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Abstract
Two ecologically and economically important, and threatened Dipterocarp trees Sal 
(Shorea robusta) and Garjan (Dipterocarpus turbinatus) form mono- specific canopies in 
dry deciduous, moist deciduous, evergreen, and semievergreen forests across South 
Asia and continental parts of Southeast Asia. They provide valuable timber and play an 
important role in the economy of many Asian countries. However, both Dipterocarp 
trees are threatened by continuing forest clearing, habitat alteration, and global climate 
change. While climatic regimes in the Asian tropics are changing, research on climate 
change- driven shifts in the distribution of tropical Asian trees is limited. We applied a 
bioclimatic modeling approach to these two Dipterocarp trees Sal and Garjan. We used 
presence- only records for the tree species, five bioclimatic variables, and selected two 
climatic scenarios (RCP4.5: an optimistic scenario and RCP8.5: a pessimistic scenario) 
and three global climate models (GCMs) to encompass the full range of variation in the 
models. We modeled climate space suitability for both species, projected to 2070, 
using a climate envelope modeling tool “MaxEnt” (the maximum entropy algorithm). 
Annual precipitation was the key bioclimatic variable in all GCMs for explaining the 
current and future distributions of Sal and Garjan (Sal: 49.97 ± 1.33; Garjan: 
37.63 ± 1.19). Our models predict that suitable climate space for Sal will decline by 
24% and 34% (the mean of the three GCMs) by 2070 under RCP4.5 and RCP8.5, 
respectively. In contrast, the consequences of imminent climate change appear less 
severe for Garjan, with a decline of 17% and 27% under RCP4.5 and RCP8.5, 
respectively. The findings of this study can be used to set conservation guidelines for 
Sal and Garjan by identifying vulnerable habitats in the region. In addition, the natural 
habitats of Sal and Garjan can be categorized as low to high risk under changing 
climates where artificial regeneration should be undertaken for forest restoration.
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1  | INTRODUCTION

Global climate change has produced numerous shifts in the dis-
tribution of species over the last three decades and will act as a 

major cause of species extinction in the near future, either directly 
or synergistically with other extinction drivers (Akçakaya, Butchart, 
Watson, & Pearson, 2014; Pacifici et al., 2015; Pearson et al., 2014; 
Thomas et al., 2004). The potential for large increases in global mean 
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temperatures (e.g., 4.3 ± 0.7°C) by 2100 has significant implications 
for species and forest ecosystems (Butt, Pollock, & McAlpine, 2013; 
Pacifici et al., 2015). In the context of understanding ecological 
responses to climate change, regional changes that are highly spatially 
heterogeneous may be more relevant than approximated global aver-
ages (Walther et al., 2002). Among the four global climate domains 
(tropical, subtropical, temperate, and boreal), the tropical biome has 
the highest rate of forest destruction and degradation (Achard et al., 
2002; Hansen et al., 2013; Laurance, 2004; Morris, 2010). Therefore, 
forest–climate interactions in highly modified tropical landscapes are 
becoming one of the most important subjects of research in conser-
vation ecology (e.g., Laurance, 2004; Wiegand, Revilla, & Moloney, 
2005; Wilson et al., 2016).

The climate of South and northern continental Southeast Asia is 
monsoonal with a large- scale seasonal reversal of the wind regime and 
summer- dominant rainfall (Loo, Billa, & Singh, 2015). In this region, 
climate change is driving increasing air temperatures and changes 
in rainfall regimes (Loo et al., 2015; Sivakumar & Stefanski, 2011). 
Climate change projections suggest a significant acceleration of warm-
ing, increasing annual rainfall, and increases in extreme climate events 
such as floods, drought, and cyclones by 2100 (IPCC, 2013; Loo et al., 
2015). The predicted increase in temperature by the late 21st cen-
tury and early 22nd century will cause frequent changes and shifts in 
monsoon precipitation of up to 70% below normal levels (Schewe & 
Levermann, 2012), and monsoons may be delayed by up to 15 days 
(Schewe & Levermann, 2012). Small- scale regional circulations are 
more vulnerable to monsoonal variations, and therefore, temporal and 
spatial distributions of monsoonal rainfall cannot be represented by 
general measurements (Loo et al., 2015). The increasing intensity of 
rainfall during the monsoon season is the major source of extreme 
climate events such as floods and landslides, which have the poten-
tial to affect vegetation (Loo et al., 2015). In some regions, droughts 
associated with significant changes in tree physiological characteris-
tics (e.g., plant- extractable water capacity of soil; annual evapotranspi-
ration rate, etc.) could result in regional die- offs in some species (e.g., 
Breshears et al., 2005). However, the impacts of climate change on 
tree species widely distributed over many countries, ecoregions (large 
units of land containing a geographically distinct assemblage of nat-
ural communities and environmental conditions), and topographies 
(Corlett & Lafrankie, 1998) in Asia have not been widely investigated 
(e.g., Pacifici et al., 2015; Thomas et al., 2004).

Among the biotic components of forests, trees are one of the 
earliest groups to be affected by climate change, through changes 
in phenology and distribution, and these changes could have cas-
cading effects on the functioning of forest ecosystems (Butt et al., 
2015; Cleland, Chuine, Menzel, Mooney, & Schwartz, 2007; Corlett & 
Lafrankie, 1998). Although trees generally respond slowly to climate 
change, their long life spans suggest they will be unlikely to adapt fast 
enough to avoid negative impacts of climate change, such as heat and 
moisture stress and resulting high mortality rates (Margrove et al., 
2015; Solomon & Kirilenko, 1997). The indirect effect of changes in 
tree flowering and fruiting phenology on pollinators and seed disper-
sal agents (e.g., mammals, birds, and insects) that rely on periodically 

available plant resources for their survival, may be more serious than 
the direct effects (Butt et al., 2015; Corlett & Lafrankie, 1998).

The family Dipterocarpaceae comprises approximately 510 
species and 16 genera, with 13 genera and 470 species largely 
restricted to South and Southeast Asia (Appanah & Turnbull, 1998). 
Dipterocarp forests play an important role in the economy of many 
South and Southeast Asian countries and dominate the interna-
tional tropical timber market (Appanah & Turnbull, 1998; Poore, 
1989). Dipterocarps are highly variable in terms of flowering and 
fruiting phenology, ecological characteristics, and geographical 
ranges, as they occur in evergreen, semievergreen, and deciduous 
forests (Appanah & Turnbull, 1998). Climatic or geographical varia-
tions, along with increasing habitat destruction, are considered key 
threats for Asian Dipterocarp forests. Among the 13 genera in South 
and Southeast Asia, the Shorea and Dipterocarpus are the first and 
third most diverse genera, respectively, and are important compo-
nents of Dipterocarp forest ecosystems (Soepadmo, Guan, & Kong, 
2004). While most of the species of these two genera are currently 
listed as threatened in different categories (i.e., 109 and 34 critically 
endangered species for Shorea and Dipterocarpus respectively), and 
at least one species from each genus is now regionally extinct (Shorea 
cuspidata in Malaysia and Dipterocarpus cinereus in Indonesia), their 
status is due to be reviewed (IUCN Species Survival Commission, 
2015). The dominant Dipterocarp trees Sal (Shorea robusta) and 
Garjan (Dipterocarpus turbinatus) of South and northern continen-
tal Southeast Asia form mono- specific canopies in dry deciduous, 
moist deciduous, evergreen, and semievergreen forests (Appanah 
& Turnbull, 1998; Gautam & Devoe, 2006). Further, Sal and Garjan 
forest ecosystems are the natural habitat of many threatened animal 
species (e.g., Elephas maximus, Ursus thibetanus). Projected climate 
change impacts on Sal and Garjan species have the potential to trig-
ger significant ecosystem- level responses.

Sal is a timber- yielding dominant tree that occurs commonly on 
the plains and lower foothills of the Himalayas and is distributed 
both in the tropical moist and in the dry deciduous forests of India, 
Bangladesh, Nepal, and Bhutan (Gautam & Devoe, 2006). Sal forests 
naturally occur in ecoregions with a mean annual temperature ranging 
from 22 to 27°C and mean annual rainfall of 1,000 to 2,000 mm (Das 
& Alam, 2001; Gautam & Devoe, 2006). Although Sal is listed as a 
“least concern” species in the IUCN Red list (IUCN Species Survival 
Commission, 2015), recurrent anthropogenic disturbances such as 
overexploitation, deforestation, and encroachment combined with 
climate change, are major threats to Sal forests (Kushwaha & Nandy, 
2012). Results from previous work suggest that the natural distribu-
tion of Sal has contracted very rapidly over the last few decades, and 
it is thus highly vulnerable to climate change (Chitale & Behera, 2012; 
Deb, Salman, Halim, Chowdhury, & Roy, 2014; Sarker, Deb, & Halim, 
2011). Garjan is a “critically endangered” (IUCN Species Survival 
Commission, 2015) commercially important Dipterocarp tree natu-
rally distributed in the tropical evergreen, semievergreen, and decid-
uous forests of Bangladesh, India, Myanmar, Thailand, Cambodia, 
and Vietnam (Ashton, 1998). Garjan forests are located in wide bio-
climatic regions characterized by temperature range of 15.6–40.6°C 
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and annual rainfall of 1,520 to 5,080 mm (Das & Alam, 2001). Garjan 
timber is used for lorry bodies, boat building, railway sleepers, trans-
mission poles, and other construction purposes (Das & Alam, 2001). 
It is potentially vulnerable to anthropogenic climate change due to 
the interaction with existing anthropogenic pressures such as overex-
traction, deforestation, and forest degradation (Ashton, 1998).

Several Asian countries, including Thailand, Philippines, China, Sri 
Lanka, Vietnam, and Bangladesh, have imposed logging bans to halt 
deforestation and conserve forest resources (Sarker et al., 2011). 
However, the trend of deforestation and associated biodiversity loss 
has called into question the effectiveness of these bans, and factors 
such as lack of effective conservation policies and accounting for 
climate risks also hinder the success of forest conservation and res-
toration (Sarker et al., 2011). Species distribution models (SDMs) are 
useful for documenting biodiversity and understanding the effects 
of climate-  and human- induced changes (Dale et al., 2001; Franklin, 
2010; Loiselle et al., 2003; Saatchi, Buermann, Ter Steege, Mori, & 
Smith, 2008). Consequently, conservation practitioners have been 
increasingly using habitat suitability models and evaluating the results 
critically and cautiously to make management decisions (Loiselle et al., 
2003; Saatchi et al., 2008).

The aim of this paper was to assess the vulnerability of two 
Dipterocarp trees (Sal and Garjan) of South and Southeast Asia to cli-
mate change by modeling their future distributions under two IPCC 
Representative Concentration Pathway (RCP) scenarios. We projected 
the potential distributions for both species in 2070 under two climate 

scenarios (RCP4.5 and RCP8.5). This will allow the identification of 
future suitable climate space for these Dipterocarp trees and help 
inform conservation priorities for these threatened species in the 
region.

2  | METHODS

2.1 | Species occurrence data

We combined the presence- only records of Sal and Garjan from 
a variety of sources including field survey, online database Global 
Biodiversity Information Facility (http://www.gbif.org/), and literature 
records. To reduce potential errors in species locations, records were 
“cleaned,” which included the careful review of literature for each spe-
cies (Appanah & Turnbull, 1998; Champion & Seth, 1968; Das & Alam, 
2001) and the removal of duplicate locations. Finally, we selected 
787 and 533 records for Sal and Garjan, respectively, to model their 
distributions. Sal dominates tropical moist and dry deciduous forests, 
and Garjan dominates or codominates evergreen, semievergreen, and 
deciduous forest ecosystems in tropical Asia (Appanah & Turnbull, 
1998; Champion & Seth, 1968; Gautam & Devoe, 2006; Huda, Uddin, 
Haque, Mridha, & Bhuiyan, 2006). We clipped the ecoregions for 
South and Southeast Asia from the Köppen–Geiger climate classifica-
tion of the world (Peel, Finlayson, & McMahon, 2007) and combined 
them with the distributions of the two Dipterocarps to show their 
ecoregions in tropical Asia (Figure 1 and Table S1).

F IGURE  1 Distribution of Dipterocarpus 
turbinatus and Shorea robusta forests 
(Appanah & Turnbull, 1998; Champion 
& Seth, 1968; Gautam & Devoe, 2006; 
Huda et al., 2006) was matched with the 
ecoregions in South and Southeast Asia 
(Peel et al., 2007; Table S1 for details). The 
red polygon depicts the ecoregions for 
D. turbinatus dominant in the evergreen, 
semievergreen, and deciduous forests of 
Bangladesh, India, Myanmar, Thailand, 
Cambodia, and Vietnam, whereas the 
blue polygon depicts the ecoregions for 
S. robusta dominant in tropical moist and 
dry deciduous forests of India, Bangladesh, 
Nepal, and Bhutan

http://www.gbif.org/
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2.2 | Bioclimatic variables

We initially considered 19 bioclimatic variables (11 temperature and 
eight precipitation metrics) from the WorldClim database (Hijmans, 
Cameron, Parra, Jones, & Jarvis, 2005). All the bioclimatic layers were 
1- km resolution, and we processed all environmental layers using 
the same extent, cell size, and projection system (WGS84 Longitude- 
Latitude projection), in ArcGIS 10.1. We applied Spearman’s rank cor-
relation to test for collinearity between variables at each level, to allow 
us to exclude highly autocorrelated variables. For instance, if a pair of 
variable has a correlation coefficient >.7, then they were considered 
proxies of one another, and one of the variables was removed from the 
analysis (Table S2). Test model runs identified five of the 19 variables as 
most correlated with the current distributions: annual mean tempera-
ture (BIO1); mean diurnal range (BIO2); temperature seasonality (BIO4); 
annual precipitation (BIO12); and precipitation seasonality (BIO15).

2.3 | Climate scenarios

We selected two IPCC RCP scenarios for our study: RCP4.5, an opti-
mistic scenario where emissions peak around 2040, and RCP8.5, a 
pessimistic scenario, which reflects high levels of energy demand and 
greenhouse gas emissions, resulting in 8.5 W/m2 radiative forcing by 
2100 (Moss et al., 2010). We constructed models using current cli-
matic conditions (average for 1950–2000) and projected to the future 
(given by WorldClim for the range 2061–2080, hereafter referred to 
as 2070). We used three global climate models (hereafter referred to 
as GCM) for future climatic conditions: ACCESS1.0; GFDL- CM3; and 
HadGEM2- ES (hereafter referred to as GCM 1, GCM 2, and GCM 3 
respectively) (Hijmans et al., 2005; Table S3 for details). The reason 
behind choosing three GCMs was to encompass the full range of 
variation in the models in the multimodel ensemble CMIP5 that was 
released 2010–2014 (Taylor, Stouffer, & Meehl, 2012).

2.4 | MaxEnt modeling algorithm

We used a machine learning method “maximum entropy algorithm” 
for modeling changes in species distribution (Phillips, Anderson, & 

Schapire, 2006; Phillips, Dudík, & Schapire, 2004). MaxEnt derives the 
probability distribution of species based on georeferenced occurrence 
records and environmental variables, and the output is continuous. It 
has advantages over other SDMs as it requires species presence- only 
data, and both continuous and categorical variables can be used in 
MaxEnt (Baldwin, 2009). Recent studies have demonstrated MaxEnt’s 
ability to accurately predict species distribution in a wide range of 
ecological and geographical regions (Araujo & Guisan, 2006; Elith 
et al., 2006; Merow, Smith, & Silander, 2013).

Sampling bias is a well- known issue in presence- only distribution 
models and can have significant impacts on the model results (Elith 
et al., 2011). We created a bias file layer to limit the background points 
to the occurrence areas for the species and accounting for the pref-
erential use of the sites in the study region (Phillips et al., 2009). This 
provides MaxEnt with a background file with the same bias as the 
presence locations of the species (Fig. S1 for details). As the distri-
butions of both species are patchy and occur in different countries 
(of different areas), we used state boundaries of the countries to limit 
the background areas for the species (Fig. S1). In the model, 75% of 
the species presence data were used as training data, and the remain-
ing 25% were used as testing data in order to test the model’s pre-
dictive strength. We tested different regularization multiplier values 
and selected the default (i.e., 1) option as it performed best, that is, 
gave the best representation of the current distribution of both Sal 
and Garjan species without overfitting the model (see Merow et al., 
2013). The maximum number of background points for sampling was 
kept at 10,000. However, we also checked that increasing the back-
ground points (e.g., 100,000) did not change the model. We executed 
five replicates for each species using repeated split samples to mea-
sure the amount of variability in the model and then averaged the 
results. Maximum numbers of iterations were set to 1,000 to allow 
the model to have adequate time for convergence, with 1 × 10−6 set 
as the convergence threshold. We used the default “autofeatures,” 
which includes all features (i.e., linear, quadratic, product, threshold, 
and hinge features; Merow et al., 2013). Area under the receiver oper-
ating characteristic curve, or AUC values, for training and testing data 
was calculated for each species. We used the jackknife test to mea-
sure variable importance and percent contributions of each variable 

TABLE  1 Summary of the bioclimatic variables used in the MaxEnt models and their percent contribution to each model

Variables Description

Contribution to MaxEnt models (%)

Shorea robusta Dipterocarpus turbinatus

GCM- 1 GCM- 2 GCM- 3 GCM- 1 GCM- 2 GCM- 3

BIO1 Annual mean temperature 20.3 17.7 19 18.1 21 18.2

BIO2 Mean diurnal range (mean of monthly [max 
temp–min temp])

3.5 4.3 4.8 15.5 16.4 17.7

BIO4 Temperature seasonality (standard 
deviation × 100)

15.5 15.5 15 22.1 21.8 20.6

BIO12 Annual precipitation 49.1 51.5 49.3 39 36.8 37.1

BIO15 Precipitation seasonality (coefficient of variation) 11.6 10.9 11.8 5.3 4 6.4

GCM, global climate model.
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to estimate the influence of environmental variables on each species. 
As the data were compiled from a variety of sources and likely to have 
some errors, we used the 10 percentile training presence logistic 
threshold to define the minimum probability of suitable habitat for the 
Dipterocarp trees (see Phillips et al., 2006). By using this threshold, we 
defined suitable habitat to include 90% of the data we used to develop 
the models (Phillips et al., 2006).

3  | RESULTS

3.1 | Predictor variables

Our models predict that the relative contribution of the bioclimatic 
variables was more or less consistent for all three GCMs (Table 1). The 
key bioclimatic variable explaining the current and future spatial distri-
butions of Sal and Garjan was annual precipitation (Sal: 49.97 ± 1.33; 

Garjan: 37.63 ± 1.19). The relative contribution of annual mean tem-
perature to both Sal and Garjan models was almost identical (Sal: 
19 ± 1.3; Garjan: 19 ± 1.64). The seasonal climatic variables, that is, 
temperature seasonality (15.33 ± 0.29) and precipitation seasonality 
(11.43 ± 0.47), were also important contributors to the Sal models, 
whereas mean diurnal range (4.2 ± 0.66) was least important. In con-
trast, temperature seasonality (21.5 ± 0.79) and mean diurnal range 
(16.53 ± 1.11) were important contributors to the Garjan models, with 
precipitation seasonality least important (5.23 ± 1.20). The jackknife 
test results suggest that annual precipitation (BIO12) variable contrib-
uted most individually for both models (Fig. S2).

The AUC values for all three GCM models were better than ran-
dom (0.5) for both species (mean training AUC of the three GCMs 
for Sal: 0.897, and for Garjan: 0.825) and showed strong model dis-
crimination ability for predicting changes in species distribution under 
changing climate scenarios (Table 2). The small differences in the AUC 

Species Models Training AUC Test AUC
AUC standard 
deviation

Shorea robusta GCM- 1 0.894 0.891 0.012

GCM- 2 0.897 0.891 0.012

GCM- 3 0.899 0.886 0.013

Dipterocarpus turbinatus GCM- 1 0.827 0.799 0.025

GCM- 2 0.823 0.790 0.025

GCM- 3 0.824 0.794 0.025

AUC values for training (75%) and test (25%) data of the models. The test AUC describes the fit of the 
model to the test data and gives strong model discrimination ability for predicting changes in species 
distribution under future climate scenarios.

TABLE  2 Results of threshold 
independent ROC tests for Dipterocarp 
tree species

F IGURE  2 Graphs showing the marginal 
relationship between each bioclimatic 
variable and the probability of species 
occurrence: In the figures, the curves (red) 
and the mean ± standard deviation (blue) 
show the response of Shorea robusta and 
Dipterocarpus turbinatus to the two most 
important variables (i.e., keeping all other 
bioclimatic variables at their average 
sample value) annual precipitation, and 
annual mean temperature. The y- axes 
indicate logistic output (probability of 
presence). The results suggest that there 
was an overall positive nonlinear response 
observed for annual precipitation for 
both species. The optimum annual mean 
temperature for the probability of both Sal 
and Garjan occurrence was approximately 
28°C in all models
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value of training and test cases suggested little overfit in the MaxEnt 
predictions for both species (Table 2). The AUC standard deviations 
indicate the overall performance of the models was high, represent-
ing a close approximation of the true probability distribution of the 
Dipterocarp trees (Table 2).

The individual response curves (marginal responses obtained by 
keeping all other bioclimatic variables at their average sample value) 
of the two key variables (annual precipitation and annual mean tem-
perature) portray the relationships between each bioclimatic vari-
able and probability of species occurrence (Figure 2). In Figure 2a–f 
curves represent the response of annual precipitation and annual 
mean temperature for three Sal models, respectively. Curves (g–i) and 
(j–l) represent the response of annual precipitation and annual mean 
temperature for three Garjan models, respectively. The results exhibit 
complex but quadratic relationships between bioclimatic variables and 

the probability of species occurrence. In general, there was an overall 
positive nonlinear response observed for annual precipitation for both 
species (Figure 2). The optimum annual mean temperature for the 
probability of both Sal and Garjan occurrence was approximately 28°C 
in all models (Figure 2). However, the curves showed a high probability 
of presence of the species at low temperatures (especially for Garjan; 
Figure 2 j–l). This might be due to the occurrence of the species in 
different forest ecosystems with a large range of temperature and 
elevation.

3.2 | Variability in climate niches for Dipterocarp  
trees

The predicted climatically suitable habitats of Sal and Garjan are 
shown for all three GCMs in Figures 3 and 4, respectively. The 10th 

F IGURE  3 Predicted distribution of 
Shorea robusta species for three global 
climate models (GCMs): (a) current 
distribution and suitability; (b, c) scenarios 
for CGM 1; (d, e) scenarios for GCM 2; and 
(f, g) scenarios for GCM 3. Modeling results 
suggest that climatically suitable habitat 
conditions for Sal will decline by 2070, with 
an average of 24% and 34% (the mean of 
three GCMs) under RCP4.5 and RCP8.5, 
respectively
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percentile training presence logistic threshold values were used 
to estimate the suitable and unsuitable climatic niches for both 
Dipterocarp trees across the study region. The proportional changes 
in suitable climate niches were derived from the difference between 
the species’ modeled current and future climate niches for each sce-
nario. Our models predicted that suitable climate space for both Sal 
and Garjan will decline by 2070, under both climate scenarios and for 
all three GCMs (Figure 5). On average, suitable habitat conditions for 
Sal will decline by 24% and 34% (the mean of three GCMs) by 2070 
under RCP4.5 and RCP8.5, respectively (Figure 5). In contrast, the 
consequences of climate change appear less severe for Garjan, with a 
decline of 17% and 27% (the mean of three GCMs) under RCP4.5 and 
RCP8.5, respectively.

The distribution of Sal in Madhya Pradesh, Chhattisgarh, West 
Bengal, Odisha, and Jharkhand in India is likely to lose suitable 

climate space by 2070 (Figure 3). In contrast, the distribution 
of Sal along the Terai tract in northern India is likely to gain suit-
able climate space by 2070 (Figure 3b–g). The lower belts of the 
hilly region, inner Terai, and the protected areas of Nepal, such 
as Chitwan National Park, Bardia National Park, and Shukla Phat 
Wildlife Reserve, which support dense Sal forests, are also likely 
to lose suitable climate niches (Figure 3). The moist deciduous 
Sal forests in the central and northern region of Bangladesh (e.g., 
Madhupur National Park and Bhawal National Park) are likely to be 
affected most by climate change.

The predicted extent of suitable habitat of Garjan is smaller in 
Bangladesh, Myanmar, Cambodia, Thailand, and Vietnam than in 
India (Assam, Manipur, Tripura, and Meghalaya). In particular, the 
Garjan- dominated semievergreen forests of the Chittagong Hill 
Tracts region in Bangladesh are likely to face increasing climate 

F IGURE  4 Predicted distribution 
of Dipterocarpus turbinatus species for 
all global climate models (GCMs): (a) 
current distribution and suitability; (b, c) 
scenarios for CGM 1; (d, e) scenarios for 
GCM 2; and (f, g) scenarios for GCM 3. 
The consequences of imminent climate 
change appear less severe for Garjan, with 
a decline of 17% and 27% (the mean of 
three GCMs) under RCP4.5 and RCP8.5, 
respectively
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stress in the near future, which may lead to local extinctions of this 
species.

4  | DISCUSSION

Although the projected distribution scenarios for the three GCMs 
were not identical in terms of climatically suitable habitat conditions 
for Sal and Garjan, the relative contribution of all bioclimatic variables 
used in the models and their AUC values were similar (Table 1 and 2), 
and the trends of the response curves of the variables for all GCMs 
were identical (Figure 2). Our results suggest that climate niches for 
both Dipterocarp trees are likely to come under increasing stress and 
potentially result in range contraction and distribution shifts across 
the region during the 21st century.

The study reveals that projected increases in annual precipita-
tion and annual mean temperature may limit the distribution of Sal, 
as identified by our models (the optimum annual mean temperature 
was 28°C, and annual precipitation ranges from 1,000 to 2,000 mm; 
Figure 2 for details; Das & Alam, 2001; Gautam & Devoe, 2006). 
The variation of temperature seasonality may also regulate the dis-
tribution of Sal as it grows in areas where the dry period does not 
exceed 4 months (Gautam & Devoe, 2006). The predicted shift in 
the distribution of Sal toward northeast in India is consistent with 
the findings of a similar study on Sal in India (Chitale & Behera, 
2012). Chitale and Behera (2012) predicted the distribution of Sal 
for the year 2020 under HadClim Emission scenario SRES- A1B and 
included all 19 bioclimatic variables without considering their rel-
ative contributions. They also found that moisture (annual precip-
itation) was a key driver of Sal distribution: Our consideration of 
the relative contribution of the bioclimatic variables revealed that 
annual mean temperature was also important. Increased rainfall 
variability and extreme drought conditions in the central and north-
ern parts of Bangladesh may result in unsuitable climate conditions 
for Sal forests (Shahid, 2010). The projected increase in annual rain-
fall and variation in temperature seasonality may restrict the distri-
bution of Garjan in the region, with increasing local- level extinction 

risk in the Chittagong hill tract regions of Bangladesh (Das & Alam, 
2001; Sarker et al., 2011).

Dipterocarp trees are confined to wet climates, with a dry sea-
son of 4 months and more abundant in aseasonal than seasonal cli-
mates (Ashton, 1988). However, the ecoregions for Sal and Garjan are 
restricted to monsoon tropics where water availability is seasonally 
limiting (mean rainfall of driest month < 50 mm; Corlett & Lafrankie, 
1998): Significant climatic anomalies such as increasing temperature 
seasonality and drought conditions may affect the growth of these 
Dipterocarp trees.

4.1 | Impacts on Sal and Garjan forest ecosystems

The consequences of climate change may result in the absence of Sal 
and Garjan either locally or regionally, the disappearance of entire 
ecosystems, or their replacement by other ecosystem types (Thomas 
et al., 2004). Changes in precipitation and temperature regimes, 
including the duration of the dry season, may result in phenological 
shifts of both Dipterocarp trees, with indirect effects on floral and 
faunal species dependent on them. Many terrestrial birds, mammals, 
and insects that rely directly and indirectly on the flowers, fruits, and 
seeds of Dipterocarps are likely to be adversely affected by climate 
change (Butt et al., 2015). The continuing deforestation and threats 
associated with climate change could lead to the extinction of mam-
mal species such as the leopard cat (Felis bengalensis), fishing cat (Felis 
viverrina), jungle cat (Felis chaus), and small Indian civet (Viverricula 
indica) inhabiting Dipterocarp forests (Alam, Furukawa, Sarker, & 
Ahmed, 2008; Thomas et al., 2004).

4.2 | Implications for conservation planning

The findings of our models can be tailored to suit conservation guide-
lines for Sal and Garjan in South and Southeast Asia by identifying crit-
ically vulnerable habitats and potential climatically suitable habitats 
where artificial regeneration should be undertaken for forest restora-
tion. Our models detected a shift in the distribution of suitable climate 
space for Sal outside of its natural distribution toward the deciduous 

F IGURE  5 Proportional changes (%) in 
climate niches for both Dipterocarp species 
by 2070 under both climate scenarios. 
Predicted losses of pixel were calculated 
as a proportion of the pixels occupied in 
current scenario for the study area. The 
results of all global climate models suggest 
that both species are likely to lose climate 
suitability by 2070 under both climate 
scenarios
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and semievergreen forests of northeastern India, Myanmar, Laos, and 
Vietnam (Figure 3d,e). As a conservation strategy, assisted migration 
of Sal into these potentially climatically suitable areas may be possi-
ble under a wide range of possible future climates (e.g., Hällfors et al., 
2016). In addition, the modeling outputs of our study can be used to 
categorize the natural habitats of Sal and Garjan trees as low to high 
risk under changing climates in the study region to inform conser-
vation planning. For instance, Sal and Garjan plantations should be 
preferentially introduced to the climatically suitable sites, and more 
conservation care for the natural regeneration of these trees should 
be taken in the sties calculated as high risk under future climates. The 
rotation period of Sal and Garjan timber may be shortened in those 
sites and replaced with other species assessed as more suitable under 
changing climatic conditions.

Forests play an important role in the global carbon cycle as they 
hold more carbon than the atmosphere (Pan et al., 2011). Sal and 
Garjan are the long rotation species in South and Southeast Asia 
and are important for ecosystem functioning and carbon storage. 
Therefore, small changes in their distributions can have large impli-
cations in terms of carbon storage and stocks as they are distributed 
over a large area in Asia (e.g., Sal forests cover over 11 million ha 
in India, Bangladesh, and Nepal). Bioclimatic and ecological traits 
of Dipterocarp species in a particular forest ecosystem are very 
important for successful forest management, as climate change can 
drive significant alterations in forest site conditions (Falk & Mellert, 
2011). This type of study, of changes in suitable climate space, and 
therefore the distribution of tree species, could inform forest carbon 
management.

4.3 | Future research directions

Although MaxEnt cannot be viewed as an entirely objective modeling 
method due to the effects of choosing different settings (Merow et al., 
2014), we consider the final models not to be unnecessarily complex 
based on the knowledge of vegetation types, the environmental 
space, and the specific data set used in this study. In our study, the 
results may be influenced by several factors. Firstly, we compiled the 
presence- only data from different sources, and it is highly likely that 
not all native occurrence records of the species have been included in 
this study. Secondly, the distributions of Dipterocarp trees are rela-
tively well known across India, Bangladesh, Nepal, and Myanmar (e.g., 
Alam et al., 2008; Appanah & Turnbull, 1998; Champion & Seth, 1968; 
Chitale & Behera, 2012). This may be partly responsible for the higher 
number of species occurrence records in these areas compared to 
other native ranges. As the main objective of our study was to assess 
species vulnerability to climate change, we used only bioclimatic vari-
ables in the model. The realized climatic niche for the Dipterocarp 
trees that we describe here represents a close approximation to 
reality (Alam et al., 2008; Champion & Seth, 1968; Chitale & Behera, 
2012). Future research needs to focus on mechanistic modeling of the 
Dipterocarp trees using detailed understanding of the physiological 
response of species to environmental factors (Pearson, 2010).
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