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Abstract

Genetic factors play an important role in the etiology of both sporadic and familial breast cancer. We aimed to discover
novel genetic susceptibility loci for breast cancer. We conducted a four-stage genome-wide association study (GWAS) in
19,091 cases and 20,606 controls of East-Asian descent including Chinese, Korean, and Japanese women. After analyzing
690,947 SNPs in 2,918 cases and 2,324 controls, we evaluated 5,365 SNPs for replication in 3,972 cases and 3,852 controls.
Ninety-four SNPs were further evaluated in 5,203 cases and 5,138 controls, and finally the top 22 SNPs were investigated in
up to 17,423 additional subjects (7,489 cases and 9,934 controls). SNP rs9485372, near the TGF-b activated kinase (TAB2)
gene in chromosome 6q25.1, showed a consistent association with breast cancer risk across all four stages, with a P-value of
3.8610212 in the combined analysis of all samples. Adjusted odds ratios (95% confidence intervals) were 0.89 (0.85–0.94)
and 0.80 (0.75–0.86) for the A/G and A/A genotypes, respectively, compared with the genotype G/G. SNP rs9383951
(P = 1.961026 from the combined analysis of all samples), located in intron 5 of the ESR1 gene, and SNP rs7107217
(P = 4.661027), located at 11q24.3, also showed a consistent association in each of the four stages. This study provides
strong evidence for a novel breast cancer susceptibility locus represented by rs9485372, near the TAB2 gene (6q25.1), and
identifies two possible susceptibility loci located in the ESR1 gene and 11q24.3, respectively.
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Introduction

Breast cancer is one of the most common malignancies

diagnosed among women worldwide, including those living in

East Asian countries. Genetic factors play an important role in

the etiology of both sporadic and familial breast cancer [1]. In

the past two decades, more than 1,000 reports have been

published addressing the association between variants in

candidate genes and breast cancer risk. However, only a few

genetic risk factors have been confirmed for this common

malignancy [2]. Recent genome-wide association studies

(GWAS) have identified approximately 20 common genetic

susceptibility loci for breast cancer [3–14]. However, these

newly-identified genetic factors, along with known high-pene-

trance breast cancer susceptibility genes explain less than 30% of

the heritability for this cancer [2,15]. Furthermore, most GWAS

were conducted among women of European ancestry, and many

of the variants discovered in European-ancestry populations

showed only a weak or no association with breast cancer in other

ethnic groups [16,17]. For example, only 8 of 12 breast cancer

risk SNPs identified in women of European ancestry were

directly replicated in Chinese population [18]. Therefore, GWAS

conducted in non-European women are needed to fully uncover

the genetic basis for breast cancer susceptibility. Herein, we

report results from a large GWAS of breast cancer conducted in

East Asian women.

Results

A total of 19,091 female breast cancer cases and 20,606 female

controls—including 23,891 Chinese, 11,907 Korean and 3,809

Japanese women—were included in the present study (Table 1). In

Stage I, we analyzed 690,947 SNPs in 2,918 breast cancer cases

and 2,324 community controls recruited from studies conducted in

Shanghai, China (Figure 1, Text S1). Top 5,365 SNPs were

investigated in Stage IIa including 1,613 Chinese cases and 1,800

Chinese controls recruited from studies conducted in Shanghai,

China. Of the SNPs evaluated, 68 SNPs showed an association

with breast cancer risk at P#0.05 with the same direction as

observed in Stage I. We performed a meta-analysis for the

remaining 4,913 SNPs with data available from both Stage IIa and

Stage IIb (2,359 Korean cases and 2,052 Korean controls).

Twenty-six SNPs showed an association with breast cancer risk

with Pmeta#0.05 and the association was consistent among Stages

I, IIa and IIb. These SNPs, along with the 68 SNPs mentioned

above, were selected for Stage III replication in 4,712 cases and

4,496 controls. Finally, based on the results of the first three stages,

22 top SNPs were selected for Stage IV evaluation in 7,489 cases

and 9,934 controls.

SNP rs9485372 showed a statistically significant association

with breast cancer risk in each of the four stages (Table 2). The

OR (95% CI) per A allele was 0.88 (0.81–0.95), 0.86 (0.81–0.92),

0.94 (0.88–1.00) and 0.90 (0.85–0.94), respectively, for stages I to

IV. The association with this SNP was remarkably consistent

across all but one small study (Figure 2A). Pooled analysis of

samples from all studies produced OR (95% CI) of 0.90 (0.87–

0.92) and P-value of 3.8610212, which is substantially lower than

the conventional genome-wide significance level of 561028 based

on conservative Bonferroni adjustment of multiple comparisons at

a= 0.05, providing strong evidence for an association of this SNP

with breast cancer risk.

Two other SNPs, rs9383951 and rs7107217, were also

consistently replicated in each of the three replication sets. The

C allele of rs9383951 was associated with decreased risk with OR

(95% CI) of 0.82 (0.73–0.93), 0.90 (0.81–1.00), 0.91 (0.82–1.00),

and 0.88 (0.81–0.96), respectively, for stages I to IV (Table 2).

The P-value reached 1.961026 in the pooled analysis of samples

from all four stages. For SNP rs7107217, the ORs (95% CI) per

C allele were 1.13 (1.04–1.23), 1.11 (1.04–1.18), 1.07 (1.00–1.14)

and 1.05 (1.01–1.10), respectively, for stages I to IV, respectively

(Table 2). Analyses with all subjects combined showed OR (95%

CI) of 1.08 (1.05–1.11) and P value of 4.661027. Again, the

association of breast cancer risk with these two SNPs was very

consistent across the vast majority of participating studies

(Figure 2B and 2C).

Stratified analyses showed that the associations with these three

SNPs were consistent in all three East Asian populations, although

the association for SNPs rs9485372 and rs7107217 was not

significant for Japanese subjects, probably due to a small sample

size (Table 3). Associations of these three SNPs with breast cancer

risk were similar when stratified by menopausal or estrogen

receptor status and none of the heterogeneity tests was statistically

significant (Table S1). No significant interaction was observed with

other risk factors (Table S1). After adjusted for the top 5 or 10

principal components, the results did not change significantly

(Table S2).

Both SNPs rs9485372 and rs9383951 are located at chromosome

6q25.1, approximately 2.34 Mb and 350 kb from the SNP

rs2046210 that we previously reported for breast cancer risk [8].

None of these three SNPs, however, are in LD (r2,0.1) in any of the

three populations (Asian, European and Africans) as determined

using data generated in the HapMap or any of the study populations

included in the current study (Table S3 and Figure S1). In an

analysis including all 30,153 subjects who were genotyped for three

SNPs in 6q25.1, all three SNPs remained strongly associated with

breast cancer risk after mutual adjustment of the other 2 SNPs with

P values of 1.4610212, 1.361024, and 6.0610239 for SNPs

GWAS Identifies Breast Cancer Susceptibility Loci
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rs9485372, rs9383951 and rs2046210, respectively (Table S4). No

significant interaction was observed for these three SNPs (Table S5).

We also created a genetic risk score (GRS) to evaluate the combined

effect of three SNPs located in 6q25.1 (Table S6). Compared with

women carrying 0–1 risk variants, women carrying 6 variants had

over two-fold increased risk with an OR (95% CI) of 2.36 (1.89–

2.96) and a P value of 1.3610247.

A total of 376 SNPs were successfully imputed in the LD blocks

including rs2046210 and rs9485372 and the whole ESR1 gene

with RSQ$0.3 and minor allele frequency (MAF)$0.05. Among

them, 27 SNPs showed an association with breast cancer risk with

P#0.05 after adjusted for age, rs9485372, rs9383951 and

rs2046210 (Table S7). With the exception of rs4591859 and

rs7776340 in the locus of rs2046210 and rs7768330 in the locus of

rs9383921, all other SNPs are in the same LD block within the

ESR1 gene (Figure S2). No additional SNP in the rs9485372 locus

showed an association with breast cancer risk at p,0.05 after

adjusted for rs9485372, rs2046210, and rs9383921.

Discussion

In this large GWAS conducted in East-Asian women including

19,091 cases and 20,606 controls, we provided strong evidence for

a novel breast cancer susceptibility locus represented by rs9485372

and suggestive evidence for two other loci, represented by SNPs

rs9383951 and rs7107217.

We previously reported a genetic susceptibility locus at 6q25.1,

represented by rs2046210, for breast cancer risk [8]. The newly

identified SNPs, rs9485372 and rs9383951, also are located at

chromosome 6q25.1. However, these three SNPs are not in LD

and are thus representing independent breast cancer susceptibility

loci. All of them were associated with breast cancer risk after

mutual adjustment of the other two SNPs. SNP rs9485372 is

approximately 31 Kb upstream of the TGF-b activated kinase 1/

MAP3K7 binding protein 2 (TAB2) gene (Figure 3). The protein

encoded by this gene is an activator of MAP3K7/TAK1, which is

required for the IL-1 induced activation of NF-kB and MAPK8/

JNK. The TGF-b pathway plays a major role in breast cancer

development and progression [19]. The MAP kinases pathway is

critical in regulating cell growth and cell death [20] and may

Table 1. Selected characteristics of studies participating in the Asia Breast Cancer Consortium.

Study Stagea Ethnicity No. of cases No. of controls ageb Menopause (%)c ER+ (%)

Stage I

Shanghai-I Chinese 2,918 2,324 51.7/50.3d 42.9/41.7 65.3

Stage II

Shanghai-II (IIa) Chinese 1,613 1,800 53.2/53.4 50.2/55.1 62.5

SeBCS-I (IIb) Korean 2,359 2,052 48.1/51.7 37.9/52.0 61.9

Stage III

Shanghai-III Chinese 2,601 2,386 53.8/55.1d 50.3/52.6 64.9

Taiwan Chinese 1,066 1,065 51.5/47.5d 52.3/39.9 66.1

Nagoya Japanese 644 644 51.4/51.1 48.5/48.5 72.8

Nagano Japanese 401 401 53.8/54.0 54.9/65.3 74.6

Stage IV

Nanjing Chinese 1,786 1,837 50.6/50.2 51.3/47.6 55.7

Tianjin Chinese 1,297 1,585 51.9/51.9 51.9/55.5 44.2

Guangzhou Chinese 838 865 49.0/49.2 41.8/51.9 71.6

NCC Korean 505 504 49.0/49.1 49.5/45.3 65.0

SeBCS-II Korean 777 1,104 47.5/47.7 36.3/37.3 63.0

KOHBRA/KoGES Korean 1,397 3,209 40.5/50.3d 23.3/ 62.8

MEC Japanese 889 830 66.5/66.5 85.3

Total 19,091 20,606

aSee the methods section for the full names of participating studies.
bMean value for cases/controls.
cPercentage for cases/controls.
dSignificant at a= 0.01 level.
doi:10.1371/journal.pgen.1002532.t001

Author Summary

Breast cancer is one of the most common malignancies
among women worldwide. Genetic factors play an
important role in the etiology of breast cancer. To identify
common genetic susceptibility alleles for breast cancer,
we performed a four-stage genome-wide association study
in 19,091 cases and 20,606 controls among East-Asian
women. Single nucleotide polymorphism (SNP) rs9485372,
near the TGF-beta activated kinase 1 (TAB2) gene at
chromosome 6q25.1, was associated with breast cancer
risk (P = 3.8610212). SNPs rs9383951, located in intron 5 of
the estrogen receptor 1 (ESR1) gene, and rs7107217,
located at 11q24.3, were also consistently associated with
breast cancer risk in all four stages with a combined P of
1.961026 and 4.661027, respectively. This study provides
strong evidence for a novel breast cancer susceptibility
locus represented by rs9485372, near the TAB2 gene
(6q25.1), and identifies two possible susceptibility loci
located in the ESR1 gene and 11q24.3, respectively.
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contribute to the development of cancer [20]. Furthermore, the

TAB2 protein is required for DNA damage-induced TAK1

activation, suggesting that TAB2 may play a role in DNA damage

repair [21]. Other genes in the region identified in the study

included SUMO4, LATS1, PPIL4, and UST. However, given the

proximity of the TAB2 gene with rs9485372 and the important

role of this gene in breast carcinogenesis, it is possible that the

association between rs9485372 and breast cancer risk may be

mediated through the TAB2 gene. It is also possible that the

association may be mediated through regulating the ESR1 gene,

located approximately 2.5 Mb from rs9485372. This possibility

was highlighted by a recent study showing that several open

reading frames in the 6q25.1 regions co-expressed with ESR1 [22].

Further research is warranted to clarify the mechanism of the

association identified in the study.

SNP rs9383951 is located in intron 5 of the ESR1 gene, an

important gene that has been documented to play a key role in

breast cancer development and progression. Previous candidate

gene studies have extensively evaluated two SNPs, rs2234693

(Pvull) and rs9340799 (XbaI), in the ESR1 gene in relation to

breast cancer risk; the results, however, have been inconsistent

[2]. Neither rs2234693 nor rs9340799 are in LD (r2,0.01) with

the SNPs discovered in the present study. To follow-up the lead

from our previous study reporting a susceptibility locus at 6q25.1

for breast cancer [8], two recent studies conducted among

women of European descent identified rs3757318 and rs9397435

in relation to breast cancer risk [11,23]. These two SNPs are in

strong LD (r2.0.6 in Asians) with the SNP (rs2046210) we

previously reported at 6q25.1 in East Asians but not in other

populations. Again, these two SNPs are not in LD (r2,0.01 in

Asian, European and African populations) with rs9383951 and

rs9485372 identified in this study. Although the association with

rs9383951 did not reach the conventional genome-wide

significance, the fact that this SNP is located in the ESR1 gene

strongly suggests a true association of this SNP with breast

cancer risk.

Figure 1. Overview of the study design.
doi:10.1371/journal.pgen.1002532.g001
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SNP rs7107217 also showed a consistent association in all four

stages, although the pooled P-value did not reach the conventional

genome-wide significance level. This SNP is located at 11q24.3,

152 Kb downstream of the BARX2 gene and 212 Kb upstream of

the TMEM45B gene (Figure S3). BARX2 is a homeobox gene for

which the mouse ortholog has been shown to influence cellular

processes that control cell adhesion and cytoskeleton remodeling. It

has been shown, BARX2 and estrogen receptor-alpha (ESR1)

coordinately regulate the production of alternatively spliced ESR1

isoforms and control breast cancer cell growth and invasion [24].

BARX2 also acts in a tumor suppressor and loss of heterozygosity of

this gene, lead to poorer survival in patients with ovarian cancer [25].

It could be ideal to increase the sample size in the discovery

stage and simplify the replication stages of the study. However, like

many other consortium projects, financial constraints and some

logistical issues prevented us for achieving the maximum statistical

power. Nevertheless, with approximately 40,000 cases and

controls, our study represents the largest breast cancer genetic

association study in East Asian women. This consortium will

continue to provide valuable resources to identify additional novel

susceptibility loci for breast cancer.

In summary, in this large GWAS conducted in East Asia

women, we provided convincing evidence for an association with a

novel independent susceptibility locus located at 6q25.1, near the

TAB2 gene. Our study also suggests that genetic variants in the

ESR1 gene and chromosome 11q24.3 may be related to breast

cancer risk. Given that multiple independent breast cancer

susceptibility loci have identified in our studies and studies

conducted by others in 6q25.1 that harbors the ESR1 gene, it is

possible that 6q25.1 may represent an important region for breast

cancer susceptibility.

Methods

Study populations
Included in this consortium project were 19,091 cases and

20,606 controls from 14 studies (Table 1). Detailed descriptions of

these participating studies and demographic characteristics of

study participants are provided in Text S1. Briefly, the consortium

included 23,981 Chinese women, 11,907 Korean women, 3,809

Japanese women. The Chinese women were from 8 studies:

Shanghai [n = 13,642, Shanghai Breast Cancer Study, Shanghai

Breast Cancer Survival Study (SBCSS), Shanghai Endometrial

Cancer Study (SECS), Shanghai Women Health Study (SWHS)]

[8,26], Nanjing (n = 3,623) [27], Tianjin (n = 2,882) [28], Taiwan

(n = 2,131) [29], and Guangzhou (n = 1,703). The Korean women

were from four studies [Seoul Breast Cancer Study (SeBCS)

(n = 6,292) [30], Korea NCC (n = 1,009), KoGES (n = 3,209) [31],

and KOHBRA (n = 1,397) [32]]. The Japanese women were from

three studies conducted in Hawaii and Los Angeles [n = 1,719;

Multiethnic Cohort Study (MEC) [33]], Nagoya (n = 1,288) [34],

and Nagano (n = 802) [35] (Table 1). Approval was granted from

relevant institutional review boards in all study sites; all included

subjects gave informed consent.

Genotyping methods
The Genotyping protocol for Stage I has been described

previously [8]. Briefly, the initial 300 subjects were genotyped

using the Affymetrix GeneChip Mapping 500K Array Set. The

remaining 4,985 subjects were genotyped using the Affymetrix

Genome-Wide Human SNP Array 6.0. We included one negative

control and at least three positive quality control (QC) samples

from the Coriell Cell Repositories (http://ccr.coriell.org/) in each

Table 2. Summary of results for the three SNPs showing a statistically or marginally significant association in all four stages with
breast cancer risk, the Asia Breast Cancer Consortium.

SNPa Positionb Study No. of Cases/Controls EAF (%)c Per allele OR (95%CI) d P valued

rs9485372 (A/G) 149650567 (6q25.1)

Stage I 2,770/2,175 43.5 0.88(0.81–0.95) 1.461023

Stage II 3,930/3,818 47.1 0.86(0.81–0.92) 6.361026

Stage III 4,081/4,074 43.2 0.94(0.88–1.00) 0.05

Stage IV 5,186/7,440 46.2 0.90(0.85–0.94) 4.261025

All stages 15,967/17,507 45.4 0.90(0.87–0.92) 3.8610212

rs9383951 (C/G) 152337306 (6q25.1)

Stage I 2,916/2,319 11.4 0.82(0.73–0.93) 2.461023

Stage II 3,948/3,836 10.1 0.90(0.81–1.00) 0.06

Stage III 4,581/4,433 9.7 0.91(0.82–1.00) 0.06

Stage IV 6,117/8,296 9.6 0.88(0.81–0.96) 3.361023

All stages 17,562/18,884 10.0 0.88(0.84–0.93) 1.961026

rs7107217 (C/A) 128978900 (11q24.3)

Stage I 2,916/2,319 31.4 1.13(1.04–1.23) 3.661023

Stage II 3,929/3,839 34.8 1.11(1.04–1.18) 2.161023

Stage III 4,606/4,424 35.2 1.07(1.00–1.14) 0.04

Stage IV 7,348/9,831 37.4 1.05(1.01–1.10) 0.02

All stages 18,799/20,413 35.8 1.08(1.05–1.11) 4.661027

aEffect/reference alleles based on forward strand.
bFrom NCBI genome build 36.
cEffect allele frequency in controls.
dAdjusted for age and study sites.
doi:10.1371/journal.pgen.1002532.t002
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Table 3. Association of SNPs with breast cancer risk by ethnic groups, the Asia Breast Cancer Consortium.

SNP Study No. of Cases/Controls EAF (%)a OR (95% CI)b
P valueb

Heterozygote Homozygote

rs9485372

Chinese 9,922/9,644 43.2 0.90(0.84–0.96) 0.83(0.76–0.90) 3.561026

Korean 5,006/6,825 48.2 0.87(0.79–0.95) 0.76(0.68–0.85) 6.061027

Chinese+Korean 14,928/16,469 45.2 0.89(0.85–0.94) 0.80(0.75–0.85) 9.4610212

Japanese 1,039/1,038 47.5 0.93(0.76–1.13) 0.84(0.66–1.07) 0.15

All studies 15,967/17,507 45.4 0.89(0.85–0.94) 0.80(0.75–0.86) 3.8610212

rs9383951

Chinese 10,625/10,180 10.7 0.86(0.80–0.92) 0.87(0.67–1.13) 3.461025

Korean 5,011/6,833 9.7 0.92(0.83–1.02) 0.79(0.52–1.19) 0.06

Chinese+Korean 15,636/17,013 10.3 0.88(0.83–0.93) 0.86(0.69–1.07) 1.361025

Japanese 1,926/1,871 6.8 0.86(0.71–1.05) 0.40(0.14–1.13) 0.05

All studies 17,562/18,884 10.0 0.88(0.83–0.93) 0.83(0.67–1.03) 1.961026

rs7107217

Chinese 11,887/11,719 32.3 1.09(1.03–1.15) 1.14(1.05–1.25) 2.261024

Korean 4,987/6,824 38.7 1.13(1.04–1.23) 1.19(1.06–1.34) 7.161024

Chinese+Korean 16,874/18,543 34.6 1.10(1.05–1.15) 1.16(1.08–1.24) 6.461027

Japanese 1,925/1,870 47.3 1.09(0.94–1.27) 1.09(0.91–1.31) 0.33

All studies 18,799/20,413 35.8 1.10(1.05–1.15) 1.15(1.08–1.22) 4.661027

aEffect allele frequency in controls.
bAdjusted for age and study sites.
doi:10.1371/journal.pgen.1002532.t003

Figure 2. ORs per risk allele and 95% CIs for breast cancer associated with three SNPs by study site and ethnicity. A: rs9485372, B:
rs9383951; and C: rs7107217.
doi:10.1371/journal.pgen.1002532.g002
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of the 96-well plates for Affymetrix SNP Array 6.0 genotyping. A

total of 273 positive QC samples were successfully genotyped, and

the average concordance rate was 99.9% with a median value of

100%. The sex of all study samples was confirmed to be female.

Genetically identical, unexpected duplicated samples were exclud-

ed, as were close relatives with a pair-wise proportion of identify-

by-descent (IBD) estimate greater than 0.25. All samples with a call

rate,95% were excluded. The SNPs were excluded if: (i)

MAF,1%, (ii) call rate,95%, or (iii) genotyping concordance

rate,95% in quality control samples. The final dataset included

2,918 cases and 2,324 controls for 690,947 markers. There are

21,223 SNPs that were on Affymetrix 500K Array Set but not on

the Affymetrix SNP Array 6.0. These SNPs were excluded. SNPs

on the Affymetrix 6.0 array but not on the Affymetrix 500k array

were treated as missing data for those samples genotyped on using

the Affymetrix 500k array. Similar results were obtained after

excluding women genotyped by Affymetrix 500K Array Set from

the analyses.

Genotyping for Stage IIa was completed using the Illumina

iSelect platform. To compare the consistency between the

Affymetrix and Illumina iSelect platforms, we also included 43

samples from Stage I that were genotyped by Affymetrix SNP 6.0.

Similar to the QC procedures used in Stage I, the following

criteria were used to exclude samples: (i) call rate,95%; or (ii)

unexpected duplicated samples based on IBD estimate. SNPs were

excluded if: (i) call rate,95%, or (ii) genotyping concordance

rate,95% in quality control samples when compared with

Affymetrix 6.0 data. After QC, the mean concordance rate was

99.85% between Illumina iSelect and Affymetrix 6.0 genotyping.

Data for the SNPs analyzed in Stage IIb were extracted from

the Korean GWAS genotyped using the Affymetrix Genome-

Wide Human SNP Array 6.0 chip. A total of 30 QC samples were

successfully genotyped, and the concordance rate was 99.83%.

The sex of all samples was confirmed to be female. The SNPs were

excluded if: (1) genotype call rate,95%, (2) MAF,1% in either

the cases or controls, (3) deviation from HWE at P-value,1026,

and (4) poor cluster plot in either the cases or controls.

Genotyping for Stage III and all samples from Koreans in Stage

IV was completed using the iPLEX Sequenom MassArray

platform in the Vanderbilt Molecular Epidemiology Laboratory.

Included in each 96-well plate as QC samples were one negative

control (water), two blinded duplicates, and two samples from the

HapMap project. To compare the consistency between the

Affymetrix and Sequenom platforms, we also genotyped 45

samples included in Stage I. The mean concordance rate was

99.67% for the blind duplicates, 98.88% for HapMap samples,

and 99.52% between Sequenom and Affymetrix 6.0 genotyping.

Data quality from the Hong Kong study was low and thus data

from the study were excluded for the current analysis. Genotyping

for two Chinese studies (Nanjing and Guangzhou) in Stage IV was

completed using the iPLEX Sequenom MassArray platform at the

Fudan University, Shanghai, China. Blind duplicate QC samples

were included and the mean concordance rate was 98.70%.

Genotyping for the Tianjin study in Stage IV was performed using

TaqMan assays. Genotyping assay protocols were developed and

validated at the Vanderbilt Molecular Epidemiology Laboratory,

and TaqMan genotyping assay reagents were provided to

investigators of the Tianjin study (Tianjin Cancer Institute and

Figure 3. A regional plot of the 2log10P-values for SNPs at 6q25.1. The LD is estimated using data from HapMap Asian population. Also
shown are the SNP Build 36 coordinates in kilobases (Kb), recombination rates in centimorgans (cM) per megabase (Mb) and genes in the region
(below) based on the March 2006 UCSC genome browser assembly.
doi:10.1371/journal.pgen.1002532.g003
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Hospital). For the MEC study, data for the three SNPs presented

in this study were extracted from the GWA scan data generated

using Illumina 660W. For SNPs not included on the chip, imputed

data using HapMap as reference were extracted. Genotype

frequencies for SNP rs9485372 deviated from HWE in controls

(P = 0.004), therefore, this SNP was excluded in data analyses. Not

all SNPs for Stage IV were genotyped in all studies included in

Stage IV due to genotyping failure or the use of different

genotyping platforms (Table S8).

SNP selection for replication
SNP selection for Stage II replication: Promising SNPs were

selected for replication in Stage II based on the following criteria:

1) minor allele frequency (MAF)$5%; 2) P,0.02 in Stage I; 3)

Hardy-Weinberg equilibrium (HWE) test P.1.061026 in con-

trols; 4) not in strong linkage disequilibrium (LD) (r2,0.5) with any

of the previously confirmed breast cancer genetic risk variants or

SNPs evaluated in our previous studies [8,12]; and 5) high

genotyping quality as indicated by very clear genotyping clusters

checked manually. When multiple SNPs are in LD with r2$0.5,

one SNP with the lowest P-value was selected. In total, 6,303 SNPs

were selected for replication. A total of 5,906 SNPs (93.7%) were

successfully designed by Illumina and included in the iSelect array.

After stringent QC procedures, data from 5,365 SNPs were

considered high quality for association analyses in Stage IIa, which

include 1,613 breast cancer patients and 1,800 controls recruited

from Shanghai studies.

SNP selection for Stage III replication: Among the 5,365 SNPs

successfully genotyped in Stage IIa, 68 SNPs were selected for

Stage III replication in an independent set of 5,203 cases and

5,138 controls recruited from Shanghai and several other East

Asian populations (Table 1 and Text S1). The selection criteria

are: 1) an association with breast cancer risk in Stage IIa with

P#0.05; 2) the direction of the association consistent in both

stages; and 3) P#0.001 in the merged data of Stage I and IIa.

During the course of Stage III genotyping, genome-wide

association scan data from 2,359 cases and 2,052 controls were

obtained from the Seoul Breast Cancer GWAS (Stage IIb).

Therefore, we performed a meta-analysis of Stage IIa and IIb

data. Of the 5,297 SNPs which were not selected initially for Stage

III replication based on Stage IIa data alone, data were available

for 4,913 SNPs in Stage IIb. Meta-analyses of these 4,913 SNPs

from Stage IIa and IIb yielded 26 additional SNPs that showed an

association at P#0.05 and in the same direction among stages I,

IIa, and IIb. These 26 SNPs were then added to the list of SNPs to

be genotyped in Stage III.

SNP selection for Stage IV replication: Based on the results of

the first three stages, 22 top SNPs were selected for Stage IV

evaluation and genotyped in up to 17,423 additional subjects

(7,489 cases and 9,934 controls) (Table 1 and Text S1).

Statistical analyses
Case-control differences in selected demographic characteristics

and major risk factors were evaluated using t-tests (for continuous

variables) and Chi-square tests (for categorical variables). Associ-

ations between SNPs and breast cancer risk were assessed using

odds ratios (ORs) and 95% confidence intervals (CIs) derived from

logistic regression models. ORs were estimated for heterozygote

and homozygote for the variant allele compared with homozygotes

for the common allele. ORs were also estimated for the variant

allele based on a log-additive model and adjusted for age, and

study site, when appropriate. Stratified analyses by ethnicity,

menopausal status, and estrogen receptor (ER) status were carried

out. PLINK version 1.06 was used to analyze genome-wide data

obtained in Stage I and the replication data in Stage IIa. Results

from Stage IIb were also obtained from PLINK version 1.06.

Meta-analyses of Stage IIa and Stage IIb were performed using a

weighted z-statistics method, where weights were proportional to

the square root of the number of individuals in each sample and

standardized such that the weights added up to one. The z-statistic

Figure 4. Principal Component Analysis (PCA) based on the first two eigenvectors obtained by PCA. A: all individuals from Stage I and
HapMap; B: breast cancer cases and controls from Stage I.
doi:10.1371/journal.pgen.1002532.g004
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summarizes the magnitude and direction of the effect relative to

the reference allele. An overall z-statistic and p value were then

calculated from the weighted average of the individual statistics.

Calculations were implemented in the METAL package (http://

www.sph.umich.edu/csg/abecasis/Metal). Individual data were

obtained from each study for Stage IV SNPs for a pooled analysis,

which were conducted using SAS, version 9.2, with the use of two-

tailed tests.

We first investigated the population structure by estimating

inflation factor l using all 690,947 SNPs SNPs that passed the

QC. The inflation factor l was estimated to be 1.042, suggesting

that any population substructure, if present, should not have any

appreciable effect on the results. Among the final 690,947 SNPs

obtained in Stage I after QC, we generated a list of 196,471 SNPs

with pairwise LD,0.2 by using plink (http://pngu.mgh.harvard.

edu/,purcell/plink/). Then, principal components were estimat-

ed based on these 196,471 SNPs using EIGENSTRAT [36]. We

then drew a plot for all Stage I and HapMap II subjects based on

the first two principal components (Figure 4). All study participants

in Stage I were clustered very closely with HapMap Asians. The

first 5 or 10 principal components were adjusted in the logistic

regression analyses for evaluating associations of SNPs and breast

cancer risk.

To evaluate the combined effect of SNPs located in chromo-

some 6q25.1 on breast cancer risk, we created a genetic risk score

(GRS) by summing the number (0–2) of risk alleles that each

woman carried for each of the three SNPs, including rs9383951,

rs9485372, rs2046210. The GRS was constructed among those

who had complete data for all three SNPs. We also did imputation

using MACH (http://www.sph.umich.edu/csg/abecasis/MACH/

index.html) with HapMap II Asian data as reference. LD structure

was estimated from the flanking 100 kb of these three SNPs and the

ESR1 gene using data from HapMap II Asians (Figure S1). All SNPs

in the LD blocks including rs9485372, rs2046210 and rs9383951

and SNPs inside the ESR1 gene were analyzed in relation to breast

cancer risk with age, rs9485372, rs9383951 and rs2046210

adjusted.
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Figure S1 Estimates of pairwise LD (r2) for common SNPs from
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the flanking 100 kb of SNP rs9485372. B: LD plot for the

upstream 100 kb of SNP rs2046210 and the ESR1 gene.

(TIF)

Figure S2 Estimates of pairwise LD (r2) from HapMap II Asian

for the SNPs showing significant associations after adjusted for

rs9485372, rs9383951 and rs2046210.

(TIF)

Figure S3 A regional plot of the 2log10P-values for SNPs at

11q24.3. The LD is estimated using data from HapMap Asian

population. Also shown are the SNP Build 36 coordinates in

kilobases (Kb), recombination rates in centimorgans (cM) per

megabase (Mb) and genes in the region (below) based on the

March 2006 UCSC genome browser assembly.

(TIF)
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