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ABSTRACT Primary and secondary metabolites exuded from roots are key drivers
of root-soil microbe interactions that contribute to the structure and function of mi-
crobial communities. Studies with model plants have begun to reveal the complex
interactions between root exudates and soil microbes, but little is known about the
influence of specialized exudates from crop plants. The aims of this work were to
understand whether sorgoleone, a unique lipophilic secondary benzoquinone exuded
only from the root hairs of sorghum, influences belowground microbial community
structure in the field, to assess the effect of purified sorgoleone on the cultured bacte-
ria from field soils, and to determine whether sorgoleone inhibits nitrification under
field conditions. Studies were conducted comparing wild-type sorghum and lines with
genetically reduced sorgoleone exudation. In the soil near roots and rhizosphere,
sorgoleone influenced microbial community structure as measured by b-diversity
and network analysis. Under greenhouse conditions, the soil nitrogen content was
an important factor in determining the impacts of sorgoleone. Sorgoleone delayed
the formation of the bacterial and archaeal networks early in plant development
and only inhibited nitrification at specific sampling times under field conditions.
Sorgoleone was also shown to both inhibit and promote cultured bacterial isolate
growth in laboratory tests. These findings provide new insights into the role of
secondary metabolites in shaping the composition and function of the sorghum
root-associated bacterial microbiomes. Understanding how root exudates modify
soil microbiomes may potentially unlock an important tool for enhancing crop
sustainability and yield in our changing environment.

IMPORTANCE Plant roots exude a complex mixture of metabolites into the rhizo-
sphere. Primary and secondary metabolites exuded from roots are key drivers of
root-soil microbe interactions that contribute to the structure and function of micro-
bial communities in agricultural and natural ecosystems. Previous work on plant root
exudates and their influence on soil microbes has mainly been restricted to model
plant species. Plant are a diverse group of organisms and produce a wide array of
different secondary metabolites. Therefore, it is important to go beyond studies of
model plants to fully understand the diverse repertoire of root exudates in crop
plant species that feed human populations. Extending studies to a wider array of
root exudates will provide a more comprehensive understanding of how the roots of
important food crops interact with highly diverse soil microbial communities. This
will provide information that could lead to tailoring root exudates for the develop-
ment of more beneficial plant-soil microbe interactions that will benefit agroecosys-
tem productivity.
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The rhizosphere is the layer of soil surrounding plant roots that is enriched with
plant metabolites (e.g., secondary metabolites, carbohydrates, amino acids, organic

acids, and hormones) (1). Due to the limited nutrients and carbon availability in the
bulk soil (2), the rhizosphere becomes a relatively nutrient-rich microenvironment har-
boring microbes with diverse metabolic capacities. Advances in metabolomics and pio-
neering studies in exometabolomics (3, 4) have sparked renewed interest in studying
how roots in plants such as Arabidopsis (5–7) and Avena barbata (8) influence the
microbiome through the exudation of specialized compounds. The wide variety of
compounds exuded from roots (9) selectively regulates the structure of microbial com-
munities in the endosphere, rhizosphere, and bulk soil (10–13), which varies depending
on plant species, stage of plant development, environmental conditions, and other fac-
tors (1, 8, 9, 14). While some work has been conducted using model plant species (5, 8)
the exploration of how specialized secondary metabolites influence the composition
and function of the rhizosphere microbiome is still in its infancy. Difficulties facing
such studies include the vast array of secondary metabolites produced by plants and
the lack of root exudate mutants or characterized natural variation available even in
model systems such as Arabidopsis.

The effects of some secondary metabolites that are exuded from crop plant roots
on soil microbe have been studied. 2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one
(DIMBOA) is a major benzoxazinoid component of maize root exudates and one of the
few root exudates in crop plants whose role in influencing the rhizosphere and root
microbiomes has been extensively characterized. DIMBOA has multiple impacts on the
root and rhizosphere microbiome, including attracting plant growth-promoting bacte-
ria such as Pseudomonas putida to the rhizosphere and restructuring the composition
of the microbiome (15–18). Flavonoids released to the soil by legumes (e.g., soybean)
also act as chemoattractants that initiate Rhizobium plant root interactions leading to
nodulation (19). Phenylpropanoids exuded from Arabidopsis roots attract the plant
growth-promoting bacterium Pseudomonas putida to efficiently degrade many persis-
tent organic pollutants (20). Additionally, plants also produce antimicrobials and other
compounds to shape the microbiome and antagonize pathogens (21). Gaining compre-
hensive insight into the role of root-secreted compounds and how they shape the rhizo-
sphere and endosphere microbiomes will provide new insights into the belowground
interactions between plants and microbes and may also provide new approaches to
enhance plant productivity through engineering metabolite exudation processes to pos-
itively influence the composition of the root associated microbiome.

Sorghum, the fifth most important cereal crop worldwide, exudes a unique class of
lipophilic benzoquinones (sorgoleone) only from root hairs (22, 23) and not from other
root tissues. Sorgoleone is the most well-studied hydrophobic component exuded
from root hairs of sorghum, and some of its biological activities have been character-
ized (23). Its allelopathic properties (24) suppress the growth of surrounding plants
(25) but can also cause self-toxicity for germinating seedlings (25). Sorgoleone also
suppresses nitrification by blocking the activity of ammonia monooxygenase (AMO)
and hydroxylamine oxidoreductase (HAO) in nitrifying bacteria. Nitrification mediated
by soil bacteria and archaea is the conversion of ammonia or ammonium to nitrate.
Under greenhouse conditions, biological nitrification inhibition (BNI) activity has been
shown to increase nitrogen use efficiency (NUE) of sorghum and helps in adaptation to
low-nitrogen soils (26, 27). The inhibition of nitrification by agricultural crop roots is im-
portant for reducing the conversion of ammonia to the more mobile form of nitrogen,
i.e., nitrate. BNI, due to crop plant roots (27) such as sorghum, may reduce rapid nitrifi-
cation, thereby reducing excess leaching of nitrogen below the root zone where it
would become unavailable for plant uptake. It may also serve as a carbon source for
soil microbes (28). However, field-based studies are needed to better understand the
spatial and temporal effects of sorgoleone on BNI in agroecosystems and on microbial
communities in soil.

The objectives of this study were to determine the impact of sorgoleone under field

Wang et al.

March/April 2021 Volume 6 Issue 2 e00749-20 msystems.asm.org 2

https://msystems.asm.org


conditions on the composition of belowground microbial communities and to deter-
mine how sorgoleone influences nitrification. Wild-type sorghum was compared to
transgenic sorghum events with large reductions in sorgoleone exudation (29). Field
studies were conducted with these sorghum events to analyze the composition and
network structure of microbial communities in the root, rhizosphere, and bulk soil
using a 16S amplicon sequencing approach. In the field, sorgoleone altered the com-
position and network organization of microbial communities in the rhizosphere and in
soil near sorghum roots through bacterial growth inhibition and promotion. The
changes in the microbiome in the field were dependent on plant age or residence
time in soil and did not have any obvious effects on plant development. The temporal
effects of sorgoleone on soil BNI were assessed and showed time-dependent effects of
sorgoleone on nitrification. Greenhouse trials with three levels of soil nitrogen revealed
that soil nitrogen was important for sorgoleone-induced changes in rhizosphere and
endosphere microbiomes. The direct effect of sorgoleone on bacteria was confirmed in
the laboratory with cultured bacteria and purified sorgoleone.

RESULTS
Field census. Two transgenic sorghum RNA interference (RNAi) events (pARS1-RNAi

and pARS2-RNAi) that resulted in reduced sorgoleone production were previously
described (29). The transcripts of Sobic.005G164300.1 and Sobic.008G036800 corre-
sponding to ARS1 and ARS2 genes involved in sorgoleone biosynthesis were detected,
with highest expression early in plant development at approximately 8 days after
emergence of seedlings and then gradually decreasing from 24days to 96 days (see
Fig. S1d in the supplemental material) (30, 31). Low sorgoleone production (10 to 20
times less than the wild type) was confirmed in sorghum with these events by gas
chromatography with flame ionization detection (GC-FID) analysis of the root exudates
(Fig. S1a and b) and by light microscopy of the root hairs (Fig. S1c) in 1-week-old seed-
lings. Plant phenotypes collected during the 2016 field experiment showed no differ-
ences in biomass or chlorophyll content, but RNAi lines had decreased panicle weight
(Fig. S1e).

The b-diversities of the microbial communities were different at the three different
sampling times in endosphere, rhizosphere, and soil near roots (see Fig. S2). Soil sam-
ples proximal to the rhizosphere instead of the bulk soil were collected to explore the
effect of sorgoleone on the soil just outside the rhizosphere. These samples are
referred to as “soil near roots.” In addition, some samples were taken from soil between
the rows of sorghum, and those are referred to as “soil between rows.”

A constrained permutational multivariate analysis of variance (PERMANOVA) (see
Table S1) testing the influence of plant stage on microbial community composition
(factoring out genotype) showed that sampling time or plant development had a
highly significant effect on the microbial community composition (P = 0.001). In the
rhizosphere, sampling time contributed to approximately 23% of variation in the com-
position of microbial communities, 17% of the variation in the soil near roots, and 11%
in the endosphere.

Differences in microbial community composition between soil sampled between
rows and soil near roots were assessed by nonmetric multidimensional scaling (NMDS)
analysis at each sampling time (Fig. 1). A constrained PERMANOVA revealed a highly
significant difference between the soil near roots and soil between rows at all three
sampling times (Fig. 1). The sampling time had no effect on the soil-between-rows mi-
crobial communities (PERMANOVA P = 0.11) (Table S1d).

Since sampling date had a strong influence on shaping the bacterial communities
(Fig. S2), samples were separated into individual time points to better understand the
temporal influence of sorgoleone on microbial communities. Canonical analysis of
principal coordinates (CAP) was used with genotype being the primary variable tested.
There were differences between sorghum with RNAi events as compared to the wild
type (WT) in the composition of the microbial communities in the rhizosphere at the
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two later stages of development (boot and grain fill stage) (P = 0.03) and that of the
microbial communities in the soil near roots (P = 0.005) at the last sampling at week 13
(Fig. 2; Table S1a and c). There were no significant differences in endosphere microbial
communities (Fig. 2; Table S1b). The total variation due to sorgoleone exudation was
between 8% and 9% in the rhizosphere and soil near root. Most soil chemical proper-
ties were similar between the plots where the sorghum with RNAi events and wild-
type sorghum were grown (see Table S6) except when analyzed based on individual
sampling dates, where the organic matter in the soil near roots was significantly higher
in the wild type at the earliest sampling at week four (see Fig. S3a).

Sorgoleone inhibition assay. The operational taxonomic units (OTUs) that differed
in abundance between the WT and sorghum with RNAi events were identified using a
negative binomial model in DESeq2 and a false-discovery rate (FDR) adjusted P value
(Padj) of,0.05 for the 2015 and 2016 and greenhouse data sets (see Table S2). Cultured
isolates that matched the genus or family of differentially abundant microbes (Table S2
and Table S3) were used for in vitro growth studies that confirmed sorgoleone had the
potential to inhibit certain soil microbial taxa in the laboratory and also enhance the
growth of other soil microbes (Fig. 3). A sorgoleone-sensitive Nitrosomonas europaea
strain (ATCC strain 19718) transformed with a LUX marker was used in a luminescence
assay as a control (26, 32). The expected inhibition of the luminescence by sorgoleone
was observed. Approximately 76% of the isolates responded to sorgoleone, as was
expected based on the culture-independent 16S data analysis, and it is interesting to
note that most (23/29) isolates tested were inhibited by sorgoleone (Fig. 3B). The
growth of one Methylobacillus isolate showed little response to the sorgoleone in the
assay (22.9%). Growth of five isolates was stimulated by sorgoleone. Two of the iso-
lates in the laboratory assays, Methylophilus and Nocardia, whose growth was stimu-
lated by sorgoleone were also consistently higher in relative abundance in the rhizo-
sphere of the wild-type sorghum than in that of sorghum with the RNAi events in 2015
and 2016 field and greenhouse experiments (Fig. S3b). Five Bacillus isolates were ran-
domly chosen from our culture collection, and the growth of three were strongly inhib-
ited by sorgoleone, while two were stimulated. The three inhibited were classified as B.
safensis and B. cereus while the two that were stimulated were classified as B. flexus
(Table S3).

Nitrification potential. Sorgoleone inhibits certain taxa of nitrifying bacteria (26,
33). To test for changes in nitrification due to sorgoleone across a growing season
under field conditions, soil near roots was examined carefully at three sampling times.

FIG 1 Soil bacterial b-diversity/community composition in the field soil between rows and the soil near
sorghum roots at three time points during the field season in 2016. Four weeks corresponds to the seventh-
leaf stage, 9 weeks to boot stage, and 13 weeks to grain fill stage. All the soil samples separated by time for
NMDS ordination by using the Bray-Curtis matrix. The P values and R2 on the top left of each graph show the
PERMANOVA results. The stress values at the bottom right corners of the plots reflect how well the ordination
summarizes the observed distances among the samples.
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Sorgoleone inhibited nitrification in field soil at the 9-week sampling of the soil near
roots (Fig. 4A and B). The soil nitrate concentrations (Fig. 4A) and potential nitrification
rates (Fig. 4B) were higher in the near soil of the sorghum with RNAi events than in
near soil where the wild type was grown. Potential nitrification rates could not be
measured in the rhizosphere because of the small amount of soil recovered from the
rhizosphere isolation. Leaf nitrogen content was higher in sorghum with both RNAi
events than in wild type sorghum at weeks 9 and 13, but only that with RNAi event
number [no.] 1 had significantly higher (P , 0.05) levels of nitrogen at 13weeks
(Fig. 4C). The soil-between-rows nitrate concentrations were relatively constant
throughout the season. In contrast, nitrate concentration was progressively depleted
in soil near roots across the season, presumably due to plant nitrogen uptake (Fig. 4A).

Greenhouse experiment. Under greenhouse conditions, soil nitrogen content
altered how sorgoleone influenced the microbial communities (Fig. 5). The endosphere
bacterial communities differed (PERMANOVA P = 0.02) between WT and sorghum with
RNAi events only at the lowest soil nitrogen content. In contrast, differences in micro-
bial community composition in the rhizosphere between wild type and RNAi events
were significant at the two highest levels of nitrogen (P = 0.05 at 5.75mM N [N50] and
P = 0.03 at 11.5mM added N [N100]) (Fig. 5A). In rhizosphere, the a-diversity decreased
as nitrogen increased from 1.15mM added N (N10) to the N100 level in both WT and
RNAi events (Fig. 5B) but was not statistically different between RNAi events and WT at
all nitrogen treatments (see Table S4).

FIG 2 Canonical analysis of principal components (CAP) of bacterial and archaeal community
composition in the endosphere, rhizosphere, and soil near roots of two RNAi event-harboring and
wild-type sorghum at three times during the field season in 2016. The CAP was constructed using
the Bray-Curtis dissimilarity matrix constrained to the genotype (sorghum with RNAi events and
wild type). The PERMANOVA results are shown along the x axis of each plot. Triangles represent
the samples from the sorghum with RNAi event (n = 5 for each) and circles represent the wild-
type samples (n = 7). Four weeks, 9 weeks, and 13 weeks correspond to the seventh-leaf, boot,
and grain fill stages, respectively.
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Co-occurrence networks. The reduction of sorgoleone in root exudates of sor-
ghum with the RNAi events tended to increase the bacterial and archaeal network
complexity in the rhizosphere and in the soil near the roots early in plant development
compared with that for the wild type (Fig. 6A and Table S5). The total nodes and total
links (connections) between nodes were higher in the rhizosphere for the sorghum
with RNAi events at week four and throughout the season for the soil near roots, as
indicated by larger network size with more nodes and a more connected network. The
three-way analysis of covariance (ANCOVA) confirmed differences between the RNAi
events and the wild type, with a higher normalized node degree (number of node con-
nections was normalized by the total number of nodes) for the RNAi events when the
data from all time points and both rhizosphere and soil near roots were considered to-
gether (F1,8121 = 42.2, P, 0.001) (see Fig. S4a). There were differences in the normalized
node degree at 4 weeks for rhizosphere and 9 weeks and 13 weeks in the soil near
roots (Fig. S4a). Betweenness (the extent to which a node is connected to other nodes
that are not connected to each other) of the networks also was different for sorghum
with RNAi events and the wild type. At week four in rhizosphere and soil near roots,
the betweenness was higher (Fig. S4b) for the RNAi events than for the wild type.
There were also differences in closeness (a measure of the degree to which a node is
near all other nodes in a network) of nodes between the wild type and the sorghum
with RNAi events in the rhizosphere throughout the experiment (Fig. S4c). More close-
ness of the networks in sorghum with RNAi events was observed compared to the wild
type at week four in the soil near roots. Time was also a significant factor in changes in
the network characteristics such as module number (ANCOVA statistics in Table S5),
normalized node degree (Fig. S4a), closeness centrality (Fig. S4c), and in betweenness

FIG 3 Growth of bacterial isolates with sorgoleone. (A) Isolates were selected from a culture collection based on genus- or family-
level similarity using differential abundance data from wild type and sorghum with RNAi event endosphere and rhizosphere data
from field studies (summarized in Table S2 in the supplemental material). Percentage inhibition by 0.025mM sorgoleone was
calculated by [(ODwithout sorgoleone/ODwith sorgoleone) � 100] 2 100. Welch’s t test was used due to unequal variance between sorgoleone-
treated samples and control samples. P values from one-sided tests were converted to q values to control for false-discovery rates.
***, P , 0.001; **, P, , 0.01; *, P , 0.05. (B) Table indicates how the in vitro results matched with culture-independent data for the
29 isolates (Table S2). a-Proteobacteria, Alphaproteobacteria; b-Proteobacteria, Betaproteobacteria; g-Proteobacteria, Gammaproteobacteria.
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centrality (Fig. S4b). Taken together, the results of the network analysis highlight the
changes in connectivity and network size due to the root exudate sorgoleone.

The 50 OTUs with the highest hub scores (34) were visualized at the three sampling
times (Fig. 6B). There was a higher relative abundance of Actinobacteria and
Proteobacteria in both the wild-type rhizosphere and soil near roots 4 weeks after
planting than at other sampling times, whereas the sorghum with RNAi events had
greater relative abundance of Acidobacteria at that same time point. At week nine and
later sampling times, the relative abundances and the network maps in the soil near
roots began to look more similar between the wild type and the sorghum with RNAi
events. The differences in relative abundance of these key OTUs became smaller as the
bacterial community matured later in the season, except at 13 weeks, when the wild
type contained a much higher relative abundance of both Verrucomicrobia and
Planctomycetes in the rhizosphere and soil near roots, while a higher abundance of
Actinobacteria was observed in the sorghum with RNAi events in the soil near roots.

DISCUSSION

Root exudates are an important emerging area of plant and soil science research (9,

FIG 4 Soil nitrate concentration, potential nitrification rates of soil near roots, and nitrogen content in leaves of
wild-type and sorghum with RNAi events in the 2016 field season. (A) Soil nitrate content. (B) Potential
nitrification rates. The soil-between-rows sample data at 4weeks was missing. (C) Percent nitrogen content in
leaf tissue of WT and RNAi event-harboring sorghum. **, P , 0.01; *, P , 0.05 between wild-type and RNAi or
soil between rows using Student’s t test.

FIG 5 b-Diversity analysis for rhizosphere, endosphere, and soil samples from a greenhouse experiment conducted with different
nitrogen levels (N10, 1.15mM N; N50, 5.75mM N; N100, 11.5mM N). (A) Canonical analysis of principal coordinates (CAP) was
performed on Bray-Curtis distance matrix in which treatment was constrained and genotype was factored out. The P values and R2

on the top left of each graph show the PERMANOVA results. (B) Shannon index for rhizosphere under nitrogen treatment conditions
in the greenhouse. The P values shown on the top were calculated by the Wilcoxon nonparametric statistical test. Line and the plus
marker in the boxes represent median and mean, respectively, top and bottom of boxes represent first and third quartiles,
respectively, and whiskers indicate 1.5 interquartile range.
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35–37). While the role of relatively few secondary metabolites in root exudates has
been clearly defined, some have been shown to be key drivers influencing microbial
community composition within the rhizosphere (5, 6, 15, 16, 18, 38–40). Sorgoleone is
the major secondary metabolite in Sorghum bicolor root exudates (29). This lipid ben-
zoquinone has a number of biological activities, but much attention has centered on
the allelopathic aspects of this root exudate (23). More recently, it was shown that sor-
goleone inhibits soil-nitrifying bacteria mainly in greenhouse experiments or in lab
assays (26, 33). Since sorghum is an important worldwide cereal crop and is also rapidly
becoming an important bioenergy crop (41), this study focused on determining
whether sorgoleone alters the bacterial and archaeal communities of the root micro-
biome and whether it influences the nitrogen cycling under field conditions.

Sorgoleone alters composition of bacterial microbiome. Several recent agricul-
tural fields studies reported that crops influence their soil microbiomes dynamically
across a growing season (42, 43). Natural variation exists in the amount of sorgoleone
exuded from sorghum root hairs of different sorghum lines (44), but no reports have
shown the impact of this root exudate on the rhizosphere, endosphere, or soil micro-
biome composition under field conditions. Although the impacts of sorgoleone on the
soil microbiome were recently shown under greenhouse conditions (45), such

FIG 6 Co-occurrence OTU network analysis and relative abundance of the 50 OTUs with the highest hub scores. (A) Bacterial and archaeal co-occurrence
networks over time as affected by sorghum genotype (wild type or RNAi events) and sample type in 2016 field. Node represents individual OTU; edges
represent significant positive Spearman correlations (r . 0.8 and P value #0.01). Number of the total nodes and links shown at the bottom right of each
network. (B) The relative abundance of the 50 OTUs with the highest hub score in each network is displayed. The x axis indicates the time and genotype,
with the relative abundance shown on the y axis. Top graph indicates the rhizosphere and bottom indicates the soil near roots. Color of bar indicates the
different phyla.
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approaches are notoriously difficult to translate to field conditions due to the restricted
soil volumes and higher soil temperatures. Therefore, our work provides a novel and
relevant data set for studying the role of sorgoleone on rhizosphere and endosphere
bacterial and archaeal communities in agricultural systems. The availability of sorghum
that carries RNAi elements designed to downregulate two specific type III polyketide
synthases (PKSs) (29) involved in the synthesis of sorgoleone permitted the direct test-
ing of how this exudate influenced the composition and function of the soil bacterial
microbiome in isogenic genetic backgrounds. The results of these studies showed that
the presence of large amounts of sorgoleone shifts the composition of the bacterial
and archaeal microbiome. Although previous work (26, 33) has shown that specific
nitrifying bacteria are inhibited by sorgoleone, our findings revealed that the abun-
dance and growth of a much wider range of bacterial taxa are both inhibited and pro-
moted by sorgoleone in the rhizosphere. In follow-up investigations, experimental pro-
tocols ensuring a higher sequencing depth for root samples will be required to further
elaborate on the conclusions related to the endosphere microbiome reached in this
paper. These findings are supported by results from field studies, a greenhouse study,
and laboratory growth assays on cultured bacterial isolates.

The greenhouse experiments suggested that sorgoleone plays a role in altering the
rhizosphere bacterial microbiome only when sufficient amounts of nitrogen are pres-
ent. These experiments also highlight changes in endosphere microbial communities
that may occur only under very low nitrogen conditions. Although the conditions
under which microbial nitrification inhibition is important in agricultural fields are not
well understood (46), it is known that inhibiting nitrate leaching by the addition of
chemical nitrification inhibitors is one approach for reducing nitrogen losses (47). The
presence of adequate nitrogen would likely be required for the activity of nitrifying
bacteria, because ammonia is the major source of energy for both bacteria and archaea
involved in nitrification (46). In addition, the amount of certain phenolics and lipids in
exudates increases with higher nitrogen concentration (48), suggesting that the
amount of root exudation may be dependent on the nitrogen level. Therefore, higher
levels of nitrogen may lead to greater exudation of sorgoleone, leading to significant
changes in bacterial community composition in the rhizosphere. The greenhouse
results confirmed trends measured in the field, where higher concentrations of sorgo-
leone exuded from wild-type sorghum roots led to alterations in the composition of
the rhizosphere bacterial microbiome.

Network analysis. In addition to the use of b-diversity to characterize changes in
microbial communities, co-occurrence network analysis has emerged as an important
approach for revealing information on the co-oscillation of community members and
the stability of community assembly (49–51). In previous work, co-occurrence network
analysis of the microbial communities highlighted the increased connectivity and com-
plexity of bacterial assemblages in rhizosphere compared to those in bulk soil (50).
While our results showed similar network complexity in the rhizosphere, the soil near
roots (just outside the rhizosphere) also had complex networks, which suggests it was
influenced by the root exudates, including sorgoleone. Sampling further away from
the roots between the rows of sorghum showed no change over time, again suggest-
ing the lack of influence of root exudation. However, it is not clear why the network or-
ganization of the soil near roots was more complex than that in the rhizosphere at the
early sampling. One possibility for this difference may be due to moisture gradients
between the rhizosphere and soil near roots. While the soil moisture of the rhizosphere
was not measured, a gradient was observed between the wetter soil between rows
and the drier soil near roots (see Table S6 in the supplemental material), which was
likely due to plant uptake of soil water. Therefore, assuming that the soil was drier in
the rhizosphere, this may have reduced microbial activity, leading to less complex net-
works early in development than that in the soil near the roots (52).

The delayed formation of the complex microbial co-occurrence networks observed
in the wild-type sorghum early in plant development was ascribed to the presence of
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larger amounts of sorgoleone that may be produced earlier in plant development
based on the transcriptional profiles of the ARS genes involved in sorgoleone biosyn-
thesis (Fig. S1d). The total nodes and total links (connections) between nodes were
higher in the rhizosphere at week four and throughout the season for the soil near sor-
ghum roots harboring the RNAi events (Fig. 6), indicating that the reduction of sorgo-
leone leads to larger and more connected bacterial networks. Others have also shown
that environmental factors such as elevated CO2 (53) and agricultural intensification
(54) lead to changes in the network organization of microbiomes. Inspection of the 50
OTUs with the highest hub scores showed that the phylum Actinobacteria was in
greater relative abundance at week four in the wild type. One hypothesis is that sorgo-
leone imposes a “stress-like” effect on the microbial community (42) that delays forma-
tion of highly connected microbial networks. This work shows that changes in the
microenvironment around the roots due to the exudation of plant secondary metabo-
lites profoundly change microbial networks in soil.

Another possible reason for the changes in the early microbial communities may be
due to the different roles that sorgoleone plays in the rhizosphere and the soil near
roots in the creation of new niches for specific bacterial taxa (6, 55). Sorgoleone may
change the competition between microbes, leading to changes in community compo-
sition or the creation of new niches for certain microbes to thrive. New metabolic
niches that may be created by sorgoleone are likely to be due to its multiple roles as
an inhibitor and growth promoter as confirmed by laboratory assays and as an inhibi-
tor of specific enzymes in nitrifying bacteria (26).

Data from field and greenhouse experiments showed that two isolates from the ge-
nus Nocardia and the family Methylophilaceae were identified as microbes whose rela-
tive abundance was higher in the wild type (Fig. S3b). The growth promotion of
Nocardia and Methylobacillus isolates was also observed in laboratory assays using cul-
tured isolates. Nocardia species belonging to the phylum Actinobacteria have been
shown to degrade complex organic compounds and may use sorgoleone as a carbon
source for enhanced growth (56). Based on the demonstrated mineralization of sorgo-
leone in soil (28) and the laboratory assays in this study, it is likely that sorgoleone is
being used as a carbon source for certain taxa with the metabolic capacity to utilize
this unique lipid. The increase in the relative abundance of Nocardia was also corre-
lated with higher soil organic matter (Fig. S3a) in the wild-type sorghum, which may
be a cause or an effect of the increased abundance of Nocardia, which is also known
for its ability to degrade lignin (57). The increase in the abundance of bacteria from the
Methylophilaceae family was also noted in another study on the exudation of the sec-
ondary metabolite DIMBOA (18). Similar to DIMBOA, sorgoleone has a growth-inhibi-
ting effect which may create a new niche for Methylophilaceae bacteria to thrive.
Sorgoleone exuded from roots may also cause certain defense responses in sorghum
due to self-toxicity (25), which may lead to the production of plant-derived methanol
coming from pectin methylesterase activity that may be produced in cell walls when
plant defense responses are triggered (18). Another possible explanation for the
increased abundance of members of the Methylophilaceae family in WT is that the
methoxy group of sorgoleone is released and becomes an energy source for these
methylotrophs (28). Many Nocardia species are also known to produce antimicrobial
compounds to suppress other microbes, resulting in a sparse network (56). Metabolites
from both root exudates and from soil microbes lead to the creation of new niches for
members of the microbial community through multiple mechanisms (6, 8, 55). The lab-
oratory assays using cultured isolates provided supporting evidence for a growth-pro-
moting role of sorgoleone that leads to a new hypothesis that sorgoleone creates spe-
cialized metabolic niches for bacteria and archaea through mechanisms of inhibition,
niche creation, and direct growth promotion.

The changes observed in the rhizosphere and soil-near-root network confirmed the
dynamic nature of the bacterial microbiome and suggested that sorgoleone begins to
impact microbial relationships early in the season. However, changes in the bacterial
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microbiome b-diversity were significant only later in the season. Such timing differen-
ces in the two analyses suggest that the early changes in the networks, which may be
due to higher levels of sorgoleone production early in development, lead to the
observed differences in microbial community composition later in the growing season
(58). Together these two types of analyses provide a more integrated understanding of
the dynamics of soil microbial community structure in response to sorgoleone.

Sorgoleone effect on soil nitrification. Nitrification is an important process in the
nitrogen cycle of agroecosystems, particularly in the highly productive areas of the
United States where .90 million acres of maize are planted. In these systems, ammo-
nia fertilizer is applied and either remains in the soil or is converted to nitrate that is
readily leached into the ground and surface waters (59). The process of nitrification is
due to nitrifying bacteria in the soil that convert ammonia to nitrate (60). While others
have highlighted the potential for the use of sorgoleone exudates by sorghum as a
potential nitrification inhibitor to reduce the loss of nitrogen from agroecosystems (26,
33, 45, 61), our data suggest that at only certain times during the season was nitrifica-
tion inhibited by sorgoleone. Therefore, the overall extent of the impact of sorgoleone
exudation on nitrification in field soils remains unclear. Two observations in this study
suggest that biological nitrification inhibition through sorgoleone may be of limited
importance for reducing the nitrate leaching from the soil. First, a reduction in nitrifica-
tion was only detected after 9weeks, similar to what was previously found (45).
Second, the changes in the microbial community composition due to sorgoleone were
only detected in the soils near roots (2016) and not in bulk soils. This suggests that the
sorgoleone may not move far from the roots and therefore may have a limited impact
on overall nitrification at the field level. The lack of movement of sorgoleone may be
due to its high lipophilicity, which would prevent it from moving with soil water any
distance from the point of exudation. While sorgoleone does inhibit nitrification at cer-
tain times during the season, the full effects of the RNAi events may be masked by
other compounds that are exuded from sorghum roots such as sakuranetin (26, 59).
Additional experiments will be required to fully assess whether sorgoleone inhibits ni-
trification to the extent that it could reduce nitrate leaching into ground water in agro-
ecosystems. The use of plants to reduce nitrification has been discussed (33) and
tested mainly in the greenhouse, with no larger-scale field-based experiments reported
to our knowledge. Future field-based experiments that measure nitrate leaching and a
full nitrogen balance will be required to fully assess the potential for sorgoleone as a
nitrification inhibitor.

Conclusions. Taken together, the field-based and greenhouse experiments as well
as laboratory-based growth assays with sorgoleone clearly demonstrate the role of this
sorghum root exudate not only in inhibiting the growth and function of a wide range
of different bacterial taxa but also in stimulating the growth of certain taxa. The work
also highlights the important role of exudation of the secondary metabolite sorgo-
leone in shaping rhizosphere and soil microbial communities and possibly providing a
unique metabolic niche for specific taxa to thrive in the rhizosphere and soil near roots.
Consistent with previous observations, sorgoleone in root exudates impacts the nitro-
gen cycling transiently where it inhibits nitrification in the zone around roots. These
findings provide additional insight into how altering these root exudation processes in
plants may provide effective approaches for engineering soil microbiomes that
enhance the stress tolerance and increase the productivity of agroecosystems.

MATERIALS ANDMETHODS
Plant material. Two RNAi events were induced by transforming the immature embryos of Sorghum

bicolor (genotype Tx430) with the constructs pARS1-RNAi (RNAi event no. 1) and pARS2-RNAi (RNAi
event no. 2), and their corresponding wild-type Tx430 was also used in this study. These two RNAi
events were induced by knocking down two polyketide synthase (PKS)-like genes encoding the ARS
enzymes (ARS1 and ARS2) in the biosynthesis pathway of sorgoleone (29, 62). We confirmed the reduc-
tion of sorgoleone in the sorghum root hairs with the knockdown events by light microscope observa-
tion and GC-FID analysis (see Fig. S1a to c in the supplemental material). Whole sorghum root systems
of 1-week-old plants were dipped in 15ml of methylene chloride to collect exudate. Roots were then
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blotted dry and weighed. The exudate samples were then dried using nitrogen gas. Before loading to
GC-FID, pyridine and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) plus trimethylchlorosilane (TMCS)
(99:1) were used for the derivatization. GC-FID (Agilent) with HP-INNOWax polyethylene glycol was used.
Inlet temperature was set at 250°C with a hydrogen flow rate of 37.2ml min21 at 25 lb/in2. The ramp pro-
tocol was 185°C for 1min and then up to 240°C at a rate of 7°C min21, followed by a hold at 240°C for
13min. The temperature of the flame ionization detector was 275°C with a hydrogen flow rate of 45.0ml
min21 and airflow rate of 375ml min21. In addition, fragments per kilobase of exon model per million
reads mapped (FPKMs) data for the relative expression of ARS1 and ARS2 transcripts in the sorghum
root tissue are shown in Fig. S1d. Three replicate samples were collected 8, 24, 44, 65, and 96 days after
the emergence. RNA sequencing (RNA-seq) data were downloaded from https://phytozome.jgi.doe.gov
by searching the gene loci Sobic.005G164300.1 (ARS1) and Sobic.008G036800 (ARS2) (30).

Study site and field and greenhouse design. This study was conducted in Mead, NE, USA
(41°1393499 N, 96°2991899 W) in 2015 and 2016 as well as in the greenhouse. The 2015 data were used to
refine the experimental design for 2016 and to help identify specific isolates to be used for laboratory
assays described below. The data shown in this paper are mainly from the 2016 field season. Sorghum
with the RNAi events and the wild-type Tx430 were planted on 3 June 2016. Plots were randomized, and
there were six blocks in both years in the field. No additional fertilizer was applied. Supplemental irriga-
tion was carried out on 8, 9, and 15 June due to the hot and dry weather; approximately 1.4 cm of water
was added to the field each day.

Sampling in 2016 was conducted on 3 July (4weeks, seventh-leaf stage), 3 August (9weeks, boot
stage), and 3 September (13weeks, grain fill stage), and no differences in development were observed
between RNAi lines and the WT. Two plants per plot were bulked as one replicate sample. In 2016, five
replicates were collected for the two RNAi-event harboring sorghum lines, and seven replicates were
collected for the wild type. Sampling of the root, rhizosphere, and bulk soil was performed according to
the methods described in a previously published methods paper (63). For the soil near roots, approxi-
mately 2 cm of soil around the root surface was collected by shaking the root system inside a 1-gallon
ziplock bag. The rhizosphere was the soil that tightly adhered to the roots even after shaking and was
removed by vortexing the roots in phosphate buffer. For soil physicochemical analysis, 100 to 125 g
sieved soil near roots was analzyed by Ward Lab as described on their website https://www.wardlab
.com/submit-a-sample/soil-health-analysis/ (Table S6). The fourth oldest leaf counting from the first
emerged leaf was removed, dried, ground, and analyzed for nitrogen content. In 2016, soil was also
sampled between rows using a shovel to the depth of 30 cm in a region of the soil that would be less
influenced by the sorghum plants. This soil is referred to as “soil between rows.” The panicle from the
main stem was harvested from each plant and weighed after drying to compare wild-type and RNAi
lines (N= 5 to 7). Whole plants at 4weeks and the main stem of each plant at 13weeks were also har-
vested, dried, and weighed.

In the greenhouse, the sorghum harboring each of the two RNAi events and the wild type were
planted in pots, replicated four times. The soil used was collected from a field (41°1691399 N, 96°6795299
W) with extremely low nitrogen concentrations and mixed with sand in a 2:1 ratio in plastic pots meas-
uring 15.2 cm (diameter) by 14.6 cm (height). One week after planting, pots were thinned to contain two
plants of similar size. Each pot contained one genotype. Three different concentrations of nitrogen
(N100, 11.5mM added N; N50, 5.75mM added N; and N10, 1.15mM added N) were added as a modified
Hoagland solution (64) to corresponding pots after 2 weeks from the day of planting. Sampling was car-
ried out 2 months from the planting, which roughly corresponded to the time when differences in b-di-
versity were observed in field experiments (9weeks). Pots contained sorghum plants with both RNAi
events and wild-type Tx430. The endosphere and rhizosphere samples were collected as described ear-
lier (63), and bulk soil was collected for chemical analysis.

DNA extraction and amplicon-based 16S rRNA gene analyses. DNA was extracted using MO BIO
PowerPlant Pro-htp and the MO BIO PowerSoil-htp kits (MO BIO, Carlsbad, CA) and processed as
described in reference 63. To characterize the microbial populations in samples, the 16S rRNA gene pri-
mers 515f and 806r were used to amplify the V4 region of the 16S rRNA gene at the University of
Minnesota Genomics facility using their published protocol (65). Sequencing was performed using
paired-end 300-base reads on an Illumina MiSeq. For root samples, sequencing was performed with the
inclusion of peptide nucleic acid (PNA) blockers (66) to reduce the amount of plant plastid and mito-
chondrial sequences.

Bioinformatic processing of the sequence data was performed using a combination of QIIME (67, 68)
and USEARCH (version 10.0.240) with the UPARSE pipeline (69). Briefly, after demultiplexing, the paired-
end reads were merged with error correction using USEARCH. The maximum number of mismatches in
the alignment was set at 10 base pairs, and minimum percentage of identity in the alignment was set to
80% due to the long overlaps obtained with 2 by 300-bp V4 region using the MiSeq platform. Primers
were removed from the merged sequences. Next, quality filtering was conducted to remove the low-
quality reads by setting the maximum number of expected errors (E_max) to 1 as the threshold. The
quality-filtered sequences were then deduplicated to find the unique sequences and create the input
sequences of the 97% OTU clustering. Then, 97% identity was used as the threshold for OTU clustering.
In this step, the minimum abundance (minisize = 2) was set to discard singleton unique sequences and
to remove chimeras. Finally, an OTU table was created. Taxonomy was assigned using the Ribosomal
Database Project classifier (RDP) (70) and the Greengenes 13_8 database (71). RDP classifier was trained
by using marker gene reference databases of Greengenes (13_8 [most recent], 97_otu_taxonomy.txt,
and 97_otus.fasta). Plastid and mitochondrial sequences were removed from the analysis. For the a-di-
versity analyses, the resulting OTU table was rarefied to a fixed number of reads per sample in the data
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set. Rhizosphere, soil, and root samples were rarefied to 7,681, 11,153, and 334 sequences for the 2016
field data. Rhizosphere and root samples were rarefied to 1,349 and 600 sequences for the greenhouse
data. For the b-diversity analyses, the OTU table was separated by the sample type and year for down-
stream analysis. For statistical analysis between groups, the Bray-Curtis distance matrix was calculated
using rarified data for PERMANOVA with the adonis() and anova() function in vegan package (72) v2.4.5
in R studio. The canonical analysis of principal coordinates (CAP) was performed using the function cap-
scale() in the vegan package, and plots were visualized by ggplot2 package (73) v2.2.1 in R studio using
R (v3.5.1). Bray-Curtis dissimilarity indexes were used to perform the CAPs. The R and python codes can
be found at https://github.com/SchachtmanLab/Transgenic-sorghum-sorgoleone.

Network analysis. Co-occurrence networks were constructed using only positive correlations
between OTUs for each sampling time for wild-type sorghum and the RNAi lines. Only OTUs that
occurred in at least 12 of the 17 samples were included in the analysis, which was defined as the core
OTU with a 70% threshold. Equal numbers of replicates (n= 7) of the wild type and RNAi lines were used
for analysis by randomly selecting the RNAi lines (74). Spearman correlation was performed for the abso-
lute read counts of the different samples of WT or with RNAi events by using SparCC (75). At the same
time, pseudo-P values were calculated via a bootstrap procedure with 100 shuffles to determine the sig-
nificance of the correlation. To simplify the network and reduce the false-positive rate, a Spearman’s cut-
off r of .0.8 and a P value of #0.01 was chosen to highlight the strongest correlations among OTUs in
the soil near roots or rhizosphere samples of wild-type or RNAi event sorghum at 4 weeks, 9 weeks, and
13 weeks after planting. The network visualization and calculations of node degree, betweenness cen-
trality, closeness centrality, and clustering coefficient were performed using the R package igraph (76)
and ggraph (77) with the Fruchterman-Reingold layout algorithm (76).

Potential nitrification rates of soil and rhizosphere. The method for determining potential nitrifi-
cation rate (PNR) was adapted from Hart et al. (78). Briefly, 18.75 g of soil near roots was placed in a 250-
ml flask and mixed in 125ml of a liquid containing 1.5mM NH4

1 and 1mM PO4
32. The flasks were incu-

bated at 22°C in a shaker rotating at 200 rpm. Three soil-near-root samples per flask (3� 5ml) were
taken after 2 h, 4 h, 22 h, 24 h, 46 h, and 70 h of incubation at room temperature by withdrawing 5ml of
the slurry from each flask and transferring to 15-ml conical tubes and assayed. Three replicates were
used for each RNAi event (RNAi no. 1 and RNAi no. 2), four replicates for WT, and two replicates of soil
between rows at each sampling time. Slurry samples were centrifuged at 4,000 � g for 10min at 4°C,
and supernatant was analyzed for NO32 N content using a nitrate/nitrite colorimetric assay kit (Cayman
Chemical Co., MI). The potential nitrification rates were determined by linear regression of NO32 N gen-
eration over the incubation time as described by Hart et al. (78).

Response of microbial isolates to sorgoleone. R2A medium was used to culture bacteria from the
rhizosphere, root, and soil samples. Single colonies were identified by sequencing the 16S rRNA ampli-
fied by a pair of primers 27F/1492R (27F, 59-AGAGTTTGATCCTGGCTCAG-39; 1492R, 59-GGTTACCTTG
TTACGACTT-39) and sequences were searched in the RDP database to verify the identity of the isolate.
The differential abundance analysis for the absolute abundance of the OTUs between sorghum with
RNAi events and wild type was determined by using DESeq2 (79). Twenty-nine isolates from the culture
experiment were chosen based on genus or family level similarity based on the OTUs in DESeq analysis
(Table S2) to test for growth response to sorgoleone. Among these 29 isolates, 18 isolates were cultured
from sorghum with RNAi events and the wild type from the experimental field in Mead, NE, in 2015, four
were cultured from an alkaline site in the Sandhills of Nebraska, and four were cultured from another
field in Mead, NE. These 29 colonies included one nitrifying bacterium Nitrosomonas europaea (ATCC
19718) and two isolates belonging to the Methylophilaceae family. Growth curves were performed in
R2A liquid medium containing 0.025mM sorgoleone or no added sorgoleone with methanol (in which
the sorgoleone was dissolved) as a control. Three different concentrations of sorgoleone were tested,
including 0.00156mM, 0.003mM, and 0.025mM, in preliminary experiments using a 96-well-plate format
and a plate reader. Each well contained 160ml of bacterial culture. The concentration of 0.025mM sorgo-
leone was used for the final experiments because it was the lowest concentration that showed repeat-
able and clearly distinguishable impacts on certain bacteria based on time course of optical density at
600 nm (OD600) growth curves. Each growth assay was replicated 3 times for each treatment in 96-well sterile
plates with a 160ml volume in each well. Plates were incubated at 23°C shaking at 220 rpm. Optical density
at 600nm was measured during a 50-h time course using a Synergy 2 multidetection microplate reader
(BioTek) at 2-h intervals during the first 24 h and 6-h intervals after 24 h. For two isolates belonging to
Methylophilaceae, M9 minimal liquid medium was used. A recombinant strain of N. europaea was cre-
ated by introducing an expression plasmid vector for the Vibrio harveyi luxAB genes (32). Liquid P-me-
dium (32) was used for the growth of N. europaea, and response to sorgoleone was quantified by
measuring the bioluminescence readings (80). When calculating the percentage of inhibition due to
sorgoleone, the 48-h growth point was used with the formula [(ODwithout sorgoleone/ODwith sorgoleone) �
100] 2 100, except for Bacillus no. 5 and Bacillus no. 4, which grew at a faster rate and therefore the 4-
h time point was used. The OD600 data were used to determine whether sorgoleone inhibited or stimu-
lated growth using Welch’s t test due to unequal variance between sorgoleone-treated samples and
control samples. P values from one-sided tests were converted to q values to control for false-discov-
ery rates.

Data availability. All raw sequence data were deposited to NCBI under the BioProject accession
number PRJNA637774.
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