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Abstract: Phosphorylation of 2-(3-hydroxy-5-methoxyphenyl)-6,7-methylenedioxy-1H-

quinolin-4-one (1) afforded diphosphate 2. We found that, upon treatment with methanol 

under mild conditions, 2 can undergo facile and highly regioselective dephosphorylation to 

give the monophosphate 3, with a phosphate group remaining on the phenyl ring. The 

details of the dephosphorylation process were postulated and then probed by LC-MS and 

HPLC analyses. Furthermore, as a preliminary study, the water soluble monophosphate 

prodrug 4 was tested for antitumor activity against a MCF-7 xenograft nude mice model.  
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1. Introduction 

Numerous phosphoric esters have been developed as potential water-soluble prodrugs [1–12]. Many 

of them are marketed as injectable dosage forms, while only a few are used as oral dosage forms [11–13]. 

The phosphoric moiety is introduced into a parent drug molecule, which contains at least one hydroxyl 

functional group, in order to improve water solubility of the parent drug [9–13]. After administration, 

this phosphoric substituent will be cleaved enzymatically by endogenous phosphatases relatively  

easily [7–14]. In general, a parent drug incorporating a single phosphoric moiety has sufficient water 

solubility for use in an injectable dosage. Incorporation of more than one phosphoric moiety has no 

advantage, since the extra phosphoric moieties must also be removed by phosphatases. Furthermore, 

any parent drug still containing a residual phosphoric moiety will be highly polar and easily excreted 

prematurely through the GI or urinary system. 

We recently reported a series of substituted 2-phenyl-1H-quinolin-4-ones and identified them as a 

new class of anticancer drugs [15–19]. In the course of synthesis, we found that phosphorylation of  

2-(3-fluorophenyl)-1H-quinolin-4-one (A) with tetrabenzylpyrophosphate and NaH or K2CO3 in 

tetrahydrofuran solution afforded diphosphate C. The monophosphate B was obtained from the 

regioselective dephosphorylation of diphosphate C in methanol solution (Figure 1). Consequently, we 

were prompted to investigate the importance of methanol in the cleavage process and further evaluate 

the scope and mechanistic aspects of the reaction. 

Figure 1. Structures of compounds A–C. 

 

Previously, we reported that 1 acts as an antitumor agent by inducing both extrinsic and intrinsic 

apoptotic pathways via ROS-mediated activation of p38 MAPK signaling in HL-60 human leukemia 

cells in vitro [20]. In the present study, we selected the hydrophilic monophosphate of 1 as a target 

compound. This prodrug should be converted readily to the parent molecule in the bloodstream or GI 

tract by reaction with phosphatases. A similar strategy has successfully improved the clinical usage of 

etoposide, estramustine, and combretastin A-4 [21–25]. 

2. Results and Discussion 

2.1. Chemistry 

As part of our ongoing research on phosphate prodrugs, we wanted to prepare  

3-(6,7-methylenedioxy-4-oxo-1,4-dihydroquinolin-2-yl)-5-methoxyphenyl dihydrogen phosphate (4), 

which contains a phosphate substituent on the 2-phenyl ring. We expected that this kind of analogue 
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would have similar antitumor activity to related 2-phenyl-1H-quinolin-4-one anticancer drugs. In 

principle, phosphate 4 can be prepared easily from the appropriately substituted benzoic ester by a 

similar synthetic method as previously reported for 2-phenylquinolin-4-one derivatives [15−19]. 

Herein, we wish to detail our observations dealing with the dephosphorylation mechanism of 

diphosphate 2 in methanol solution, including the time period for the release of the phosphoric 

substituent from the dibenzyl 3-(4-((bis(benzoxy)phosphoryl)oxy)-6,7-methylenedioxyquinolin-4-yl)-

5-methoxyphenyl phosphate (2) (Figure 2).  

Figure 2. Structures of compounds 1−4. 

 

The syntheses of 1–4 are illustrated in Scheme 1. Initially, benzoic ester 5 was synthesized 

according to reported methods [26–28]. Saponification of 5 followed by acidification gave the 

corresponding benzoic acid 6. Subsequent chlorination with thionyl chloride afforded 3-benzoxy-5-

methoxybenzoyl chloride (7). Without purification, the resulting compound 7 was reacted with 2-

amino-4,5-methlenedioxyacetophenone (8) to give the desired amide 9, which was then cyclized in the 

presence of sodium hydroxide in refluxing dioxane solution to yield 2-(3-benzoxy-5-methoxyphenyl)-

6,7-methylenedioxy-1H-quinolin-4-one (10). Catalytic hydrogenolysis of the resulting 10 with 

palladium on activated charcoal gave the key intermediate 2-(3-hydroxy-5-methoxyphenyl)-6,7-

methylenedioxy-1H-quinolin-4-one (1). As expected, phosphorylation of 1 with two equivalents of 

tetrabenzyl pyrophosphate and sodium hydride in tetrahydrofuran solution provided the crystalline 

diphosphate 2 in 74% yield. 

Scheme 1. Synthesis of compounds 1–4. 
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Bis(dibenzyl phosphate) 2 was stable in acetonitrile/acetone solution at 25 ± 2 °C. However, it 

decomposed slowly in anhydrous methanol to form dibenzyl phosphate 3, bis-phosphate derivatives 13 

and 14, and benzyl phosphate 15, together with dibenzyl methyl phosphate (11) and benzyl methyl 

ether (12), as shown in Scheme 2.  

Scheme 2. The pathways for dephosphorylation of diphosphate 2. 

 

To investigate the reaction mechanism, all products were isolated in sufficient purity from the 

reaction mixture by using semi-preparative reversed phase column chromatography. LC-MS analyses 

of the reaction products are shown in Table 1. A close examination of molecular ion differences from 

the LC-ESIMS spectra over time revealed that benzyl groups are removed by methanol by the 

conversion of 3→15 in pathway A and of 2→13 plus 13→14 in pathway B. Additionally, a 

dibenzylphosphoryl group is removed in the transformation of 2→3. To further establish the 

dephosphorylation pathways of diphosphate 2, the product distribution was then monitored at different 

time intervals using HPLC analysis. The results are shown in Figure 3. The methanolysis of 2 was 

complete after 96 h and gave dibenzyl phosphate 3 and benzyl hydrogen phosphate 15 as the major 

detectable products. Dibenzyl phosphate 3 reached its highest detected distribution of 60% after 48 h. 

However, the isolated yield of 3 using flash column chromatography was 49% after 48 h. The 

formation of intermediate 13 increased at the beginning of the reaction and then decreased after 24 h. 

Both 13 and 14 disappeared completely after 156 h. Compound 15 is not as soluble as 2 and 3 in 
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methanol, and after a few days, 15 precipitates slowly and influences the yields detected by HPLC. 

Therefore, after the reaction has proceeded for 96 h, a reduction of 3 does not cause an increase of 15.  

Table 1. LC-MS analyses of the reaction products. 

Compounds tR (min) HRESIMS a (m/z) ESIMS a (m/z) Formula 

2 63.4 832.1916 832 C45H40NO11P2 
3 46.9 572.1449 572 C31H27NO8P 

11 46.5 ND b 293 C15H17O4P 
12 49.8 ND b 123 C8H10O 
13 39.8 742.1568 742 C38H34NO11P2 
14 36.3 652.1158 652 C31H28NO11P2 
15 38.3 482.0988 482 C24H21NO8P 

a Electrospray ionization mass spectrometer (ESIMS) and micrOTOF (HRESIMS) were operated in the 

positive mode [M+H]+ with full scan. b Not detected. 

Figure 3. Distribution of products in the decomposition of 2 at various reaction times.  

 

When compound 3 was isolated and re-subjected to the same reaction conditions, the 

decomposition products 12 and 15 were detected after 3 days, confirming that 15 was sufficiently 

stable in methanol solution. In an independent experiment, decomposition of 13 with methanol gave 

dephosphorylated product 15 regioselectively and phosphate 11 in 85% yield, accompanied with a 

small amount of 14. Therefore, the removal of benzyl methyl hydrogen phosphate 16 via the 

decomposition of 14 was not detected successfully. 

The structures of the isolated products 3, 13, 14, and 15, which were derived from decomposition of 

2, were established by mass and NMR spectroscopy analyses. Since the chemical shifts of the benzylic 

hydrogens in structure 2 are very close (absorptions at δ 5.28 and 5.22), we are unable to distinguish 
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the dibenzylphosphoryl group attached on the 1H-quinolin-4-one skeleton from that on the phenyl ring 

by proton NMR spectroscopy. This same phenomenon happens in the carbon NMR absorptions; the 

benzylic carbons appear at δ 70.1 and 70.6. These results limited our ability to determine the position 

of the dibenzylphosphoryl groups in structure 13. Cleavage of a benzyl group from either one of the 

dibenzylphosphoryl groups of 2 to form a benzyl hydrogen phosphoryl group will shift the benzylic 

hydrogens’ absorption from δ 5.28 or δ 5.22 downfield to δ 5.07. Similarly, the benzylic carbon will 

shift from δ 70.1 or δ 70.6 downfield to δ 67.6. With benzylic absorptions at δ 67.6 and 67.7, the 

structure of 14 is confirmed to have two benzyl hydrogen phosphoryl groups attached on the  

2-phenylquinolin-4-one skeleton. 

The uncertainty of determining whether a dibenzylphosphoryl group is attached on the quinoline 

moiety, as in 13, or on the phenyl ring, as in 13a, prompted us to use 31P-NMR spectroscopy. 

Comparison of the 31P-NMR proton decoupled spectra of 3 and 15 showed that, if a benzyl group is 

cleaved from the dibenzylphosphoryl group attached on the 2-phenyl ring to leave a benzyl hydrogen 

phosphoryl group, the phosphorus-31 signal will shift from δ −6.61 to δ −4.73. The 31P-NMR spectrum 

obtained for 14 exhibited two phosphorus signals at δ −4.82 and δ −5.44, suggesting that the 

phosphorus atom of the benzyl hydrogen phosphoryl group attached on the quinolin-4-one ring absorbs 

at δ −5.44. On the basis of these data, we were able to confirm that a signal at δ −5.14 in the 31P-NMR 

spectrum of 13 belongs to the phosphorus atom in the benzyl hydrogen phosphoryl group attached 

on 2-phenyl ring, while a second absorption at δ −6.87 must be due to the dibenzylphosphoryl 

group attached on the quinolin-4-one ring. Therefore, the structure of 13 was identified as  

benzyl 3-(4-((bis(benzyloxy)phosphoryl)oxy)-6,7-methylenedioxyquinolin-2-yl)-5-methoxyphenyl) 

hydrogen phosphate. 

With this information in hand, a possible mechanism is shown in Scheme 2. Two pathways leading 

to the formation of 15 are suggested. Due to the electronic and resonance effects, a dibenzylphosphoryl 

group attached on the quinolin-4-one ring has been reported to undergo decomposition much faster 

than one on the phenyl ring in methanol solution [6]. Thus, the decomposition of diphosphate 2 in 

methanol solution is expected to proceed by an addition-elimination reaction on the 

dibenzylphosphoryl group of the quinolin-4-one skeleton and give monophosphate 3 as the only 

product. One of the benzyl groups in monophosphate 3 is then slowly cleaved by methanol to give 15, 

which is highly stable in solution at ambient temperature. The attack of methanol on the benzylic 

carbon atom of a phosphate ester is unusual and has never been reported to our knowledge. The 

proposed mechanism of nucleophilic substitution was supported by the detection of benzyl methyl 

ether in the reaction mixture. 

In the second pathway leading to 15, one of the two benzyl groups in the dibenzylphosphoryl group 

attached on the phenyl ring of diphosphate 2 undergoes nucleophilic substitution by methanol to form 

compound 13. Because benzyl methyl hydrogen phosphate 16 was not detected in the HPLC data and 

the yield of 14 was low (Figure 3), compound 15 should be derived predominately from 13 by 

dephosphorylation. Finally, hydrogenolysis of 3 or 15, as well as diphosphate 2, in the presence of 

palladium on charcoal produces 3-(6,7-methylenedioxy-4-oxo-1,4-dihydroquinolin-2-yl)-5-methoxyphenyl 

dihydrogen phosphate (4) in high yield as a stable and water soluble prodrug of the antitumor agent 1. 
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2.2. In Vitro Biological Evaluation  

The synthesized 2-(3-hydroxy-5-methoxyphenyl)-6,7-methylenedioxy-1H-quinolin-4-one (1) was 

evaluated for cell antiproliferative activity against human Hep3B hepatoma, Colo205 colon carcinoma, 

A498 renal carcinoma, NCI-H460 lung cancer, and Detroit 551 embryonic fibroblast cell lines. 

Compound 1 exhibited no significant cytotoxic activity against these five cell lines (IC50 > 50 μM). 

Compound 1 was submitted to US-NCI for evaluation of growth inhibitory activity against the NCI 

human cancer cell line panel. The results are shown in Table 2. The mean of logGI50 value of 

compound 1 was −4.73, indicating weak inhibitory activity against most cancer cell lines. In 

preliminary screening against 60 human cell lines, 1 demonstrated high selective inhibitory activity 

against NCI-H522 (non-small cell lung cancer), OVCAR-3 (ovarian cancer), K562 (leukemia) and 

MCF-7 (breast cancer) cell lines, showing logGI50 values of −6.70, −6.55, −6.47, and −6.39 (Figure 4, 

Supplementary Data). 

Table 2. Inhibition of in vitro tumor cell growth by compound 1. 

Cell lines logGI50 logTGI logLC50 

K562 −6.47 >−4.00 >−4.00 
NCI-H522 −6.70 −6.33 >−4.00 
OVCAR-3 −6.55 −6.13 >−4.00 

MCF-7 −6.39 >−4.00 >−4.00 

K562, leukemia cell line; NCI-H522, non-small cell lung cancer cell line; OVCAR-3, ovarian cancer cell 

line; MCF-7, breast cancer cell line. 2. GI50 = the concentration that causes 50% growth inhibition; TGI = the 

concentration that causes total growth inhibition; LC50 = the dosage of a given drug required to kill 50% of a 

test population. 

Figure 4. Dose-response curves of compound 1 against the sensitive cell lines. 

 

2.3. In Vivo Antitumor Activity  

Based on the NCI-60 cell line screening results of 1, we selected the MCF-7 xenograft model using 

dosing at 90 mg/kg (i.v.) to evaluate the in vivo antitumor activity of monophosphate prodrug 4  

(Figure 5A−C). According to the results shown in Figure 5A, prodrug 4 induced time-dependent 
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inhibition of MCF-7 tumor growth. During the course of antitumor evaluation, no significant body 

weight changes were detected in either the tested or the control mice (Figure 5C). 

Figure 5. (A) Mean tumor volume-time profiles (B) Mean tumor weight-time profiles  

(C) Mean body weight-time profiles in MCF-7 xenograft nude mice (n = 4) following i.v. 

dosing of 4 at 90 mg/kg 5 days per week for 4 consecutive weeks. * p < 0.05 vs. control. 

 

 

3. Experimental 

3.1. Synthesis 

3.1.1. General 

Commercial reagents were used without purification. TLC was performed on precoated silica gel 60 

F254 (Merck) and spots were visualized by UV light at 254 nm. Silica gel 60 (Merck 70–230 mesh) was 

used for flash column chromatography. Melting points were determined on a Yanaco MP-500D 

apparatus and uncorrected. IR spectra were recorded on a Shimadzu IR Prestige-21 FTIR-8400S 

spectrophotometer. The one- and two-dimensional NMR spectra were recorded on either Bruker 500 

AV II or Avance DPX-200 FT-NMR spectrometers at room temperature on solutions in CDCl3, D2O, 

CD3OD, or DMSO-d6. TMS was used as the internal standard for the 1H and 13C-NMR, and 

phosphoric acid was used as the external standard for 31P-NMR. HPLC was performed on a Shimadzu 

LC-10AT apparatus equipped with Shimadzu SPD-M10AVP diode-array detector and Shimadzu and 

Shimadzu SIL-10A auto-injector. Phenomenex Prodigy ODS3 100A, (5 μm, 250 × 4.6 mm i.d), 
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Nucleodur® C18 HTec (5 µm, 250 × 4.6 mm i.d), semi-preparative Nucleodur® C18 HTec (5 µm,  

250 × 10 mm i.d) and Thermo Hypersil ODS (5 µm,150 × 4.6 mm i.d) columns were used for 

analytical and preparative purposes, respectively. EIMS spectra were measured with HP 5995 GC–MS. 

The ESIMS spectra were obtained using the LC-ESIMS was performed on Agilent 1100 apparatus 

equipped with ESI mass spectrometer and with ultraviolet detection. The LC-ESI-HRMS spectra were 

obtained using LC-ESI-HRMS performed on an Agilent 1100 apparatus equipped with a Bruker 

micrOTOF orthogonal ESI-TOF mass spectrometer.  

3.1.2. Synthesis of Compounds 5−7 and 9 

Methyl 3-(benzoxy)-5-methoxybenzoate (5, 4.45 g, 16.34 mmol) was dissolved in a solution of 

95% ethanol (120 mL) and water (5 mL). Sodium hydroxide (2.00 g, 50.00 mmol) was added, and the 

reaction mixture was heated under reflux for one hour. After the reaction mixture was evaporated 

under vacuum, the residue was quenched with water (150 mL). The solution was neutralized with 

dilute HCl, and the precipitate was collected and washed with water and acetone to give 6 (3.79 g, 

90%). Compound 6 (2.57 g, 9.95 mmol), thionyl chloride (4.80 g, 28.07 mmol) and N,N-dimethyl 

formamide (3 drops) were added in dry toluene (200 mL) and stirred at room temperature. The reaction 

mixture was stirred for 24 h and then evaporated to dryness. The crude product was used directly in the 

next step without further purification. Compounds 7 (2.77 g, 10.01 mmol) and 8 (1.79 g, 9.96 mmol) 

were suspended in dry THF (200 mL) and triethylamine (10 mL). The mixture was stirred at room 

temperature for 24 h and then evaporated. The residue was purified by silica gel column 

chromatography with CH2Cl2/EtOAc = 3:1 to obtain 9. 

N-(6-Acetylbenzo[d][1,3]dioxol-5-yl)-3'-(benzoxy)-5'-methoxy-benzamide (9). Light yellow solid 

(3.15g, 75%). Mp: 151–152 °C. 1H-NMR (500 MHz, DMSO-d6): δ 2.64 (s, –COCH3,3H), 3.84 (s,  

–OCH3, 3H), 5.20 (s, –OCH2Ph, 2H), 6.19 (s, –OCH2O–, 2H), 6.88 (s, H-4, 1H), 7.09 (s, H-6, 1H), 

7.16 (s, H-2, 1H), 7.36 (d, J = 7.43 Hz, ArH, 1H), 7.43 (t, J = 7.43 Hz, ArH, 2H), 7.49 (d, J = 7.43 Hz, 

ArH, 2H), 7.68 (s, H-5′, 1H), 8.34 (s, H-2′, 1H), 12.85 (s, -NH, 1H); 13C-NMR (125 MHz, DMSO-d6): 

δ 29.3 (–COCH3), 56.0 (–OCH3), 70.1 (–OCH2Ph), 100.8 (C-2′), 102.9 (–OCH2O–), 105.0 (C-4), 

105.7 (C-6), 106.5 (C-2), 111.3 (C-5′), 116.5 (C-6′), 128.5 (–OCH2Ph), 128.6 (–OCH2Ph), 129.0  

(–OCH2Ph), 136.9 (C-1, and –OCH2Ph), 138.3 (C-1′), 143.1 (C-4′), 152.7 (C-3′), 160.3 (C-3), 161.2 

(C-5), 165.0 (–NHCO), 201.8 (–COCH3). IR: ν 3471, 2939, 2883, 2640, 1683, 1593, 1456, 1431, 

1350, 1301, 1269, 1203, 1159, 1060, 1033, 952, 846, 732 cm−1. EIMS (70eV) m/z: 419.1 [M]+;  

LC-ESI-HRMS (Positive mode) m/z: [M+H]+ calcd for C24H22NO6, 420.1442; found 420.1438.  

Methyl 3-(benzoxy)-5-methoxybenzoate (5). Colorless oil. 1H-NMR (200 MHz, CDCl3): δ 3.79 (s, 3H), 

3.88 (s, 3H), 5.05 (s, 2H), 6.70 (t, J = 2.5 Hz, 1H), 7.18 (dd, J = 2.5, 1.2 Hz, 1H), 7.26 (dd, J = 2.5,  

1.2 Hz, 1H), 7.29-7.46 (m, 5H); 13C-NMR (50 MHz, CDCl3): δ 52.2, 55.5, 70.2, 106.5, 107.5, 108.0, 

127.5, 128.1, 128.6, 133.4, 136.5, 159.6, 160.6, 166.8. EIMS (70eV) m/z: 272.1 [M]+.  

3-(Benzyloxy)-5-methoxybenzoic acid (6). Colorless oil. 1H-NMR (200 MHz, CDCl3): δ 3.81 (s, 3H), 

5.07 (s, 2H), 6.76 (t, J = 2.5 Hz, 1H), 7.25 (dd, J = 2.5, 1.2 Hz, 1H), 7.30–7.50 (m, 5H); 13C-NMR  
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(50 MHz, CDCl3): δ 55.9, 69.9, 106.2, 107.6, 108.2, 128.1, 128.3, 128.9, 133.3, 137.2, 159.9, 160.8, 

167.3. EIMS (70eV) m/z: 258.1 [M]+. 

3.1.3. Synthesis of Compound 10 

A mixture of 9 (3.33 g, 7.95 mmol) and NaOH (2.50 g, 62.50 mmol) was suspended in 1,4-dioxane 

(200 mL). The reaction mixture was refluxed for 12 h. After cooling to room temperature, the mixture 

was evaporated and then the residue was added to 10% NH4Cl solution (100 mL). The precipitate was 

collected and washed with water and acetone. The residue was purified by silica gel column 

chromatography with EtOAc to obtain 10. 

2-(3-Benzoxy-5-methoxyphenyl)-6,7-methylenedioxy-1H-quinolin-4-one (10). Gray-white solid 

(5.21 g, 75%). Mp: 238–239 °C.1H-NMR (500 MHz, DMSO-d6): δ 3.85 (s, –OCH3, 3H), 5.22 (s,  

–OCH2Ph, 2H), 6.16 (s, –OCH2O–, 2H), 6.31 (s, br, H-3, 1H), 6.79 (s, H-4', 1H), 6.95 (s, H-6', 1H), 

7.04 (s, H-2', 1H), 7.21 (s, H-8, 1H), 7.36 (m, ArH, 1H), 7.40–7.44 (m, ArH and H-5, 2H), 7.49–7.50 

(m, 2H, ArH), 11.50 (s, 1H, –NH); 13C-NMR (125 MHz, DMSO-d6,): δ 56.0 (–OCH3), 70.1  

(–OCH2Ph), 97.7 (C-8), 101.8 (C-5), 102.4 (–OCH2O–), 103.2 (C-4'), 106.0 (C-6'), 106.6 (C-2'), 107.2 

(C-3), 120.5 (C-4a), 128.3 (–OCH2Ph), 128.4 (–OCH2Ph), 129.0 (–OCH2Ph), 137.3 (C-8a, C-1', and  

–OCH2Ph), 140.7 (C-2), 145.7 (C-6), 151.6 (C-7), 160.3 (C-3'), 161.2 (C-5'), 176.6 (C-4). IR: ν 3242, 

3132, 3057, 2966, 1604, 1589, 1521, 1471, 1321, 1265, 1195, 1163, 1045, 941, 855, 842 cm−1. EIMS 

(70 eV) m/z: 401.1 [M]+; LC-ESI-HRMS (Positive mode) m/z: [M+H]+ calcd for C24H20NO5, 402.1336; 

found 420.1329. 

3.1.4. Synthesis of Compound 1 

A suspension of 0.50 mg (1.25 mmol) of 10 and 0.25 mg of palladium (10 wt% on activated 

carbon) in methanol (60 mL) was stirred at room temperature under hydrogen gas atmosphere for 24 h. 

The precipitate was collected and dissolved in 10% NaOH solution and then filtered. The 

filtrate was acidified with dil HCl and the precipitate was then collected and washed with 

acetone and water to obtain 1. 

2-(3-Hydroxy-5-methoxyphenyl)-6,7-methylenedioxyquinolin-1H-4-one (1). White solid (0.30 mg, 77%). 

Mp: >300 °C. 1H-NMR (500 MHz, DMSO-d6): δ 3.81 (s, –OCH3, 3H), 6.16 (s, –OCH2O–, 2H), 6.24 

(s, br, H-3, 1H), 6.52 (s, H-4′, 1H), 6.77 (s, H-6′, 1H), 6.78 (s, H-2′, 1H), 7.22 (s, H-8, 1H), 7.40 (s,  

H-5, 1H), 9.91 (s, –OH, 1H), 11.56 (s, br, –NH, 1H); 13C-NMR (125 MHz, DMSO-d6): δ 55.8  

(–OCH3), 97.8 (C-8), 101.5 (C-5), 102.4 (–OCH2O–), 103.3 (C-4′), 104.3 (C-6′), 106.7 (C-2′), 107.2 

(C-3), 120.8 (C-4a), 136.8 (C-1′), 137.8 (C-8a), 145.7 (C-6), 149.3 (C-2), 151.6 (C-7), 159.4 (C-3′), 

161.2 (C-5′), 176.1 (C-4). IR: ν 3383, 3250, 3153, 3010, 2974, 2839, 2704, 1635, 1616, 1591, 1531, 

1496, 1489, 1471, 1429, 1338, 1315, 1265, 1199, 1165, 1056, 1035, 931, 854 cm−1. LC-ESI-MS 

(Positive mode) m/z: 312 [M+H]+; LC-ESI-HRMS (Positive mode) m/z: [M+H]+ calcd for C17H13NO5, 

311.0794; found, 311.0800. The purity analysis was detected by reversed-phase HPLC on Thermo 

Hypersil ODS column (150 × 4.6 mm i.d) using an acetonitrile/0.02 M NaHCO3 (70:30) mixture as 
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eluent. Flow rate was 0.3 mL/min and UV detector was set at 254 nm. The retention time of 1 was  

5.4 min. The purity of 1 was 97.0%. 

3.1.5. Synthesis of Compound 2 

To a stirred solution of 1 (0.41 g, 1.32 mmol) in dry THF (40 mL) was added NaH (60% in mineral 

oil, 0.36 g) at 0 °C. After the mixture was stirred for 5 min, tetrabenzyl pyrophosphate (1.44 g, 2.68 mmol) 

was added and stirring was continued for 10 min. The reaction mixture was filtered and washed with 

THF. The filtrate was concentrated under vacuum at a temperature below 30 °C. The residue was 

purified by silica gel column chromatography with an eluent of n-hexane-EtOAc = 1:1 to obtain 2. 

Dibenzyl 3-(4-((bis(benzoxy)phosphoryl)oxy)-6,7-methylenedioxyquinolin-4-yl)-5-methoxyphenyl 

phosphate (2). White solid (0.82 g, 74%). Mp: 80–81 °C. 1H-NMR (500 MHz, CD3OD): δ 3.84 (s,  

–OCH3, 3H), 5.21 (d, 3JHP = 9.4 Hz, –OPO(OCH2Ph)2, 2H), 5.22 (d, 3JHP = 9.0 Hz,–OPO(OCH2Ph)2, 

2H), 5.27 (d, 3JHP = 10.7 Hz, –OPO(OCH2Ph)2, 2H), 5.28 (d, 3JHP = 9.9 Hz, –OPO(OCH2Ph)2, 2H), 

6.20 (s, –OCH2O–, 2H), 6.81 (s, H-6, 1H), 7.07 (s, H-3′, 1H), 7.28–7.40 (m, ArH, H-8′, H-2 and H-4, 

22H), 7.46 (s, H-5′, 1H). 1H-NMR (200 MHz, CDCl3): δ 3.77 (s, –OCH3, 3H), 5.13 (d, 3JHP = 8.3 Hz,  

–OPO(OCH2Ph)2, 4H), 5.16 (d, 3JHP = 9.5 Hz,–OPO(OCH2Ph)2, 4H), 6.09 (s, –OCH2O–, 2H), 6.78 (m, 

H-6, 1H), 7.10 (s, H-3′, 1H), 7.23–7.40 (m, ArH, H-8′, H-2, H-4, and H-5′, 22H); 13C-NMR (50 MHz, 

CDCl3): δ 55.6 (–OCH3), 70.1 (–OPO(OCH2Ph)2), 70.6 (d, 2JC-P = 5.0 Hz, –OPO(OCH2Ph)2), 97.2  

(C-5′), 101.9 (–OCH2O–), 106.1 (C-8′), 106.6 (C-3′), 106.7 (d, 3JC-P = 5.0 Hz, C-6), 110.0 (C-4), 111.5 

(d, 3JC-P = 5.0 Hz, C-2), 117.45 (d, 3JC-P = 5.0 Hz, C-4a′), 128.1 (–OCH2Ph), 128.1 (–OCH2Ph), 128.6 

(–OCH2Ph), 128.7 (–OCH2Ph), 128.9 (–OCH2Ph), 135.0 (d, 3JC-P = 5.0 Hz, –OCH2Ph), 135.5 (d,  
3JC-P = 5.0 Hz, –OCH2Ph), 141.5 (C-3), 148.2 (C-6′, and C-8a′), 151.5 (C-7′), 151.7 (d, 3JC-P = 5.0 Hz, 

C-1), 153.8 (d, 2JC-P = 5.0 Hz, C-4′), 154.9 (C-2′), 160.8 (C-5); 31P-NMR (202.4947 MHz, CD3OD): δ 

−6.61, −6.77. IR: ν 3089, 3064, 3032, 2953, 2927, 2891, 2360, 1614, 1581, 1490, 1456, 1352, 1292, 

1265, 1199, 1020, 962, 896, 746, 696 cm−1. LC-ESI-MS (Positive mode) m/z: 832 [M+H]+; LC-ESI-

HRMS (Positive mode) m/z: [M+H]+ calcd for C45H40NO11P2, 832.2071; found, 832.1916. The purity 

analysis was detected by reversed-phase HPLC on Nucleodur® C18 HTec (5 µm, 250 × 4.6 mm i.d) 

using a MeOH/0.02 M NaHCO3 (93:7) mixture as eluent. The flow rate was 0.5 mL/min and UV 

detector was set at 254 nm. The retention time of 2 was 11.2 min; the purity of 2 was 99.6%. 

3.1.6. Synthesis of Compounds 3 and 11 

A suspension of 2 (0.92 g, 1.11 mmol) in 100 mL of methanol was stirred at 25 °C for 48 h. The 

precipitate was collected and purified by silica gel column chromatography (EtOAc) to give 2 (0.05 g, 

5%), 3 (0.31 g, 49%) and dibenzyl methyl phosphate 11 (0.52 g, 40%).  

Dibenzyl 3-(6,7-methylenedioxyquinolin-2-yl)-5-methoxyphenyl phosphate (3). Compound 3 

was obtained as a white solid. Mp: 108–109 °C. 1H-NMR (500 MHz, CDCl3): δ 3.66 (s, –OCH3, 3H), 

5.10 (d, 3JHP = 9.1 Hz, –OPO(OCH2Ph)2, 4H), 6.01 (s, –OCH2O–, 2H), 6.37 (s, H-3′, 1H), 6.62 (s, H-6, 

1H), 6.98 (s, H-8′, 1H), 7.16 (s, H-2, 1H), 7.28–7.40 (m, ArH and H-4, 11H), 7.61 (s, H-5′, 1H);  
13C-NMR (125 MHz, CDCl3): δ 55.6 (–OCH3), 70.4 (d, 2JC–P = 6.0 Hz, –OPO(OCH2Ph)2), 97.3 (C-5′), 
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101.8 (–OCH2O–), 102.3 (C-8′), 107.6 (C-3′), 107.8 (d, 3JC–P = 4.2 Hz, C-2), 109.9 (C-6), 110.9 (d,  
3JC–P = 4.2 Hz, C-4), 121.0 (C-4a′), 128.1 (–OCH2Ph), 128.6 (–OCH2Ph), 128.9 (–OCH2Ph), 135.0 (d, 
3JC–P = 6.0 Hz, –OCH2Ph), 136.8 (C-8a′), 145.9 (C-2′), 148.1 (C-6′), 151.4 (d, 3JC–P = 6.7 Hz, C-1), 

151.9 (C-7′), 160.9 (C-5), 177.4 (C-4′); 31P-NMR (202.4947 MHz, CD3OD): δ −6.61. IR: ν 3234, 

3095, 3066, 3008, 2960, 2927, 2846, 1635, 1602, 1589, 1521, 1471, 1259, 1155, 1035, 1012, 966, 854, 

734, 696 cm−1. LC-ESI-MS (Positive mode) m/z: 572 [M+H]+; LC-ESI-HRMS (Positive mode) m/z: 

[M+H]+ calcd for C31H27NO8P, 572.1469; found, 572.1449. The purity analysis was detected by 

reversed-phase HPLC on Thermo Hypersil ODS column (150 × 4.6 mm i.d.) using a MeOH/0.01 M 

NaHCO3 (95:5) mixture as eluent. The flow rate was 0.5 mL/min. UV detector was set at 254 nm. The 

retention time of 3 was 3.9 min; the purity of 3 was 93.1%.  

Dibenzyl methyl phosphate (11). Compound 11 was obtained as colorless oil.1H NMR (200 MHz, 

CDCl3): δ 3.67 (d,3JHP = 11.2 Hz, –OCH3, 3H), 5.02 (d, 3JHP = 8.1 Hz, –OCH2Ph, 4H), 7.33 (s, br, 

ArH, 10H). 13C-NMR (50 MHz, CDCl3,): δ54.3 (d, 2JC–P = 5.0 Hz, –OCH3), 69.3 (d, 2JC–P = 5.0 Hz,  

–OCH2Ph), 127.9 (–OCH2Ph), 128.6 (–OCH2Ph), 135.8 (d, 3JC–P = 6.6 Hz, –OCH2Ph). 31P-NMR 

(202.4947MHz, CD3OD): δ −0.16. LC-ESI-MS m/z: 293.0 [M+H]+. 

3.1.7. Synthesis of Compound 15 

A suspension of 2 (0.20 g, 0.24 mmol) in methanol (100 mL) was stirred at 25°C for 96 h. The 

precipitate was collected to give benzyl hydrogen phosphate 15 (0.04 mg, 33%).  

Benzyl 3-(6,7-methylenedioxyquinolin-2-yl)-5-methoxyphenylhydrogen phosphate (15). Light yellow 

solid. Mp: 60–61 °C; 1H-NMR (500 MHz D2O + NaOH): δ 3.70 (s, –OCH3, 3H), 4.90 (d, 3JHP = 7.9 Hz,  

-OPO(OCH2Ph)OH, 2H), 5.89 (s, –OCH2O–, 2H), 6.59 (s, H-3′, 1H), 6.64 (s, H-2, 1H), 6.98 (s, H-4, 

1H), 7.00 (s, H-6, 1H), 7.05 (s, H-8′, 1H), 7.12 (d, J = 7.2 Hz, ArH, 1H), 7.16 (d, J = 7.2 Hz, ArH, 

2H), 7.23 (d, J = 7.4 Hz, ArH, 2H), 7.34 (s, H-5′, 1H); 13C-NMR (125 MHz, D2O + NaOH): δ 55.7  

(–OCH3), 68.4 (d, 2JC-P = 5.4 Hz, –OPO(OCH2Ph)OH), 99.3 (C-5′), 101.4 (–OCH2O–), 103.6 (C-8′), 

105.4 (C-3′), 106.3 (d, 2JC-P = 3.6 Hz, C-2), 108.9 (C-6), 112.2 (d, 3JC-P = 4.5 Hz, C-4), 120.9 (C-4a′), 

127.9 (–OCH2Ph), 128.3 (–OCH2Ph), 128.7 (–OCH2Ph), 136.7 (d, 3JC-P = 7.3 Hz, –OCH2Ph), 142.8 

(C-3), 145.2 (C-6′), 147.0 (C-8a′), 150.1 (C-7′), 152.7 (d, 2JC-P = 7.3 Hz, C-5), 156.9 (C-2′), 159.7  

(C-1), 172.4 (C-4′); 31P-NMR (202.4947 MHz, CD3OD): δ −4.73. IR: ν 3396, 3070, 2922, 2835, 1869, 

1645, 1608, 1479, 1421, 1273, 1157, 1085, 1035, 1012, 871, 851 cm−1. LC-ESI-MS (Positive mode) 

m/z: 482 [M+H]+; LC-ESI-HRMS (Positive mode) m/z: [M+H]+ calcd for C24H21O8NP, 482.0999; 

found, 482.0988. 

3.1.8. Synthesis of Compound 4 

A suspension of dibenzyl phosphate 3 (0.04 g, 0.07 mmol) in anhydrous methanol (20 mL) was 

hydrogenated in the presence of 10% Pd/C (0.02 g) at 25 °C for 15 min. The precipitate was collected 

and dissolved in 10% NaHCO3 solution and then filtered. The filtrate was acidified with dilute HCl 

and the precipitate was then collected and washed with acetone to obtain 4. 
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3-(6,7-Methylenedioxy-4-oxo-1,4-dihydroquinolin-2-yl)-5-methoxyphenyl dihydrogen phosphate 

(4).White solid (0.02 g, 90%). Mp: > 300 °C. 1H-NMR (500 MHz, D2O + NaOH): δ3.87 (s,  

–OCH3, 3H), 6.02 (s, –OCH2O–, 2H), 6.77 (s, H-3′, 1H), 6.91 (s, H-6, 1H), 7.12 (s, H-2, 1H), 

7.16 (s, H-8′, 1H), 7.23 (s, H-4, 1H), 7.44 (s, H-5′, 1H); 13C-NMR (125 MHz, D2O + NaOH):  

δ 55.7 (–OCH3), 99.4 (C-5′), 101.5 (–OCH2O–), 103.6 (C-8′), 105.4 (C-3′), 106.7 (C-6), 

107.1 (C-2), 112.4 (C-4), 120.9 (C-4a′), 142.3 (C-3), 145.4 (C-6′), 147.1 (C-8a′), 150.3  

(C-7′), 155.3 (C-5), 157.8 (C-2′), 159.8 (C-1), 172.6 (C-4′); 31P-NMR (202.4947 MHz, CD3OD): 

δ −3.86. IR: ν 3365, 3107, 2918, 2411, 1845, 1645, 1606, 1577, 1498, 1475, 1421, 1390, 1317, 1271, 

1197, 1163, 1091, 1058, 1035, 935, 867, 839, 802, 528 cm−1. LC-ESI-HRMS (Negative mode) m/z: 

[M−H]− calcd for C17H13O8NP, 390.0373; found, 390.0389. The purity analysis was detected by 

reversed-phase HPLC on a Thermo Hypersil ODS column (5 µm, 150 × 4.6 mm i.d) using a 

MeOH/9% NaHCO3 (70:30) mixture as eluent. The flow rate was 0.5 mL/min and UV detector was set 

at 254 nm. The retention time of 4 was 2.71 min; the purity of 4 was 99.4%. 

3.2. Isolation Reaction Products from Reaction Mixture 

After stirring for 24 h, the starting material 2 was dissolved in MeOH. The reaction mixture was 

separated by semi-preparative HPLC on Rp-18 column (Nucleodur®, C18 HTec, 5 μm, 250 × 10 mm 

i.d.) using a MeOH/0.02 M NaHCO3 (90:10) mixture solution as the mobile phase with flow rate  

0.5 mL/min to obtain compounds 2, 3, 13, 14, and 15. 

Benzyl 3-(4-((bis(benzoxy)phosphoryl)oxy)-6,7-methylenedioxyquinolin-2-yl)-5-methoxyphenyl 

hydrogen phosphate (13). Colorless oil. 1H-NMR (500 MHz, CD3OD): δ 3.83 (s, –OCH3, 3H), 5.07 (d, 
3JHP = 8.0 Hz, –OPO(OCH2Ph)OH, 2H), 5.20 (d, 3JHP = 8.8 Hz, –OPO(OCH2Ph)2, 4H), 6.16 (s,  

–OCH2O–, 2H), 6.80 (s, H-4′, 1H), 7.30–7.40 (m, ArH, 19H), 7.45 (s, H-5, 1H), 7.80 (s, H-3, 1H);  
13C-NMR (125 MHz, CD3OD): δ 54.9, 67.6, 70.3, 97.5, 102.0, 104.1, 106.0, 106.3, 109.7, 111.4, 

117.3, 127.2, 127.4, 127.9, 128.0, 128.3, 128.5, 134.7, 136.5, 141.3, 146.5, 147.0, 150.3, 150.8, 154.5, 

155.8, 160.0; 31P-NMR (202.4947MHz, CD3OD): δ −5.14, −6.87. IR: ν 3441, 3034, 2955, 2895, 1962, 

1892, 1815, 1750, 1636, 1603, 1468, 1456, 1269, 1250, 1150, 1092, 1038, 1015, 966, 864, 736, 696 

cm−1. LC-ESI-MS (Positive mode) m/z: 742 [M+H]+; LC-ESI-HRMS (Positive mode) m/z: [M+H]+ 

calcd for C38H34NO11P2, 742.1602; found, 742.1568. 

Benzyl 3-((4-((benzoxy)phosphoryl)oxy)-6,7-methylenedioxyquinolin-2-yl)-5-methoxyphenyl hydrogen 

phosphate (14). Colorless oil.1H-NMR (500 MHz, CD3OD): δ 3.83 (s, 3H, –OCH3), 5.05 (d,  
3JHP = 8.8 Hz, –OPO(OCH2Ph)OH, 2H), 5.06 (d, 3JHP = 7.4 Hz, –OPO(OCH2Ph)OH, 2H), 6.15 (s,  

–OCH2O–, 2H), 7.04 (s, H-4′, 1H), 7.16–7.23 (m, 3H), 7.26–7.37 (m, 4H), 7.37–7.43 (m, 2H), 7.45 (s, 

H-5, 1H), 7.78 (s, H-3, 1H); 13C-NMR (125 MHz, CD3OD): δ 54.5, 67.6, 67.8, 97.4, 101.8, 104.1, 

106.3, 106.4, 107.9, 111.7, 117.7, 126.7, 127.1, 127.4, 127.8, 137.3, 137.5, 141.6, 147.4, 147.7, 151.3, 

154.1, 156.2, 156.5, 160.7; 31P-NMR (202.4947 MHz, CD3OD): δ -4.82, -5.44. IR: ν 3441, 3065, 

3034, 2955, 2895, 2852, 1603, 1558, 1522, 1470, 1456, 1250, 1150, 1092, 1036, 1022, 968, 864, 736, 698 

cm−1. LC-ESI-MS (Positive mode) m/z: 652 [M+H]+; LC-ESI-HRMS (Positive mode): m/z [M+H]+ 

calcd for C31H28NO11P2, 652.1132; found, 652.1158. 
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3.3. Reaction Products Analysis by HPLC-ESI-MS 

On-line coupling of HPLC with ESI mass spectrometry has been used to analyze reaction 

mechanisms [29,30]. After stirring starting material 2 (4 mg/mL) in MeOH for 72 h, the, separation 

was achieved on ODS analytical column (Phenomenex Prodigy ODS3 100A, 5 μm, 250 × 4.6 mm i.d) 

using a gradient elution of acetonitrile and 0.04 mM NH4OH/H2O (pH = 9) in the following ratios 95% 

of water at 0 min, 88% of water at 5 min, 80% of water at 25 min, 54% of water at 30 min, 34% of 

water at 35−50 min, 1% of water at 55−65 min, 95% of water at 66−76 min. The flow rate was  

0.5 mL/min and the column temperature was maintained at 25–28 °C. The reaction was then 

monitored by LC-MS. An electrospray ionization (ESI) mass spectrometer and micrOTOF were 

operated in the positive mode with full scan. 

3.4. Bioassay 

3.4.1. Cell Culture 

Human renal carcinoma A498, colon cancer (Colo205) and non-small-cell-lung cancer (NCI-H460) 

cells were maintained in RPMI-1640 medium supplemented with 10% fetal bovine serum 

(GIBCO/BRL), penicillin (100 U/mL)/streptomycin (100 μg/mL)(GIBCO/BRL) and 1% L-glutamine 

(GIBCO/BRL) at 37 °C in a humidified atmosphere containing 5% CO2. Human hepatocellular 

carcinoma cell line Hep3B was obtained from America Type Culture Collection (Manassas, VA, 

USA). Hep3B cells were cultured in DMEM/F12 medium supplemented with 10% FBS, and penicillin 

(100 U/mL)/streptomycin (100 μg/mL) and maintained in a humidified incubator containing 5% CO2. 

Normal skin Detroit 551 cells were maintained in DMEM medium supplemented with 10% fetal 

bovine serum (GIBCO/BRL), penicillin (100 U/mL)/streptomycin (100 μg/mL) (GIBCO/BRL)  

and 1% L-glutamine (GIBCO/BRL) at 37 °C in a humidified atmosphere containing 5% CO2. 

Logarithmically growing cancer cells were used for all experiments. 

3.4.2. In vitro Cell Viability Assay 

Cell viability was detected by 3(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

assay. Cells were cultured in 96-well plates at 37 °C and incubated with complete medium containing 

the vehicle (DMSO) or compounds for indicated times and concentrations. After treatment, cells were 

incubated with MTT solution (1 mg/mL in 1× PBS) at 37 °C for 2 h. The absorbance of the samples 

was read at wavelength of 570 nm and corrected for inference at 630 nm. 

3.4.3. In Vivo Antitumor Activity Assay 

The animals used in this experiment had access to food and water ad libitum. Experimental 

procedures using animals were approved by the Institutional Animal Care and Use Committees of The 

National Health Research Institutes. Nude female BALB/c mice (18–20 g; 6–8 weeks of age) were 

purchased from The National Laboratory Animal Center, Taipei, Taiwan, and maintained in 

pressurized ventilated cages according to institutional regulations. Human breast cancer MCF-7 

(ATCC HTB-22) cells were cultured in DMEM with 10% heat-inactivated FBS and incubated at 37 °C 



Molecules 2013, 18 8042 

 

 

in a humidified atmosphere containing 5% CO2. Each nude mouse was subcutaneously inoculated with 

3 × 106 MCF-7 cells in 0.2 mL PBS via a 24-gauge needle. After the injection of tumor cells, the 

animals were injected with beta-estradiol every 2 days. After the appearance of a 100 mm3 tumor 

nodule, the tumor-bearing mice were randomly divided into 2 groups. Compound 4 was administered 

by i.v. injection at 90 mg/kg on 5 days every week for 4 consecutive weeks. The animals were weighed 

and the tumors were measured using calipers twice a week before, during, and after drug treatment. 

The tumor volume was calculated with the following formula: 1/2 (L×W2), where L is the length and 

W is the width of the tumor [31]. At the end of the experiments, the animals were euthanized with 

carbon dioxide followed by cervical dislocation.  

4. Conclusions  

Our present studies have demonstrated that dephosphorylation of an O-dibenzylphosphate moiety 

on quinolin-4-one rings can be carried out in a methanol solution at ambient temperature resulting in 

the formation of various phenyl dihydrogen phosphate systems. The reaction mechanism for the 

decomposition of 2 is readily explained by a sequence of addition-elimination reactions. The results 

reported herein indicate that dephosphorylation of an O-dibenzylphosphate or an O-benzyl hydrogen 

phosphate moiety on the quinolin-4-one ring is much faster than that on the phenyl ring. Finally, 

hydrogenolysis of 3 produces monophosphate 4 in high yield as a stable and water soluble prodrug of 

the antitumor agent 1. Based on the NCI-60 cell line screening data of 1, we selected the MCF-7 

xenograft model to demonstrate that the monophosphate prodrug 4 inhibited the growth of MCF-7 

tumor by about 44%, at 90 mg/kg/day dosage, without causing significant toxicity.  
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