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Abstract

Purpose: Prognostic indices such as the Brain Metastasis Graded Prognostic Assess-

ment have been used in clinical settings to aid physicians and patients in determin-

ing an appropriate treatment regimen. These indices are derivative of traditional

survival analysis techniques such as Cox proportional hazards (CPH) and recursive

partitioning analysis (RPA). Previous studies have shown that by evaluating CPH risk

with a nonlinear deep neural network, DeepSurv, patient survival can be modeled

more accurately. In this work, we apply DeepSurv to a test case: breast cancer

patients with brain metastases who have received stereotactic radiosurgery.

Methods: Survival times, censorship status, and 27 covariates including age, staging

information, and hormone receptor status were provided for 1673 patients by the

NCDB. Monte Carlo cross-validation with 50 samples of 1400 patients was used to

train and validate the DeepSurv, CPH, and RPA models independently. DeepSurv

was implemented with L2 regularization, batch normalization, dropout, Nesterov

momentum, and learning rate decay. RPA was implemented as a random survival

forest (RSF). Concordance indices of test sets of 140 patients were used for each

sample to assess the generalizable predictive capacity of each model.

Results: Following hyperparameter tuning, DeepSurv was trained at 32 min per

sample on a 1.33 GHz quad-core CPU. Test set concordance indices of

0.7488 � 0.0049, 0.6251 � 0.0047, and 0.7368 � 0.0047, were found for Deep-

Surv, CPH, and RSF, respectively. A Tukey HSD test demonstrates a statistically sig-

nificant difference between the mean concordance indices of the three models.

Conclusion: Our results suggest that deep learning-based survival prediction can

outperform traditional models, specifically in a case where an accurate prognosis is

highly clinically relevant. We recommend that where appropriate data are available,

deep learning-based prognostic indicators should be used to supplement classical

statistics.
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1 | INTRODUCTION

1.A | Clinical motivation

The median survival time for patients with brain metastases is on the

order of months; however, some groups of patients can significantly

outlive the median survival. Physicians have many treatment options

to choose from, where the potential for disease-free recovery is

strongly connected to the treatment intensity. The brain met graded

prognostic assessment (GPA) is one clinical tool that allows physicians

to predict the longevity of patients with brain metastasis and thus

select an appropriate treatment based on expected patient lifetime.

For example, patients expected to live longer than 6 months are more

likely to benefit from the short-term memory protection offered by

pin-point radiosurgery treatment. On the other hand, patients with

more limited life expectancy may be just as well served with a simpler

whole brain radiotherapy, as they may not live long enough to experi-

ence the longer-term cognitive effects of radiotherapy.

Brain met GPA uses multivariate Cox regression (MCR) and

recursive partitioning analysis (RPA) to determine factors that signifi-

cantly contribute to survival predictions. In the specific case of

breast cancer, the factors determined to be most significant include

Karnofsky performance status, number of metastases, and hormone

receptor characterization. The weights according to MCR are used

to compute an index, or scale from 0.0 to 4.0, that maximizes sepa-

ration between survival curves between groups. New patients are

placed in a group according to a few features and given a highly

nonspecific survival estimate as in Fig. 1.1,2

In this study, we focus on predicting survival probabilities for

patients with brain metastases and breast primary site using a deep

neural network. We expect that a representation learning approach

to prognostic assessment will produce more accurate survival esti-

mates than MCR and RPA for our dataset. Similar work in machine

learning for patient prognosis has been done by Alcorn et al.3 Their

work focuses on the application of random survival forests specifi-

cally to the problem of prognosis for patients with bone metastases.

1.B | Cox proportional hazards

Proportional hazards models are regarded as the gold standard for

survival analysis.4 Cox models aim to describe a patient-specific haz-

ard function (event rate), given a quantitative description of their

attributes (covariates, features).5 According to the proportional haz-

ards assumption, the event rate for patient having covariates x at

time t is modeled with the hypothesis function.

h tjx;Θð Þ¼ hðtÞeΘTx; x,Θ∈Rn:

Regression with survival data is limited by censoring, or “loss to

follow-up.” There is no meaningful way to ascribe an event time to

patients who discontinue communication with record keepers.

Therefore, the parameters of the Cox model must be learned with a

nonparametric objective function. Parameters Θ∗ that best predict

the order of survival times for N patients having covariates

{x 1ð Þ, . . .,x Nð Þg and survival times ft 1ð Þ, . . .,t Nð Þg are obtained by maxi-

mizing the Cox partial likelihood:

Θ∗ ¼ argmax

Θ

Y
i:δi¼1

h tðiÞjxðiÞ;Θ� �
∑ j:tðjÞ>tðiÞh tðiÞjxðjÞ;Θ� � ,

where δi ¼1 indicates that patient i was not lost to follow-up.

1.C | DeepSurv

Deep learning has been shown to be an effective tool for modeling

nonlinear functions. There have been many breakthroughs in image

classification, natural language processing, and other fields due to

new methods and increased availability of deep learning platforms.6

In 2016, Katzman et al. released DeepSurv, a Cox deep neural net-

work for public use. DeepSurv assumes the same structure as the

Cox proportional hazards (CPH) model but uses a state-of-the-art

neural network to evaluate risk (ΘTx in CPH).7 The deep architecture

of the model allows it to create higher-order representations of fea-

tures that might be more useful for survival predictions than the fea-

tures alone. DeepSurv has been used to successfully characterize

risk in several datasets including the Worcester Heart Attack Study

(WHAS) and Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC) datasets. DeepSurv realizes its potential

fully when the true risk function is highly nonlinear. DeepSurv’s con-

cordance index improved from CPH by about 15% on toy data with

risk generated from a 2D Gaussian.

1.D | Random survival forests

For comparison of DeepSurv with a leading nonlinear machine learn-

ing method that is not based on deep learning, a random survival

forest was implemented in R using the RandomForestSRC pack-

age. Random Survival Forests utilize an ensemble of trees generated

from bootstrap samples of the training dataset. Trees are “grown”

for each data subset by identifying the covariate from a random set

of candidate covariates that maximizes the survival difference for

the data subset. The surviving fraction of the split data is calculated

for each terminal node in the decision tree. For prediction on a test

data point, the data are passed through all trees and the ensemble

cumulative hazard is used to make survival predictions.

2 | METHODS

2.A | NCDB dataset

Survival predictions of three machine learning models were com-

pared using 1673 patients’ data from the National Cancer Database.

Patients included in the dataset all had brain metastases and a breast

primary site. Twenty-seven features including age, staging informa-

tion, and hormone receptor status were used to characterize risk. An

event indicator and time was provided for each patient.
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The NCDB dataset can be visualized with dimensionality reduc-

tion. t-Distributed Stochastic Neighbor Embedding is a method of

dimensionality reduction that compromises large distances in data

space in favor of preserving small distances.8 A three-dimensional

embedding of the 27 features was created using t-SNE in Python

(Fig. 2). Clustering by event occurrence suggests that there are learn-

able representations of the dataset that describe patient survival.

Monte Carlo cross-validation with 50 samples (84% training, 16%

test) was used to assess model performance.9 The three models con-

sidered were DeepSurv, CPH, and a random survival forest (RSF).

The RSF serves as a benchmark nondeep state-of-the-art survival

analysis method, based on recursive partitioning analysis. For more

on RSFs, see.10,11

2.B | Survival model evaluation

The generalization error for a model with parameters Θ can be

described by its concordance index C on a test data set,12,13

C¼ 1
N

∑
i:δi¼1

∑
j:tðiÞ<tðjÞ

1 ΘTxðiÞ>ΘTxðjÞ
h i

:

The concordance index considers all admissible pairs of patients

and computes the fraction of patients that are correctly ordered by

the model according to their true survival times. A pair of patients

A,Bð Þ is considered admissible if patient A has survival time tA<tB

and experiences an event, δA ¼1. Concordance indices range from

0.0 (100% discordant) to 1.0 (100% concordant), with C¼0:5 sug-

gesting that predictions were made randomly.

2.C | Model implementation

Cox regression was implemented in Python with stochastic gradient

ascent. Parameters were updated according to their derivatives with

respect to the Cox partial log-likelihood:

F I G . 1 . GPA is an online free-to-use tool
utilized by some oncologists for patient
prognosis (www.brainmetgpa.com). This
validity of this tool has been established
by Sperduto et al. in several journal
publications with timely updates
(reference: PMID: 22203767). The GPA
tool uses five covariates determined to be
significant by MCR to make survival
predictions for patients with brain
metastases and breast primary site. In this
image, a breast cancer patient with
age> 60, KPS in the range 90–100, tumor
subtype luminal B triple-positive, etc. is
given a score of 2.5, indicating an
expected survival of 11.1–47 months.

F I G . 2 . t-SNE visualization of the NCDB dataset, labeled by event
occurrence. Patients with recorded death times have a yellow
marker, while those which are lost to follow-up are labeled purple.
Because directions in the embedding space do not correspond to
known physical parameters, axis labels in t-SNE visualization are
arbitrary.
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Θk :¼Θk þα ∑
i:δi¼1

xðiÞk �
∑ j:t j≥ti

xðjÞk eΘ
TxðjÞ

∑ j:t j≥ti
eΘ

TxðjÞ

 !
,

where α is the learning rate. Updates were halted when the valida-

tion concordance appeared to converge to a maximum (60 itera-

tions). A Wald test with significance level α = 0.01 was used to

identify the parameters which are likely to be truly nonzero in the

Cox framework.14 Features and significance levels are displayed in

Table 1.

The deep neural network DeepSurv was implemented in Python

with L2 regularization, batch normalization, dropout, Nesterov

momentum, and learning rate decay. A six-dimensional box in hyper-

parameter space was uniformly sampled 100 times and DeepSurv’s

performance was evaluated with a validation dataset.15 The hyperpa-

rameters that yielded the highest validation accuracy (Fig. 3) were

chosen for deployment. DeepSurv was then trained for 7000 epochs

per sample at about 32 min per sample on a 1.33 GHz quad-core

CPU.

3 | RESULTS

The three models were independently trained and validated

50 times on the randomly split dataset. Test set concordance

indices of C
Deep

¼0:7488�0:0049, C
CPH

¼0:6251�0:0047, and

C
RSF

¼0:7368�0:0047, were found for each model. DeepSurv

and the RSF significantly outperform the CPH model. Concor-

dance indices are displayed in Fig. 4.

A Tukey Honestly Significant Difference test was used to evalu-

ate the difference of mean concordances for each model (Table 2).

With a significance level of 0.05, one can reject the null hypothesis

that the mean concordances for DeepSurv and the RSF equal the

TAB L E 1 The significance of various covariates according to the proportional hazards assumption is listed in the table.

Variable P Variable P Variable P

Age 0.02 Sex 0.64 Race 0.51

Charleon/Deyo 0.19 Grade 0.01 Tumor Size 0.87

Regional LNs Positive 0.94 AJCC Clinical N <0.005 AJCC Pathologic N 0.32

Bone Mets at DX 0.59 Brain Mets at DX <0.005 Lung Mets at DX 0.85

ER Assay 0.45 PR Assay 0.93 HER2 Summary <0.005

Multigene Signature Method 0.62 Multigene Signature Results 0.91 Treatment Days After DX 0.01

Rad Days After DX 0.38 Radiation Type 0.97 Volume Irradiated <0.005

Regional Dose 0.99 Chemotherapy Type 0.16 Hormone Therapy Type 0.26

Immunotherapy Type <0.005 Mets at DX 0.42 Systemic Surgery Sequence 0.04

Note: Some factors that are obviously significant in survival predictions have significant P-values. The many covariates with insignificant P-values will

not greatly contribute to risk calculation in the CPH framework. Bold indicates statistical significance.

F I G . 3 . Left: Hyperparameters that
yielded the highest validation accuracy.
Right: A plot of learning rates versus
validation accuracy demonstrates the
impact of one hyperparameter choice on
generalization error. A learning rate of
10�1:726 ¼0:0188 was chosen for
deployment.

F I G . 4 . The test set concordance indices for three models are
shown in this plot. The 95% confidence intervals of the median are
given by notches in the boxes. DeepSurv appears to yield the
smallest generalization error.
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mean concordance for the proportional hazards model. There is not

enough evidence to suggest that the mean concordance of Deep-

Surv is different from the mean concordance of the random forest

Fig. 5.

To highlight the clinical utility of working survival models, we

have included predicted survival curves for three test patients in one

cross-validation sample. The CPH and DeepSurv predictions are cal-

culated by exponentiating a Kaplan–Meier estimate of the baseline

survival function (from the training set) with the predicted hazard.

The survival forest instead creates a unique curve based on all the

terminal nodes to which the patient belongs.

With the assumption of a baseline survival function, the

expected value T¼ E T½ � for each patient in the validation dataset can

be evaluated with T¼ R∞
0

S tð Þdt.16 This technique can be used to

better understand the biases of the working models. We consider

the distribution of errors T�T for each model (Fig. 6). All three tech-

niques tend to overestimate the true survival time.

4 | DISCUSSION /CONCLUSION

In this study we demonstrate a highly clinically relevant scenario

where deep learning-based survival estimates outperform the gold-s-

tandard survival analysis technique — MCR. With an appropriate

baseline hazard estimate, survival predictions generated by DeepSurv

might prove beneficial to patients and physicians in determining an

appropriate treatment option.

One failure of deep learning-based survival analysis is the chal-

lenge of interpretation. Neural networks utilize complex interactions

between features, which improves classification performance at the

cost of interpretability. This is one weakness of deep learning com-

pared to conventional methods. The interpretability of the inner

workings of models in artificial intelligence is active area of research

beyond the scope of this work.17,18 We therefore recommend the

supplement of traditional techniques with deep learning, rather than

outright replacement. If future work allows intuitive interpretability

of the “black box” of neural networks, they may well replace current

models such as CPH.

TAB L E 2 A Tukey HSD post-hoc test supports the hypothesis that
DeepSurv and the RSF have greater mean test concordances than
CPH.

Tukey HSD – Multiple comparison of means

Group 1
Group
2

Difference of
means

Lower
bound

Upper
bound

Reject
null

DeepSurv CPH 0.1237 0.1074 0.1399 True

RSF CPH 0.1117 0.0957 0.1277 True

DeepSurv RSF 0.0120 -0.0042 0.0282 False

F I G . 5 . Survival probability curves S tð Þ¼ p T>tð Þ for three patients predicted by each model according to a Kaplan–Meier estimate of the
baseline survival. The true times of death for these patients are indicated by the vertical lines.

F I G . 6 . The distribution of errors
predicted with

R∞
0

S tð Þdt�T for the
validation dataset suggests all three models
overestimate patient survival times.
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Advanced survival analysis techniques suffer from inaccessibility.

Brain met GPA is widely popular because it is online and easy to

use. Any future deep learning-based approaches to patient prognosis

should be accessible to physicians in the form of a webpage or easy-

to-use software.

One weakness of the deep risk framework is the lack of a time-

dependent hazard estimation; DeepSurv acts as an extension of the

classic CPH model. Luck et al. have recently shown that by directly

modeling the survival function, as opposed to risk, they can obtain

concordance indices on par with those generated by DeepSurv.19 A

final implementation of this work for clinical use might benefit from

an effort to include time dependence.

Currently, there does not appear to be any significant benefit to

using DeepSurv over the Random Forest. However, deep learning is

a very rapidly growing field. DeepSurv, despite utilizing several state-

of-the-art training techniques (dropout, batch normalization, L2 regu-

larization), is architecturally quite simple. It does not take advantage

of expected patterns in survival data in the way that convolutional

networks handle images, and recurrent networks handle language.

Our group expects that deep learning-based methods will continue

to improve in the near future.
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