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A B S T R A C T

In spite of remarkable progress in the field of wound curation, treatment of chronic wounds remains a challenge
for medical services. The constant rise in the number of patients with chronic wounds and their related financial
burden has caused concern for the healthcare system. The complicated and dynamic nature of chronic wounds has
increased the curation time and difficulty of wound healing with conventional bandages. Efficient healing of these
wounds requires new bandages with the ability of real-time monitoring, data analysis, and drug delivery, which
protect the wound against infection and accelerate the treatment process. The recent development of smartphone
applications and digital equipment in medicine provides an opportunity for significant improvement in wound
care through the incorporation of “smart” technologies into clinical practice. The focus of this review is to provide
an overview of the current status of smartphones and digital technology in the management of wounds.
1. Introduction Alliance of Wound Care Stakeholders reveals that wound care costs in the
Awound is a rapture of integrity in the skin, mucosal surface, or organ
tissue. Patients undergo pain, stress, and functional disorders caused by
wounds [1, 2, 3]. The healing of a wound is a complicated and
time-consuming process that is affected by systemic and environmental
factors. Age, body type, nutrition, vascular insufficiencies, chronic dis-
ease, and immunosuppression are the main systemic factors. The envi-
ronmental factors also include pressure, edema, necrosis, infection,
desiccation, and maceration [4]. Chronic wounds are not able to pass
through all natural healing processes in a typical time period and are
usually prone to various infections. In more acute cases, a chronic wound
may take years to heal because of its delay in the transition from the
inflammatory phase to the subsequent wound healing phases [5, 6].
Common chronic wounds, such as bedsores and diabetic foot ulcers
(DFUs), are rapidly increasing due to the growth of their related diseases,
namely diabetes, paralysis, sickle cell anemia, vasculitis, renal impair-
ment, epidermolysis bullosa (EB), and autoimmune disease. The elderly
with underlying diseases such as diabetes are more predisposed to
chronic wound trouble, which stems from their already compromised
general health and healing ability [2, 7, 8, 9, 10]. Non-healing wounds, as
observed in EB patients, create considerable challenges for both patients
and healthcare systems [11, 12]. Moreover, they cause various disabil-
ities, frequent hospitalization, and even amputation [13]. The financial
burden of wounds imposed on the United Kingdom's healthcare system is
estimated to be £5.1 billion [14]. Another report by the American
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US reached $31.7 billion. This study also warns of a concerning increase
in chronic wounds because of the increase in the average age of the
population and its related number of obesity, diabetes, and lower ex-
tremity disease [15].

Accordingly, the healthcare systems are in an attempt to achieve a
proactive and preventive adopted approach to wound care. One of the
vital parts of this procedure is smart technologies that provide non-
invasive quantitative data from the wound healing process and address
efficient wound assessment and characterization [16, 17]. Recent
smartphone-based wound dressings are able to perform real-time moni-
toring and present a diagnosis of the chronic wound by continuously
collecting physicochemical data from the wound and wirelessly trans-
mitting them to the clinical center to receive remote on-demand treat-
ments [18, 19]. The most brilliant benefit of this smartphone-based
dressing is the reduction of the patient's visits to the hospital, which
decreases the probability of infection, curation costs, and treatment time,
as summarized in Figure 1 [14,20]. There are few reports in the case of
smartphone-based dressings for wound healing. Hence, as a primary
reference, a mini-review on this point of view could be helpful for future
research. In this review, recent advanced progress in smart and
controlled drug delivery to the chronic wound based on smartphone
applications are presented. Then, smartphone-based monitoring of
chronic wounds is explored; and finally, the most important parameters
for real-time monitoring of chronic wounds are discussed and recent
advances in this field are highlighted.
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Figure 1. Useful features of smartphones for smart wound dressings.

Figure 2. Smartphone-based dressing with the ability of wound monitoring and
drug delivery. In this image, the wound dressing has both features, but some
wound dressings may have one of these features.
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2. Smartphone-based wound dressing

Wound healing is a complicated process in nature [21]. The major
drawback in wound curation is a lack of sufficient information about the
status of the wound bed, such as healing phase, healing rate, and the
existence of infection. Therefore, patients with chronic wounds are
frequently summoned to the clinical centers to evaluate their healing
phase and infection probability. However, this method of monitoring
significantly adds to the treatment cost, heightens the stress on the
medical centers, and delays the curation, especially for patients who are
living in remote areas. The recognition of exact healing phases (hemo-
stasis, inflammation, proliferation, and remodeling) by the clinical
operator is the next important challenge since the physiological processes
are different in each healing phase, and consequently, each phase re-
quires its own specific biofunctional factors and drugs. For instance, the
improper prescription of antibiotics can result in antibiotic-resistant
bacteria [6]. The implementation of smartphone-based technologies in
medical applications offers a new opportunity for healthcare systems to
desire reformations in wound management [22]. The whole compart-
ments of smart wound monitoring is expected to be fast, non-invasive,
cost-effective, user-friendly, and finally provide reliable and low-error
information to the clinical operators. Smartphone-based wound dress-
ings are used by patients to track wounds at home. Hence, the resulting
data from this kind of smart dressing is also important for simple pre-
diction of the wound healing process [23]. In contrast with the tradi-
tional wound assessment methods that use direct contact of the
measurement instrument such as a ruler or plastic film,
smartphone-based techniques can be non-contact in their simplest form
and use digital image analysis [22, 24]. The high-quality imaging devices
available on recent smartphones can significantly increase the precision
and reliability of wound measurements without the need for any special
training or extra equipment [25, 26, 27]. In the next two subsections, we
describe recent studies on the use of smartphones to monitor wounds,
drug delivery, or both of them (Figure 2).

2.1. Smartphone-based wound dressing for drug administration to the
wound

Traditional wound dressings such as gauze and cotton wool are used
to protect the damaged parts of the body from harsh conditions and
contamination [28], but as mentioned above, they can be combined with
smart platforms for remote and real-time monitoring. In addition,
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advanced smartphone-based dressings are able to have biological activity
either on their own or through the release of drugs and bioactive sup-
plements incorporated within the dressing structure [29]. A wide variety
of factors, peptides, or their combination are tested for fueling various
physiological processes to lead non-healing wounds toward their natural
healing process [30]. In addition to the complexity of chronic wounds
and the variety of their related drugs, there are several ways of drug
delivery due to the accessibility of cutaneous wounds, such as ointments,
dressings, and scaffolds. As a result, efficient treatment of chronic
wounds needs advanced personalized dressings, which are proportional
to the patient's status and provide controllable delivery of various ther-
apeutics to the wound [31].

A new smartphone-based wound dressing designed for the controlled
and programmable release of multiple drugs (Figure 3a) consists of
miniaturized pump arrays which are wirelessly controlled by an in-house
smartphone-based application. Miniaturized needle arrays (MNAs) are
applied in island forms across the dressing structure to enhance the
bioavailability of drugs in deeper layers of the wound tissue which was
successfully confirmed by in vitro study results. Then, the practical po-
tentials of the whole systemwere examined via delivery of VEGF to the 5-
day old full-thickness skin injuries in diabetic mice. The sample animals
that received VEGF via MNAs showed efficient and complete healing
with no symptoms of scar formation. According to the results, in addition
to the real-time monitoring of wound progress and prescription of
appropriate therapeutics, the technique of drug delivery and their spatial
distribution within the wound bed play a key role in chronic wound
treatment [32]. Thermoresponsive drug carriers are another intelligent
system for remote drug delivery, a flexible patch made of thermores-
ponsive drug release and heat stimulator threads for smartphone-aided
growth factor delivery to the chronic wound (Figure 3b). The heat
stimulator part of the wound dressing is made of conductive core threads
as microheaters coated with polyethylene glycol diacrylate-alginate
(PEGDA-Alg) hydrogel that is in interaction with the thermoresponsive
drug carriers. The practical competence of a smart dressing made of
VEGF-loaded fibers was studied on mice with diabetic wounds as an in
vivo model. In addition, histology and wound closure tests indicate the
capabilities of the introduced smart patch in controlling drug delivery to
chronic wounds [33].

2.2. Smartphone-based wound dressing for monitoring of wound
parameters

New progress in electronic and designation of the mobile application
has raised hopes to achieve the advanced smart tools that provide suf-
ficient diagnostic information and treat chronic wounds by interfering in



Figure 3. (a) A wirelessly controlled smart bandage with 3D-printed miniaturized needle arrays. Reprinted with the permission of Ref [32]. (b) A textile dressing for
temporal and dosage-controlled drug delivery. Reprinted with the permission of Ref [33].

Figure 4. A multifunctional pro-healing zwitterionic hydrogel for simultaneous
optical monitoring of pH and glucose in diabetic wound treatment. GOx: glucose
oxidase, HRP: horseradish peroxidase, DCF: dichlorofluorescein. Reprinted with
the permission of Ref [48].
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healing processes and preventing infection. Such smart technologies are
able to precisely sense, report the collected information, and respond to
an on-demand prescription. Sensors are the first necessary step in this
way. By providing a clear map from the key parameters of wound con-
dition, sensors can decrease the wound-care decision-making time
without the need for frequent clinical visits and changing of the wound
dressing. Finally, such advances offer a reduction of healthcare costs and
time of hospitalization [34, 35]. pH, temperature, pressure, wound
oxygenation level, and the amount of uric acid are the key parameters in
wound monitoring, which are described below in detail.

2.2.1. pH
The pH is related to the activity of hydrogen ions in a solution and

varies from the number 0 to 14 [36]. The main physiological pathways of
the human body take place at pH¼ 7. Hence, the inner environmental pH
of the human body is maintained at a neutral range, while the pH of skin
naturally varies from 4 to 6 [37]. Skin damage and rapture can change its
natural pH. Each healing phase of the wound has a different pH value
[38], but in general, wound repair mechanisms take place in an acidic
environment (similar to the natural skin in its healthy time) [7, 38, 39].
Chronic wounds, however, tend to have neutral and basic pH in the range
of 7.15–8.90 [40] and even reach pH of 10 in the case of bacterial
infection [41, 42, 43, 44]. Therefore, tracking skin pH during wound
healing provides reliable information about the healing process and early
symptoms of non-healing or infection trajectory [39, 40, 45, 46, 47].

The optical monitoring of both pH and glucose levels in diabetic
chronic wounds is made possible by multifunctional hydrogel wound
dressings (Figure 4). Real-time tracking of wound pH is easily attainable
by incorporating nontoxic phenol red (exhibits obvious color from yellow
in pH 6 to red in pH 8) within the zwitterionic poly-carboxybetaine (PCB)
hydrogel structure. The wound glucose variations can be indicated by
embedding glucose oxidase (GOx) and horseradish peroxidase (HRP)
enzymes into the PCB hydrogel. The color changes of the diabetic wound
tissue are detected by a smartphone-based application. In order to ach-
ieve an in vivo validation, visible red, blue, and green (RGB) colors of
taken images of diabetic mice wounds were analyzed by a smartphone
application, and their related fitting equations were obtained to monitor
3

the glucose and pH variation. Additionally, reported smartphone-based
wound dressing indicates excellent pro-healing ability compared with
commercial DuoDerm dressing for the treatment of diabetic chronic
wounds [48]. According to the results, the introduced smart dressing has
advantages over existing commercial technologies, including (1)
providing the pH map of the diabetic wound by an array of printed
sensors; (2) maintaining the desired moisture needed for wound healing
by using hydrogel structure; and (3) providing conformal coverage to the
wounded tissues [49]. More economical smartphone-based wound
dressing alternatives can be designed by immobilization of pH indicator
molecules on the cellulose particles. Instead of image capturing by the
patient, the reading of color changes by indicator molecules is up to an
electronic chip that is attached to the wound dressing and is able to
perform a real-time report of the collected data to the patient's smart-
phone via a novel radio-frequency identification (RFID)-based
contact-less platform. The electronic reader is also able to wirelessly
transfer quantitative pH data to a clinical computer and is continuously
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aware of the wound status. This new reported smart wound dressing is
low-cost, fast, and more reliable since the sensing data is detected
without patient interference. Moreover, immobilized pH indicators and
electronic data readers can be added to commercial dressings and
improve their smart abilities [50]. A low-cost, flexible, reusable, and
non-invasive smartphone-based dressing is designed for wireless pH
monitoring and early detection of infection. In contrast with previous
reports, this system benefits from an electrochemical sensor, including
reference and working electrodes. The changes in electrical potential
between electrodes are translated into the changes in Hþ ion concen-
tration in the solution. Both flexible electrodes have a similar structural
base consisting of polyethylene terephthalate film (PET) coated with
indium tin oxide (ITO), while the reference electrode is modified with
silver and the working electrode with polyaniline (PANI) coating. A
flexible battery-less electronic data transmitting platform receives
sensing information from the electrochemical sensor and sends it to the
patient's smartphone via wireless communication [51]. If instead of the
one electrochemical pH sensor in the previous report, all bandage
structures were filled with lots of sensing points, it would be possible to
create a pH map of the entire wound surface. Actually, each pH sensor
reports its local pH to the patient's smartphone, and integration of all
bandage points by the mobile application provides a colorful pH map of
the wound. In such sensing, bandages are made from PANI functionalized
pH sensing threads and an electronic data transformer, which collects
sensing data from each point. The use of advanced technology in clinical
evaluations to perform pH mapping aided by smartphone applications
significantly improves the ability of smart bandages to sense deep and
non-uniform wounds [52].

2.2.2. Temperature
Due to the fragile nature of biomolecules and the special conditions of

biochemical reactions, temperature plays an important role in the ac-
tivity of all living organisms, and the healing process of wounds is no
exception [20, 46, 53, 54, 55, 56, 57]. In the case of wound healing, a
limited increase in temperature is related to inflammation of wound
tissue, but a prolonged temperature increase of >1.11 �C in chronic
wounds usually indicates bacterial infection [58]. The most common
method of determining this temperature is the palpation of the sur-
rounded wound by clinical operators or own patients. In acute cases,
wound infection can obviously be detected by simultaneous inflamma-
tory symptoms such as redness, swelling, pain, and heat [4]. However,
the early detection of temperature changes by wound infection needs a
more sensitive and precise method of monitoring. Fortunately, there are
reasonably priced electronic sensors for temperature that are commer-
cially available and can be easily integrated with common wound
dressings.

The combination of a temperature sensor and ultraviolet (UV)-
responsive hydrogel provides both infection monitoring and on-demand
antibiotic therapy of infected wounds. In this system, an electronic sensor
continuously monitors the wound temperature; an electronic transformer
sends information from the sensor to the smartphone via Bluetooth. It
would be a certain diagnosis of wound infection if the wound tempera-
ture remained higher than 40 �C for a defined period of time. In that case,
the UV-LEDs integrated with the wound dressing will be activated, and
finally the UV-responsive hydrogel will be forced to release its encap-
sulated antibiotics into the wound tissue (Figure 5a) [59]. Mechanical
rigidity and low biocompatibility are the main obstacles to the use of
electronic temperature sensors for medical applications. In a recent
study, electronic parts of a smart dress, including a temperature sensor, a
power source, and a data analyzer, are placed within a stretchable
polyamide substrate. All electronic parts are connected with serpentine
metal. The resulting system is coated with polydimethylsiloxane (PDMS).
Finally, the fabricated electronic part is integrated with a layer of the
collagen-chitosan porous scaffold. The fabricated smartphone-based
wound dressing is able to continuously monitor the wound tempera-
ture and send real-time information to the patient's mobile. Moreover,
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the incorporation of the electronics into the porous collagen-chitosan
layer enhances the biocompatibility and pro-regeneration effect of the
wound dressing (Figure 5b) [60]. The temperature sensor, pH sensor, and
drug release hydrogel can be incorporated into a flexible polyethylene
terephthalate (PET) substrate to fabricate a networked closed-loop
automated patch for monitoring and treatment of chronic wounds. In
such flexible and biocompatible automatic smart dressing, all sensing
data is collected from the sensors and, after processing, sent to the pa-
tient's smartphone. Then, related commands for drug-releasing are
decided by the mobile application and sent back to the thermoresponsive
fibers embedded in the wound dressing structure [61].

2.2.3. Pressure
By imposing compression over the wound, venous flow improves, and

wound healing speeds up consequently [62, 63]. This type of curation is
usually applied to venous leg ulcers (VLUs) and requires specific kinds of
compression bandages to be applied by trained clinicians. The desire is to
impose pressure of approximately 40 mmHg at the ankle, which de-
creases as it moves up the leg [64]. The measuring of sub-bandage
pressure is necessary to know if adequate or excessive pressure is being
applied or if pressure is changing over time. Inappropriate compression
may worsen venous insufficiency and lead to tissue necrosis if continued
[65]. Hence, real-time and smart monitoring of wound compression can
provide more needed information for efficient curation of chronic
wounds.

In a recent report, the smart dressing with the ability to monitor the
bleeding, wound pH, and external pressure on the wound site was suc-
cessfully designed and fabricated. Quantitative measurements of the
wound status are continuously transformed into a mobile application for
real-time monitoring of the wound healing process. A capacitance to
digital converter (CDC) measures the initial value of the sensor capaci-
tance after wearing the bandage. Any changes in the sensor's capacitance
are compared with its initial amount by a smartphone application and
translated into the wound pressure changes. Then, the appropriate
command for balancing wound pressure is presented to the patient by
their smartphone. In this way, an efficient connection between the pa-
tient and their smart dress is formed to enhance the healing process [66].
In another study, a battery-less pressure sensor powered by a smartphone
via an electromagnetic field was applied to perform real-time monitoring
of chronic wounds. The real-time sensing information data was collected
and, after being wirelessly transmitted to the smartphone, analyzed by a
user-friendly phone application (SenseAble app). The introduced pres-
sure sensor and its related electronic circuits can be installed on the
various commercial wound dressing to award wound compression
changes during the healing phases [67].

2.2.4. Wound oxygenation
Like most biological reactions, wound healing strongly depends on

oxygen consumption because of its fundamental role in the wound
healing process, including collagen deposition, epithelialization, fibro-
plasia, angiogenesis, and infection resistance [68]. At low oxygen levels,
wounded tissue undergoes hypoxia, which leads to disruption of the
healing process and consequently prolonged hospitalization [69, 70, 71].
The partial pressure of oxygen in the non-healing wound and healthy
tissues is obviously different as it is between 5 mmHg and 20 mmHg,
whereas in healthy tissue, it varies between 30 and 50 mmHg [70].

Integration of a miniaturized oxygen monitoring system with the
bioactive wound dressing will enable the clinical staff to quickly and
easily provide a treatment regimen specified by the individual patient
status and the possibility of personalized therapy. Regarding oxygen
monitoring, the most critical point of care is the permeability of the
bandage structure in order to allow oxygen molecules to pass across and
reach the sensor. For this purpose, a study suggests a three-dimensional
(3D) printed bandage from the TangoPlus (TangoPlus FLX930) and
oxygen permeable hydrogel. An electrochemical galvanic cell imple-
mented on parylene-C was selected as an oxygen sensor made from



Figure 5. (a) Smart, flexible electronics-integrated wound dressing for real-time monitoring and on-demand treatment of infected wounds. Reprinted with the
permission of Ref [59]. (b) Flexible wound healing system for pro-regeneration, temperature monitoring, and infection early warning. Reprinted with the permission
of Ref [60].
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silver (cathode) and electroplated zinc (anode) electrodes. Moreover,
potassium hydroxide gel saturated on filter paper is applied as the
electrolyte, and a layer of PDMS is used as the oxygen-selective mem-
brane. Incorporation of a sensor/wireless readout system on the
permeable smart bandage creates a comfortably wearable platform for
real-time monitoring of the wound healing process and the existence of
infection [72].

2.2.5. Uric acid
Elevated uric acid can be a symptom of wound severity and oxidative

stress in chronic wounds [73]. As an inflammation enhancer, uric acid
can drive chronic wounds to an acute state by increasing the concen-
tration of reactive superoxide radicals in the wound bed, which can
disrupt the normal activity of biomacromolecules such as proteins, lipids,
and nucleic acids [73, 74]. Real-time tracking of this biomarker con-
centration in the wound can provide reliable information about the
wound healing process [75].
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The great potential of enzymes as excellent sensitivity, selectivity,
and biocompatibility are applied in the fabrication of amperometric
uric acid biosensors. In a wearable biosensor, working electrodes are
fabricated by immobilization of urate oxidase enzyme on the screen-
printing Prussian blue (PB) modified carbon electrodes and a refer-
ence electrode made from silver. The two electrodes are incorporated
into chitosan polymers as a biocompatible bandage. The product of the
enzymatic oxidation of uric acid is hydrogen peroxide. Then, the PB-
carbon electrode catalytically reduces the hydrogen peroxide, which
is realized by the sensor as uric acid concentration. After processing, the
sensing data is sent to the smartphone [76]. Alternatively, a battery-free
and multifunctional smartphone-based dressing is fabricated from a
flexible double-layer consisting of a disposable sensing layer and a
reusable, flexible electronic layer with the ability to detect temperature,
pH, and uric acid. In addition, it is able to control the release of anti-
biotics against wound infection (Figure 6). The top layer is composed of
flexible circuit boards for wireless power harvesting, sensing signal



Figure 6. Battery-free and wireless smart wound dressing for wound infection monitoring and electrically controlled on-demand drug delivery. Reprinted with the
permission of Ref [77].

Table 1. An overview of smartphone-based wound dressings with self-designed and commercial smart bandages.

Sensor Drug delivery Communication to smartphone App In vitro test In/Ex vivo test Ref.

pH
Glucose

— Image processor used after
capturing by phone (MATLAB)

— NIH 3T3 cells Mouse [48]

Temperature Gentamicin Bluetooth — NIH 3T3 cells Pig [59]

Temperature — Bluetooth — NIH 3T3 cells Pig [60]

Uric acid pH Cefazoline NFC — — Rat [77]

Uric acid pH — RF transceiver IC — — Mouse [43]

pH Gentamicin Image processor used after
capturing by smartphone (ImageJ)

iDerm Human keratinocytes
and fibroblasts

Pig skin [49]

pH — Image processor used after
capturing by phone (MATLAB)

— Human keratinocytes Pig skin [78]

pH — NFC — — — [51]

pH — Bluetooth — — — [52]

pH Ciprofloxacin Bluetooth — — — [79]

Bleeding
Pressure pH

— IEEE 802.15.4 — — Human [66]

Temperature
Strain

— NFC SenseAble CPR Manikin — [67]

Oxygen — Xbee — — — [72]

Uric acid — NFC — — — [76]

— VEGF Bluetooth — HUVECs Mouse [32]

— VEGF Bluetooth LightBlue Bean HUVECs Mouse [33]

— Rhodamine isocyanate
as a model

Bluetooth LightBlue Bean — — [80]

pH — NFC — — — [50]

pH
Temperature

Cefazoline Bluetooth LightBlue Bean Human Keratinocytes — [61]

pH — Image process after capturing by
smartphone (RGB detection)

— NIH3T3 cells Mouse [81]

pH — Image process after capturing by
smartphone (RGB detection)

— NHDF cells Mouse [82]

pH — Image process after capturing by
smartphone (RGB detection)

— NIH3T3 cells Mouse [83]
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analyzer, drug release controller, and wireless data transmitter. The
bottom layer includes a uric acid sensor, pH sensor, and drug delivery
electrodes, which are incorporated into the polyimide (PI) substrate.
Coating with PDMS made the lower layer stretchable and biocompat-
ible. The bottom layer senses the amount of wound uric acid and
wirelessly sends processed data to the smartphone. Then the commands
for antibiotic release are sent to the wound dressing if needed [77].
Paper-based smart bandages (OPSBs) are practical, advanced wound
dressings based on smartphone applications and potentiostat electro-
chemical sensors. This fabricated smart dress is a real example of effi-
cient integration between electronic technologies and medical science.
The other advantages of these fabricated systems are presented as fol-
lows: (i) low cost, flexible, breathable, lightweight, and reusable
structure; (ii) compatible with mass-scale production techniques, such
as spray deposition or roll-to-roll printing [43].

In addition, the smartphone-based wound dressings reported in the
literature are summarized in Table 1.

3. Conclusions and future outlook

Chronic wounds are a major concern for the healthcare system due to
their complicated, prolonged, and expensive treatment process. The
process of chronic wound curation depends on several systemic and
environmental factors that vary among patients. Therefore, any efficient
curation method must be personalized for each patient. Smartphone-
based wound dressings are a new advanced procedure to improve
chronic wound curation by real-time monitoring of wound status via
smart sensing, data processing, data transferring, and automated drug
delivery to the chronic wound. There are many reviews and reports in the
field of smart wound dressings [16, 17, 20, 84, 85, 86, 87, 88, 89], but as
far as we know, there are no reviews about mobile-based smart wound
dressings. This review shows that there are a few studies in the field of
smartphone-based wound dressings. Even these few fabricated platforms
have not yet been tested on humans and are not commercially available.
As a result, the field of smartphone-based wound dressings is taking its
first steps toward resolving chronic wound healing obstacles, and there is
a strong necessity for more studies in this interdisciplinary field of sci-
ence and technology.
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