, to account for their concentration
dependence. Microfluidic experiments have, however, provided
evidence that AFPIII and AFGP bind irreversibly,23,24 but PVA
seems to be a reversible binder and contributes to its lower
activity. If PVA is binding reversibly, this means an equilibrium
is established between ice-bound and unbound PVA, with only
the bound PVA molecules contributing to the observable
macroscopic properties. Hence, a large fraction of the added
macromolecules does not contribute to activity, but is required
to drive the equilibrium toward ice binding. In colloid science,

it is well-known that the addition of noninteracting macro-
molecules to a colloidal dispersion can cause aggregation and
shift them from dispersion to a surface. This is due to the
entropically driven depletion force in which polymeric
depletants are excluded from the volume between particles,
leading to aggregation. This process underpins structural
biology, where polymeric depletants (especially poly(ethylene
glycol)) are used in protein crystallization buffers to enable
structural studies.25 Castro et al. developed DNA origami
devices that refold in response to small depletion forces.26

Chen and co-workers showed how depletion effects could be
used to tune the morphology and self-assembly of block
copolymers in the presence of a nonabsorbing homopolymer.27

Nagao and co-workers utilized depletants to drive the self-
assembly of golf ball-like particles to form branched chains.28

Poly(ethylene glycol) (PEG) has been shown to act as a
depletant for colloids.29 Kuhl et al. were able to directly
measure the depletion force induced by PEG on egg
phosphatidylcholine vesicles, showing the molecular weight
dependence.30 The depletion effect, also known as macro-
molecular crowding, is partly responsible for protein

Received: May 22, 2019
Accepted: August 7, 2019
Published: August 9, 2019

Letter

pubs.acs.org/macrolettersCite This: ACS Macro Lett. 2019, 8, 1063−1067

© 2019 American Chemical Society 1063 DOI: 10.1021/acsmacrolett.9b00386
ACS Macro Lett. 2019, 8, 1063−1067

This is an open access article published under a Creative Commons Non-Commercial No
Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and
redistribution of the article, and creation of adaptations, all for non-commercial purposes.

pubs.acs.org/macroletters
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acsmacrolett.9b00386
http://dx.doi.org/10.1021/acsmacrolett.9b00386
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html


folding,31,32 the assembly of the cytoskeleton, and whole
chromosomes.33

Considering the above, we reasoned that, if the PVA was
forming colloids, then addition of a secondary polymer, which
has no IRI activity, could act as a depletant to drive the PVA to
the ice and, hence, shift the equilibrium to favor ice binding,
enabling activity at lower concentrations.
Here we report that the addition of secondary polymers

which do not target any ice crystal faces can enhance the IRI
activity of poly(vinyl alcohol) by forcing the equilibrium
toward binding due to depletion forces. The enhancement is
shown to require a polymer, not small molecules, and is
universally applicable.
Figure 1A illustrates the calculated depletion force for PVA

aggregation in the presence of PEG. When the saline ([NaCl]

= 0.14 M) solutions used to assess IRI activity freeze, ice
crystals exclude other solutes and hence concentrate them
between ice grains to give unfrozen water channels.34 As seen
using DLS (dynamic light scattering), PVA aggregates under
these conditions (see ESI), but PEG (which has no IRI
activity) does not. As depicted in Figure 1A, the aggregation of
PVA particles reduces the excluded volume of the system
which is not accessible to PEG (modeled as a small particle).
This leads in turn to a net entropic gain for the system. The
Asakura-Oosawa model for depletion forces was used to
estimate the free energy gain resulting from the aggregation of
(radius = 10 nm) PVA particles in the presence of
(nonaggregated, radius = 1 nm) PEG particles. Full details of
the model can be found in the Supporting Information. As
shown in Figure 1B, the free energy gain due to depletion
forces is strongly dependent on the size of the depletant, which
has been observed experimentally by others using a PEG
system.29,30 Smaller PEG (but still a polymer) leads to much
stronger PVA−PVA interactions, where a larger (radius 10
nm) depletant has less effect, showing a macromolecular, but
not-particulate, depletant is required (confirmed experimen-
tally). In Figure 1C we report the volume fraction of PVA
particles participating in PVA aggregates containing N-
(PVA)aggregate particles; Here, we have assumed a PVA
concentration of 2.5 mg·mL−1 and a volume fraction of PEG
of 0.38 (assuming a 100-fold increase of both PVA and PEG
concentration upon confinement between ice crystals during
the experiments). In this case, most of the PVA can only be
found as aggregates of substantial size (∼250 polymers). While
estimates, these results provide a simple motivation for the
aggregation of PVA particles due to the depleting action of
PEG.
To enable experimental investigation of this depletion effect,

a range of polymers were synthesized by RAFT (reversible
additional fragmentation chain transfer) polymerization to be
tested as depletants along with commercial PEG. Full details of
the synthesis are in the Supporting Information, and the
polymers are shown in Table 1.
PVA with DP = 85 (PVA85) was selected to ensure the

polymer was well above the critical minimum length required
for ice growth inhibition.16,17,22 The “splat” assay was used to
evaluate its concentration-dependent IRI activity; This involves
seeding a polynucleated ice wafer, which is annealed at −8 °C
for 30 min, and the average crystal size compared against a
negative control. The mean grain size (MGS) is reported and
smaller numbers indicate greater IRI activity. A concentration
of PVA85 of 0.025 mg·mL−1 gave 50% MGS and was used from
this point on to ensure that any changes in activity can be
easily observed. Figure 2A shows the MGS of PVA85
supplemented with/out PEG4k. PEG4k alone shows no IRI

Figure 1. Depletion effects as the driving force for PVA aggregation in
the presence of PEG particles. (A) Schematics of the origin of
depletion forces: as the PEG particles cannot overlap with the PVA
particles, the former cannot access a certain excluded volume around
the latter. However, the excluded volume is reduced by the overlap
volume created when two PVA particles get close enough. Thus, the
aggregation of PVA increases the volume available to the PEG, which
in turn leads to an entropic gain for the system. (B) Calculated free
energy gain due to the aggregation of two PVA particles into a
“dimer”, as a function of PEG concentration. (C) Calculated volume
fraction σ(PVA)solution of PVA particles participating in PVA
aggregates of size N(PVA)aggregate. The details of all these calculations
are reported in the ESI.

Table 1. Polymers Used in This Study

codea [M]:[CTA]b (−) convc (%) MnTheo
d (g·mol−1) MnNMR

e (g·mol−1) MnSEC (g·mol−1) Đf

PVAc85 100 90.0 7700 8200 7300 1.50
PAA 100 94.2 6800 12000 1040g N/Ag

PMA 100 86.6 7500 7700h 14176 2.72
PVP12 20 74.3 1700 1300 1300 1.40
PVP206 300 65.4 22000 15000 23000 1.51

aPolymers are named according to the DP from SEC. bMonomer to CTA ratio. cDetermined by NMR compared to an internal standard.
dDetermined by target MW multiplied by conversion. eDetermined by end group analysis. fDetermined by SEC. gSignificant tailing was observed in
the aqueous GPC, leading to high dispersity values (>4). hDetermined from NMR conversion as end groups not visible.
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activity, confirming it has no direct ice interaction. However,
addition of PEG4k to PVA85 enabled the rescue of activity,
with 10 mg·mL−1 rescuing all activity with a MGS of 20%. The
observed activity profile is in close agreement with the
theoretical calculations (Figure 1). Theory predicts that only
polymers can act as depletants, which was confirmed by the
lack of enhancement when mono/disaccharides and ethylene
glycol are added. To visualize the depletion effect, Rhodamine-
labeled PVA was incubated with PEG, with and without NaCl
(to mimic the conditions between ice wafers) on a glass slide,
Figure 2F. In the presence of a depletant, the polymer will be
forced onto the interface between the glass and the droplet,
adhering to the surface. Image analysis (Figure 2G) confirmed
that PVA was depleted and forced to the glass surface only
when PEG and NaCl were present, in agreement with the ice
growth data. It can be seen in Figure 2G that when fluorescent
PVA is dried on the glass surface, the majority of the polymer
accumulates at the air/water/glass interface.

If the depletion hypothesis is true, it should also be valid for
other polymers. Figure 3 shows the observed MGS for PVA85

with addition of poly(acrylic acid), poly(methacrylic acid), and
poly(vinyl pyrrolidone). In all cases the IRI activity was
rescued, showing that these synergistic enhancements are not
limited to PEG. These observations are particularly interesting
as it has been shown that PVA/PEG mixtures are potent
protein and bacterial cryopreservation agents, and this
depletion-induced enhancement might be a factor.35,36 Control
experiments were conducted using acrylic acid and methacrylic
acid (monomers) and there was no IRI enhancement.
Interestingly, high molecular weight PVP did not show activity.
In the depletion model (Figure 1B), if the MW of the
depletant is similar to the colloid, activity is lost, which these
results would support. DLS analysis also supported that PVP206
aggregates (Supporting Information).
It is important to highlight that the ammonium salt of

poly(acrylic acid) can enhance the thermal hysteresis gap
(another measure of antifreeze protein activity) of Type I
antifreeze proteins and PVA. This was hypothesized to be due
to specific basal face binding by poly(acrylic acid) and, in these
reports, was only undertaken at saturation concentrations of
the PVA.37,38

Our hypothesis for this activity enhancement relies on PVA
being in a colloidal state (as proved by DLS) to enable the
depletion effect to be valid. To provide evidence of our
mechanism, two ice binding proteins23,24 were explored. AFP
Type III was produced by recombinant expression in E. coli
and AFGP8 (antifreeze glycoprotein from Antarctic Tooth-
fish). As with PVA, the concentration of protein required to
give ∼50% MGS was determined, and the impact of
supplementing with PEG4k was evaluated, Figure 4. There
was little or no enhancement in either case, in contrast to PVA.
DLS of the AFPIII confirmed that it was not aggregating in up
to 2 M NaCl, and hence, no depletion effect is possible, as
colloids of the IRI active material are required.

Figure 2. Effect of PEG as a depletant to modulate IRI activity. (A)
IRI activity of PVA85 (0.025 mg·mL−1) with PEG 4k; (B) PVA85 IRI
activity with small molecule additives; Example cryomicroscopy
images for (C) PVA85 (0.025 mg·mL−1), (D) PEG 4k (10 mg.mL−1),
(E) PVA85 (0.025 mg·mL−1) + PEG 4k (10 mg·mL−1), (F) Schematic
of depletion testing onto glass slides, and (G) Fluorescence
microscopy and image analysis of Rhodamine-labeled PVA being
depleted by PEG and NaCl. Average intensity values from minimum
of 6 droplets. Scale bar = 100 μm. MGS = mean grain size.

Figure 3. (A) IRI activity of PVA85 with indicated polymers added at
5 mg·mL−1 compared to combinations of PVA and other polymers or
monomers. The horizontal line at 53% activity corresponds to the IRI
of PVA alone. (B) Structures of depletants screened.
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In conclusion, we have introduced a simple approach to
rescue the ice recrystallization inhibition activity of PVA by
exploiting colloidal depletion forces. Due to the high saline
concentration between frozen ice grains, PVA aggregates to
form colloids. Theoretical calculations showed that polymeric
depletants can provide a driving force to deplete PVA colloids
from solution and onto the ice. Experiments support this,
showing that addition of polymers with no ice recrystallization
inhibition activity enhanced the apparent activity of IRI,
apparently due to the depletion effect. In line with theory,
small molecule additives had no impact on the IRI activity and
antifreeze proteins (which did not aggregate in saline) could
not be enhanced due to the lack of colloids. These results are
significant, as they present an accessible route to enhance the
activity of synthetic IRI agents through simple addition of low-
cost, water-soluble polymers.
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