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Abstract. The ll0K-calmodulin complex of intestinal 
microvilli is believed to be the link between the actin 
filaments comprising the core bundle and the sur- 
rounding cell membrane. Although not the first study 
describing a purification scheme for the ll0K- 
calmodulin complex, a procedure for the isolation of 
stable ll0K-calmodulin complex both pure and in high 
yield is presented; moreover, isolation is without loss 
of the associated calmodulin molecules since a previ- 
ously determined ratio in isolated microvillar cyto- 
skeletons of calmodulin to ll0-kD polypeptide of 3.3:1 
is preserved. We have found that removal of calmodu- 
lin from the complex by the calmodulin antagonists 
W7 or W13 results in precipitation of the ll0-kD poly- 
peptide with calmodulin remaining in solution. The 
interaction of ll0K-calmodulin with beef skeletal mus- 
cle F-actin has been examined. Cosedimentation assays 
of ll0K-calmodulin samples incubated with F-actin 

show the amount of U0K-calmodulin associating with 
F-actin to be ATE calcium, and protein concentration 
dependent; however, relatively salt independent. In 
calcium, ~30% of the calmodulin remains in the su- 
pernatant rather than cosedimenting with the ll0-kD 
polypeptide and actin. Electron microscopy of actin 
filaments after incubation with ll0K-calmodulin in ei- 
ther calcium- or EGTA-containing buffers show pola- 
rized filaments often laterally associated. Each in- 
dividual actin filament is seen to exhibit an arrowhead 
appearance characteristic of actin filaments after their 
incubation with myosin fragments, heavy meromyosin 
and subfragment 1. In some cases projections having a 
33-nm periodicity are observed. This formation of 
periodically spaced projections on actin filaments pro- 
vides further compelling evidence that the ll0K-cal- 
modulin complex is the bridge between actin and the 
microvillar membrane. 

'rir4 filaments are generally considered to play an im- 
portant role in giving cells their shape and structure. 
To achieve this, the cytoskeleton must be attached at 

discrete places to the cell membrane because many cellular 
functions, e.g., phagocytosis, cytokinesis, secretion, and the 
elongation of projections, are activities in which microfila- 
ments are intimately associated with the membrane. Within 
the cell this interaction between microfilaments and the sur- 
rounding membrane is almost certainly under precise physi- 
ological control. 

Intestinal microvilli provide a simple model system for the 
study of actin structure and how actin filaments can be at- 
tached to the membrane. In cross section, microvilli are 
found to consist of a bundle of •20 microfilaments (31, 34). 
The isolated cytoskeleton contains actin and four major as- 
sociated polypeptides (110 kD, a 95-kD protein known as vil- 
lin, fimbrin of 68 kD, and a 17-kD protein identified as cal- 
modulin) along with a number of other proteins found in 
lesser amounts (6, 26). The two actin-binding proteins, villin 
and fimbrin, serve to bundle the actin filaments within the 
core (2-4, 7, 8, 15, 27, 30). The filaments are attached to the 
surrounding cell membrane at the tip and by lateral arms 

at a 33-nm periodicity by an as yet unidentified substance 
thought to be comprised of a calmodulin-binding protein of 
110 kD (14, 26, 28). 

Evidence for the existence of the 110- and 17-kD polypep- 
tides as part of the intestinal microvilli was originally 
presented by Matsudaira and Burgess (26). They found that 
treatment of microvillar cores with ATP and magnesium 
resulted in dissociation of the lateral arms and loss of the 
ll0-kD polypeptide from the cytoskeletons; a simultaneous 
reduction in the amount of the 17-kD polypeptide was ob- 
served. Subsequently, the 17-kD polypeptide in the brush 
border was identified as calmodulin (12, 20). Direct evidence 
for the interaction of the ll0-kD polypeptide with calmodulin 
came from gel overlay studies with L'-SI-calmodulin (12). 
The ll0-kD polypeptide was the only protein in the microvil- 
lar core found to bind calmodulin; the interaction was deter- 
mined to be at least partially Ca2+-independent. Additional 
evidence to suggest that the 110-kD polypeptide was a com- 
ponent of the link between the filament bundle and the mem- 
brane also came from Matsudaira and Burgess (26) who found 
that treatment of cores with deoxycholate solubilized all the 
proteins except the ll0-kD polypeptide and some actin. By 
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electron microscopy the actin filaments were shown still to 
possess lateral arms. In a study using antibodies directed 
against the ll0-kD polypeptide, Glenney and colleagues (14) 
localized the ll0-kD polypeptide by immunoelectron mi- 
croscopy to the microvillar cores in brush border cytoskele- 
tons, providing further evidence that the ll0-kD polypeptide 
is in a position where it could link the actin filaments to the 
membrane. The available evidence is convincing although 
not definitive that the ll0K-calmodulin complex is a compo- 
nent of the lateral arms linking the core bundle to the brush 
border membrane. 

Isolation of the II0-K calmodulin complex in pure and 
in native form with adequate recovery has been hampered, 
mostly due to solubility problems (19). The ll0-kD polypep- 
tide has been found to precipitate easily from solution, a 
property that has been attributed to loss of its associated 
calmodulin(s) (19). One report has claimed that the ll0-kD 
polypeptide requires detergent for its solubilization and is 
therefore an integral membrane protein (11). This has been 
questioned by a subsequent study of Verner and Bretscher 
(35) who analyzed in detail the properties of the complex and 
found it to be water soluble. 

Using gel-filtration and ion-exchange chromatography, we 
have devised an improved purification procedure for intact 
ll0K-calmodulin complex which yields milligram quantities 
of the complex with relatively few contaminants; moreover, 
the complex is stable in solution for extended periods. We 
have studied the ll0K-calmodulin complex and characterized 
the binding of the complex to filamentous actin. Association 
of the ll0K-calmodulin complex with F-actin is calcium 
regulated and exhibits cooperativity. Visualization by elec- 
tron microscopy of actin filaments incubated with the ll0K- 
calmodulin complex shows some filaments having projec- 
tions with a 33-nm spacing, the same periodicity determined 
in brush border for the lateral links connecting the microfila- 
ment core to the membrane (6, 27, 28, 31). The morphology 
of most individual decorated actin filaments resembles the 
arrowhead appearance characteristic of F-actin after incuba- 
tion with the myosin fragments, heavy meromyosin or sub- 
fragment 1. 

Materials and Methods 

Materials 
Fresh chicken intestines were obtained from Larison's Poultry House in 
Odessa, NY. N-(6-aminohexyl)-5--chloro-l-naphthalene-sulfonamide (W7), ~ 
N-(4-aminobutyl)-5-chloro-2-naphthalene-sulfonamide (WI3), and BSA 
were purchased from Sigma Chemical Co. (St. louis,  MO). Sepharose 4B, 
Fast Flow Q-Sepharose, and Fast Flow S-Sepharose were purchased from 
Pharmacia AB (Uppsala, Sweden). The listed standards for Stokes radius 
and sedimentation coefficient determination were purchased from Pharma- 
cia Fine Chemicals (Div. Pharmacia, Inc., Piscataway, NJ). 

Isolation of the 110K-Calmodulin Complex 

Brush borders were isolated from the intestinal epithelial cells of 20 chick- 
ens as previously described by Bretscher and Weber (6). To inhibit proteoly- 
sis, phenylmethylsulfonylfluoride (PMSF) and benzamidine were added to 
all solutions at 0.3 and 0.5 mM, respectively. The brush borders were preex- 
trac~l  in 10 mM imidazole, pH 7.3, 300 mM NaCl, 5 mM MgCI2, 75 mM 
KCI, 1 ruM EGTA, and centrifuged at 4,000 rpm for 10 min (Sorvall RC3B; 

1. Abbreviations used in thispaper: W7 and W13, calmodulin agonists N-(6- 
aminohexyl)-5-chloro-l-naphthalene-sulfonamide and N-(4-aminobutyl)-5- 
chloro-2-naphthalene-sulfonamide, respectively. 

E. I. de Nemours & DuPont Co., Inc., Newtown, CI') before being ex- 
tracted in 200 ml of 10 mM Tris, pH 8.1, 200 mM NaCI, 75 mM KCI, 
5 mM MgCI2, 1 mM EGTA, and 5 mM ATP for 10 rain. The extract was 
spun for 10 rain at 20,000 rpm in an SS 34 rotor then precipitated with 40% 
ammonium sulfate. The pellets were resuspended in 10 ml of 10 mM imida- 
zole, pH 8.1, 75 mM KC1, 0.5 M NaC1, 0.1 mM MgClz, 1 mM EGTA, 0.1 
mM dithiothreitol (DTT), and 7 mM ATP, and then clarified at 20000 rpm 
for 10 min before being loaded onto a 2.5 c m x  115 cm Sepharose 4 B 
column equilibrated in 10 mM imidazole, pH 8.1, 0.5 M NaCl, 75 mM KC1, 
10 mM MgCI2, 0.1 mM DTT, 1 mM EGTA, and 10 mM ATE 7-ml frac- 
tions were collected and the llOK-calmodulin-containing fractions were 
identified by SDS-PAGE. 

The fractions containing ll0K-calmodulin were pooled and chromato- 
graphed over a 10-rni DNase l-Sepharose column (5). Actin that bound the 
DNase was selectively removed from the extract. The flow-through was col- 
lected and precipitated with 38-50% ammonium sulfate. 

The ammonium sulfate pellet was resuspended in 2 ml and dialyzed for 
3-4 h against 20 mM triethanolamine, pH 7.4, 250 mM NaCI, I mM EGTA, 
1 mM DTT, and then chromatographed on a 3-mi column packed with Fast 
Flow Q-Sepharose, an anionic exchange resin (Pharmacia AB). A 0.25-1 
M NaCI gradient in the same buffer was developed. 0.5-ml fractions were 
collected and the fractions assayed by SDS-FAGE. The ll0K-calmodniin 
fractions were pooled and dialyzed for 3-4 h against 2 liters of 50 mM 
Hepes, pH 8.0, 75 mM NaCI, 1 mM EGTA, 1 mM DTT to lower the salt 
concentration. 

The fractions containing ll0K-calmodulin were then chromatographed in 
the above buffer on a 3-ml column of the cationic exchange resin Fast Flow 
S-Sepharose (Pharmacia AB). The U0K-calmodulin complex was eluted in 
a step gradient of the same buffer, but with 0.7 M NaC1. Fractions containing 
ll0K-calmodulin were pooled and dialyzed into 10 mM imidazole, pH 7.3, 
75 mM KCI, 0.1 mM MgC12, 1 mM EGTA. After dialysis, the U0K-cal- 
modulin was clarified at 100,000 g for I h using a 50 Ti rotor in an ultracen- 
trifuge (model L8-70; Beckman Instruments, Inc., Palo Alto, CA). Recovery 
was usually 1-2 mg as determined by the method of Bradford (1). 

Use of Caimodulin Antagonists, W7 and WI3 

W7 and W13 were dissolved in water at a final concentration of 5 raM. ll0K- 
calmodulin was incubated for 30 rain in increasing amounts of either drug 
in 2 mM Tris, pH 8.0 at room temperature, 100 mM KCI, 1 mM MgCI2, 
1 mM DTT containing either 0.2 mM CaCI2 or 1 mM EGTA, then cen- 
trifuged in an airfuge at 165,000 g for 30 rain (Beckman Instruments, Inc.). 
Pellets and supernatants were treated essentially like those of the actin- 
binding assays as described below. 

Actin Purification 

Actin was isolated from beef skeletal muscle according to Spndich and Watt 
(33) and gel filtered on Sephadex G-150 in accordance with the procedures 
outlined by MacLean-Fletcber and Pollard (25). Actin concentration was 
determined speetrophotometrically at 290 nm using an extinction coefficient 
of 0.65 for I mg/ml. G-actin in 2 mM "Iris, pH 8.0, 0.2 mM CaC12, 0.2 
mM ATP, 1 mM DTT was polymerized overnight on ice by addition of KCI 
and MgC12 to 100 and 1 raM, respectively, then dialyzed into the appropri- 
ate buffer. 

Actin-binding Assay 

U0K-calmodulin was added to F-actin at room temperature and allowed to 
incubate with the actin for 30 rain in a total volume of 100 Ixl in 2 mM Tris, 
pH 8.0 at room temperature, 1 mM DTT, 100 mM KCI, 1 mM MgCI2, 
with either 0.2 mM CaC12 or 1 mM EG'TA, and either in the presence or 
absence of 5 mM ATP as indicated. Samples were spun at 30 psi (165,000 g) 
in an airfuge (Beckman Instruments, Inc.). Pellets were separated from su- 
pernatants and dissolved with vortexing in 25 I.tl of 1 M Tris, pH 8.0, then 
boiled for 3 rain with 25 Ixl of 2 × sample buffer containing 160 mM Tris, 
pH 6.8, 2% 13-mercaptoethanol, 20% glycerol, 10 mM EGTA. Supernatants 
were precipitated on ice in 10% TCA, then microfuged for 1 rain. The TCA 
precipitates were resuspended in 25 gl 1 M "Iris, pH 8.0, then boiled for 
3 min with 25 ~tl of 2 × sample buffer. 

Sedimentation Coefficient and Stokes Radius 
Determinations 
The sedimentation coefficient of the ll0K-calmodulin complex was deter- 
mined as previously described (2) using the following internal standards: 
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Figure L Isolation of the ll0K-calmodulin 
complex. Brush borders were extracted in 
ATP 0ane a), precipitated with ammonium 
sulfate (lane b), resuspended and loaded 
0ane c) after clarification (lane d, pelle0 
onto a Sepharose 4B column. High molecu- 
lar mass proteins 0anes e and f )  eluted 
early in the separation, ll0K-calmodulin- 
containing fractions (lanes g-j) were pooled 
(lane k) and chromatographed over a 
DNase-I-Sepharose column that removed 
actin (lane /). Flow-through was precipi- 
tated with ammonium sulfate (lane m) and 
chromatographed on Q-Sepharose. Flow- 
through fractions (lane n) were rich in vil- 
lin. Fractions containing the U0K-calmodu- 
lin complex (lanes o-r) eluted with 0.4 M 

salt. These fractions were pooled (lanes s) and chromatographed on S-Sepharose. Purified ll0K-calmodulin was eluted with a step gra- 
dient (lanes t-w). Fractions were analyzed by SDS-PAGE on 7.5/15 % split mini gels. Arrows indicate the ll0-kD polypeptide and 17-kD 
calmodulin. 

catalase (11.3 s), aldolase (7.3 s), and BSA (4.3 s). The Stokes radius was 
estimated on a 250-mi Sephacryl $400 column using the following internal 
standards: th_yroglobulin (85/~), apoferritin (61/~), catalase (52 ~), and al- 
dolase (48 .~). In both cases fractions were analyzed by SDS-PAGE. 

Electron Microscopy 

Samples were negatively stained with 1% aqueous uranyl acetate onto 
collodion-coated copper grids stabilized by a thin film of carbon. Grids were 
examined with a Philips 301 electron microscope at an accelerating voltage 
of 100 kV. 

SDS-PAGE 
PAGE in the presence of SDS was performed essentially according to 
Laemmli (22). Split mini-gels of 7.5/15 % were used to resolve both the ll0- 
kD polypeptide and 17-kD calmodulin. Sample buffer contained final con- 
centrations of 80 mM Tris, pH 6.8, 1% [3-mereaptoethanol, 5 mM EG"rA, 
and 10% glycerol. 

Other 

Bovine brain calmodulin was prepared according to the method of Lin et 
al. (23). Column fractions were examined for the presence or absence of 
protein by dotting 3 ~tl of each fraction onto filter paper, then air drying be- 
fore precipitating any protein present with 10% TCA for 1-2 min. Protein 
was visualized by staining in 0.025% Coomassie Blue in 15% methanol, 
10% acetic acid for 1 min followed by destaining in 15% methanol, 10% 
acetic acid. The ratio of calmodulin to the ll0-kD polypeptide was deter- 
mined by quantitation of Coomassie Blue-stained proteins after SDS-PAGE 
(16). BSA and bovine brain calmodulin were used as standards. Gel bands 
were sliced out of the gel, macerated, and the Coomassie dye eluted by over- 
night incubation in 25% pyridine in water. The amount of protein present 
was qnantitated by the absorbance of the eluted dye at 605 nm. Alternatively, 
gel bands stained with Coomassie Blue were scanned using a quantitative 
densitometer (Quick-Scan R+D; Helena Laboratories, Beaumont, TX). 

Results 

Purification of the 110K-Calmodulin Complex by Gel 
Filtration and Ion Exchange Chromatography 
ll0K-calmodulin complex was isolated by a series of steps in- 
cluding gel filtration, anion, and cation chromatography. In 
particular, gel filtration served to separate the ll0K-cal- 
modulin complex from high molecular mass contaminants in- 
cluding myosin heavy chain (200 kD; Fig. 1, lanes e and f ) .  
The remaining major contaminating bands at this step in- 
cluded villin (95 kD) and actin (43 kD) (Fig. 1, lanes g-j). 

Actin was selectively removed from the extract by chroma- 
tography over Sepharose to which DNase I had been im- 
mobilized (Fig. 1, lane l). Anionic exchange chromatogra- 
phy served to separate villin from the ll0K-calmodulin 
complex (Fig. 1, lane n). Further purification was performed 
by cation exchange using a step gradient containing 0.7 M 
NaC1 (Fig. 1, lanes t-w). Use of a linear salt gradient was 
unsuccessful, resulting in the elution of the ll0K-calmodulin 
complex along the entire gradient. Yield was usually 1-2 mg. 
The ll0K-calmodulin was found to be stable at 4°C over sev- 
eral days; after 14 d some proteolytic breakdown products 
became evident by gel electrophoresis. 

Properties of the Purified 110K-Calmodulin Complex 
The amino acid composition of the ll0K-calmodulin com- 
plex showed no particularly noticeable characteristics (Table 
I). Several physical properties of the complex were deter- 
mined and are listed in Table II. BSA and bovine brain cal- 

Table I. Amino Acid Composition of the 
l l OK-Calmodulin Complex 

Amino Acid Mole 

Aspartic acid 11.6 
Glutamic acid 15.8 
Serine 4.7 
Glycine 7.1 
Histidine 1.2 
Arginine 6.07 
Threonine 5.8 
Alanine 7.5 
Proline 3.2 
Tyrosine 2.7 
Valine 5.2 
Methionine 4.5 
Cysteine ND 
Isoleucine 4.3 
Leucine 9.03 
Phenylalanine 4.71 
Lysine 6.02 
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Table II. Properties of the I 1 OK-Calmodulin Complex 

Stokes radius 
Sedimentation coefficient :t:ATP 
Ratio of calmodulin to 110-kD polypeptide 
Binds to anionic resin, pH 7.4 
Binds to cationic resin, pH 8.0 

63 ]~ 
6.7 s 
3.3:1 

~00 

~ o  

~, 4o 

2O 

modulin were used as standards to determine the ratio of 
calmodulin to the ll0-kD polypeptide. Assuming that the 
U0-kD polypeptide and BSA bind dye equivalently on a mass ,oo 
basis, quantitation by absorbance of the eluted dye from ~ so 
stained gel bands gave a ratio of 3.3 calmodulin molecules 
per one U0-kD molecule. ~ 6o 

Incubation of the ll0K-calmodulin complex with the cal- ~ 4o 
modulin antagonist W13 (18) affected the solubility of the ~ 2o 
ll0-kD polypeptide. A substantial amount of ll0-kD poly- 
peptide pelleted at concentrations of W13 above 100 ~tM; the o 

majority of the calmodulin, however, remained in the super- 
natant (Fig. 2). Nearly identical results were found with the 
antagonist W7. Neither WI3 nor W7 had any detectable effect ,oo 

in the absence of calcium (data not shown). 

Interaction of  the llOK-Calmodulin Complex 
with F-Actin Is Calcium Regulated and 
Concentration Dependent 

In buffer containing calcium but no ATE at ll0K-calmodulin 
concentrations ranging from 0.045 to 0.45 mg/ml, 100% of 
the ll0-kD polypeptide was found to bind to and cosediment 
with the actin filaments (Fig. 3 A). In these assays, ,x,90% 
of the 0.3 mg/ml actin used pelleted. Interestingly, under 
these conditions about one-third of the calmodulin dis- 
sociated from the complex and remained in the supernatant, 
whereas the ll0-kD polypeptide and remaining calmodulin 
sedimented with the F-actin. In the presence of 5 mM ATE 
however, regardless of the amount of ll0K-calmodulin pres- 
ent, >72 % of the ll0-kD polypeptide stayed in the superna- 
tant (Fig. 3 B). A portion of the small fraction of ll0-kD 
polypeptide that pelleted could be attributed to that which 
pelleted on its own (,,o14 %), plus a fraction that either appar- 
ently associated with the F-actin or became trapped with the 
F-actin during sedimentation. 

Similar experiments were done in 1 mM EGTA to reduce 
the calcium concentration. In the absence of ATP at ll0K- 
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Figure 3. Cosedimentation of ll0K-calmodulin with F-actin. F-actin 
at 0.3 mg/ml was incubated with increasing amounts of U0K-cal- 
modulin in 0.2 mM CaC12 without ATP (A), or with_5 mM ATP 
(B), or in 1 mM EGTA without ATP (C), or with 5 mM ATP (D). 
Percentage of ll0-kD polypeptide (e) and calmodulin (o) cosedi- 
menting with F-actin is plotted vs. ll0K-calmodulin concentration. 

I00 

8O 

6o 

~ 4O 

2O 

go ,6o ,~o 2~o z~o 
~M WJ3 

Figure 2. Incubation of ll0K-calmodulin with the calmodulin an- 
tagonist, W13. Aliquots of ll0K-calmodulin at 0.09 mg/ml (0.7 gtM) 
were incubated with WI3 at 0-250 ~tM in buffer containing 0.2 mM 
CaC12, then centrifuged. Plotted are the percent of ll0-kD poly- 
peptide (o) and calmodulin (o) pelleting as a function of W13 con- 
centration. 

calmodulin concentrations below 0.18 mg/ml, 75% of the 
ll0-kD polypeptide did not cosediment with F-actin but re- 
mained in the supernatant (Fig. 3 C). As the amount of ll0K- 
calmodulin used in the assay was increased, a larger fraction 
of it bound to and sedimented with the F-actin. At 0.45 
mg/ml, 97 % of the ll0-kD polypeptide sedimented with the 
F-actin. These data suggest that ll0K-calmodulin binds to 
F-actin in a cooperative manner. Moreover, in contrast to 
that found in the presence of calcium, all the calmodulin 
stayed associated with the ll0-kD polypeptide. Results in the 
presence of 1 mM EGTA and 5 mM ATP were similar to 
those found for ATP when calcium was present: most (>80%) 
of the ll0K-calmodulin was found in the supernatant (com- 
pare Fig. 3, B and D). 
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Figure 4. Cosedimentation of 0.09 mg/ml U0K-calmodulin with F-actin ranging from 0 to 0.3 mg/ml in buffer containing either 1 mM 
EGTA (A) or 0.2 mM CaC12 (B). After incubation samples were centrifuged and the supernatants (s) and pellets (p) analyzed by SDS- 
PAGE on 7.5/15 % split gels. The percentage of ll0-kD polypeptide (o) and calmodulin (o) sedimenting with F-actin in buffer containing 
1 mM EGTA (C) or 0.2 mM CaC12 (D) is plotted vs. the actin concentration. 

The association of ll0K-calmodulin with F-actin in the ab- 
sence of ATP was readily reversible in either calcium or 
1 mM EGTA by the addition of ATP to a final concentration 
of 5 mM (data not shown). 

An actin-concentration dependence on the binding of 
ll0K-calmodulin was observed by varying the amount of ac- 
tin used in the assays while keeping the ll0K-calmodulin 
concentration constant (Fig. 4, A and C). As the actin con- 
centration decreased from 0.3 to 0.07 mg/ml, the amount of 
ll0-kD polypeptide cosedimenting increased, clearly dem- 
onstrating that ll0K-calmodulin binds cooperatively to F-ac- 
tin. When the actin concentration was reduced below 0.07 
mg/ml, the amount of ll0Kocalmodulin associating with 
F-actin declined, possibly indicating that the F-actin was 
saturated with the complex. This series of assays demon- 
strates that ll0K-calmodulin binds cooperatively to F-actin 
in a saturable manner in 1 mM EGTA. 

However, different results were observed under similar 
conditions in the presence of calcium (Fig. 4, B and D). At 
high actin concentrations, essentially all the ll0-kD polypep- 
tide and two-thirds of the calmodulin cosedimented with the 

F-actin. As the actin concentration decreased, an apparently 
simple saturation curve was obtained, but with the ratio of 
ll0K-calmodulin/actin at saturation being about half that 
found in the presence of 1 mM EGTA (Fig. 4 D). The reason 
for this difference is not yet clear. In both calcium and 
EGTA, the amount of actin monomer remaining in the super- 
natant was noticeably reduced at high ratios of ll0K-cal- 
modulin/actin (Fig. 4, A and B). 

In the range of 10-4-10 --6 M free calcium (8, 17) the 
amount of ll0K-calmodulin cosedimenting with F-actin re- 
mained unchanged (Fig. 5) whereas in 1 mM EGTA, 75 % 
of the ll0-kD polypeptide along with 75 % of the calmodulin 
remained in the supernatant (Fig. 3 C). These results indi- 
cate that a change in the interaction of the complex with 
F-actin occurs in a range of free calcium typical of physiolog- 
ical levels. 

Ionic Strength Has Little Effect on 110K-Calraodulin 
Binding to F-Actin 

In 0.2 mM CaC12, the amount of llOK-calmodulin associat- 
ing with F-actin was unaffected by KC1 concentration in the 
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Figure 5. Effect of free calcium concentration in the range of 10 -4- 
10 -6 M on the interaction of 0.3 mg/ml F-actin and 0.09 mg/ml 
ll0K-calmodulin is plotted. (o) ll0-kD polypeptide; (0) calmodu- 
lin; (,,) actin. 

range of 0.5 M to 75 mM; at 50 mM some of the ll0-kD poly- 
peptide was left in the supernatant (Fig. 6 A). In EGTA, un- 
der the chosen conditions, approximately half of the ll0K- 
calmodulin remained in the supernatant after centrifugation 
of the F-actin. This was unaffected by KCI concentration in 
a range from 0.1 to 0.5 M; a somewhat smaller fraction of 
the ll0K-calmodulin cosedimented with F-actin at KC1 con- 
centrations of 75 and 50 mM (Fig. 6 B). 

Decoration of  F-Actin after Incubation 
with llOK-Calmodulin 

The interaction of ll0K-calmodulin with F-actin was exam- 
ined by electron microscopy of negatively stained prepara- 
tions. Control grids of F-actin only showed individual actin 
filaments in either the presence or absence of calcium (Fig. 
7 A). Incubation with U0K-calmodulin resulted in some 
lateral association of the actin filaments. In either 0.2 mM 
CaCI2 (Fig. 7, B and C) or 1 mM EGTA (Fig. 7 D), a 
change in the morphology of most of the F-actin was particu- 
larly obvious at an actin concentration of 0.30 mg/ml with 
0.09 mg/ml ll0K-calmodulin. On individual filaments pre- 
sumably decorated with ll0K-calmodulin, a polarity of the 
filaments was observed with directionality as illustrated by 
the arrow in Fig. 7 C. The appearance of these single fila- 
ments resembled the characteristic arrowhead formation 

found on actin filaments after their incubation with the myo- 
sin fragments, heavy meromyosin and subfragment 1. In 
either calcium or EGTA, filaments with apparently no asso- 
ciated ll0K-calmodulin were also observed (Fig. 7, B and C; 
arrowheads). On some filaments projections 35-nm long at 
33-nm intervals were visible, giving the filaments the ap- 
pearance of a ladder (Fig. 7 D). 

Discuss ion  

Although earlier studies have outlined methods for the 
purification of the ll0-kD polypeptide or the ll0K-calmodu- 
lin complex, until now a procedure for the isolation of native 
ll0K-calmodulin both pure and in high yield has not been de- 
scribed. One problem initially encountered was the dissocia- 
tion under certain isolation conditions of some of the 
calmodulin to give complexes containing variable ratios of 
calmodulin to the ll0-kD polypeptide. Under the worst of 
conditions, removal of calmodulin from the complex resulted 
in its precipitation and subsequent loss during isolation (19). 
Other earlier methods were also hampered by what appeared 
as insolubility of the complex since at low levels of ATP with 
the slightest trace of F-actin present, the ll0K-calmodulin 
and actin pelleted (35). This is likely explained by the pres- 
ent finding of cooperative binding of ll0K-calmodulin to 
F-actin with an apparent reduction in actin's critical concen- 
tration. 

The method described here takes 4 d and yields milligram 
quantities of the complex which is stable at 4°C for at least 
a week. A number of properties indicate that the complex has 
been isolated in an intact native form. The molar ratio of the 
ll0-kD polypeptide to calmodulin in the purified complex is 
1:3.3, a value identical to that found in isolated microvillar 
cytoskeletons (13, 20). This suggests that most, if not all, of 
the calmodulin in the microvillar core is associated with the 
ll0-kD polypeptide and remains associated as a complex 
during purification. Secondly, the ll0-kD polypeptide binds 
to F-actin in the absence but not presence of ATE and this 
binding in either calcium or EGTA is reversible since addi- 
tion of ATP to ll0K-calmodulin-actin filaments results in 
dissociation of the ll0K-calmodulin complex from the F-ac- 
tin. Preliminary experiments in this laboratory have con- 
firmed the Mg 2+ and K+-EDTA ATPase activity of the ll0K- 

Figure 6. Effect of ionic 
strength on the interaction of 
0.3 mg/ml F-actin with 0.09 
mg/ml U0K-calmodulin in buf- 
fer containing either 0.2 mM 
CaCI2 (A) or 1 mM EGTA 
(B). Final KC1 concentrations 
ranged from 0.5 M to 50 mM. 
Samples were centrifuged and 
the supernatants (s) and pel- 
lets (p) were analyzed by SDS- 
PAGE on 7.5/15% split gels. 
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Figure 7. Electron microscopy of negatively stained images of F-actin after incubation with ll0K-calmodulin, ll0K-calmodulin (0.09 mg/ml) 
was allowed to incubate with 0.3 mg/ml F-actin in buffer containing either 0.2 mM CaCI2 or 1 mM EGTA. Control grids of F-actin only 
in either buffer showed individual filaments (A). F-actin incubated with ll0K-calmodulin in either calcium (B and C) or EGTA (D) showed 
polarized filaments often laterally associated. Some filaments apparently free of ll0K-calmodulin are seen in the background (B and C, 
arrowheads). Individual filaments presumably bound with ll0K-calmodulin show a prominent polarity with directionality indicated by the 
arrow (C). Periodic projections linking neighboring filaments are indicated (D). Bars, 0.5 ~tm. 
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calmodulin complex (9), but differ in that the Mg 2+ ATPase 
is stimulated by F-actin. 

We have found that the complex can be stripped of some 
of its calmodulin by the calmodulin antagonists W7 and W13 
in the presence of calcium and that this renders the ll0-kD 
polypeptide insoluble. This finding might be used to help ex- 
plain some earlier results. In particular, Howe and Mooseker 
(19) found that the 110-kD polypeptide could not be solubi- 
lized from microvillar cores after the calmodulin had been 
removed by trifluoperazine and calcium; this is probably a 
direct result of rendering the ll0-kD polypeptide insoluble. 
Howe and Mooseker also reported that their isolated com- 
plex had 1-2 calmodulins associated with each ll0-kD poly- 
peptide and that it tended to precipitate out of solution. In 
contrast, our preparation with presumably the native number 
of associated calmodulins remains soluble for extended pe- 
riods. Finally, Glenney and Glenney (11) reported that the 
ll0-kD polypeptide was an integral membrane protein be- 
cause it required a detergent to remain in solution. Although 
it has previously been demonstrated that the ll0K-calmodulin 
complex is freely soluble in aqueous buffer in the absence 
of detergent (35), we can now offer a simple explanation for 
their results. In their experiments, before extraction of the 
ll0-kD polypeptide in 0.25% Triton X-100, 0.05% SDS, and 
pyrophosphate, the cytoskeletons were pretreated with deter- 
gent only; this pretreatment removed the calmodulin from 
the complex. The ll0-kD polypeptide was then found to re- 
main soluble only in the presence of an ionic detergent. Con- 
sequently they used this and other evidence to conclude that 
the ll0-kD polypeptide is an integral membrane protein. Al- 
though it is now clear that the ll0K-calmodulin complex is 
not an integral membrane protein since detergent is not re- 
quired for its release, we are in agreement with Glenney and 
Glenney (11) that the ll0-kD polypeptide, once stripped of its 
calmodulin, is not freely soluble in aqueous buffer. At the 
present time there is no direct evidence for an association be- 
tween the ll0K-calmodulin complex and the microvillar 
membrane. 

We were able by adding exogenous brain calmodulin to 
resolubilize only a fraction of the ll0-kD polypeptide pre- 
cipitated with removal of the calmodulin with W13. These re- 
suits can be compared to Howe and Mooseker's (19) vain at- 
tempt to aid isolation of the ll0K-calmodulin complex by 
addition of exogenous calmodulin in the hope of preventing 
precipitation of the ll0-kD polypeptide. Apparently condi- 
tions appropriate for the quantitative reconstitution of the 
complex have not yet been identified. Calmodulin removal 
from the ll0K-calmodulin complex by the antagonists oc- 
curred only in the presence of calcium. This suggests that the 
calmodulin molecules in the complex bind calcium to un- 
dergo a conformational change making them susceptible to 
antagonist release. 

In the absence of ATP the association of ll0K-calmodulin 
with actin differs in 1 mM EGTA as compared with free cal- 
cium concentrations above 10 -6 M. In EGTA, at protein 
concentrations that represent a ll0K-calmodulin to actin 
mass ratio of 1:7, only a fraction of the ll0K-calmodulin 
pellets with the F-actin, whereas at concentrations represent- 
ing high mass ratios up to 1.5:1, all the ll0K-calmodulin 
pellets with the actin. Above this value, no additional ll0K- 
calmodulin is sedimented so the F-actin is presumably satu- 
rated. The binding of ll0K-calmodulin to F-actin therefore 

clearly demonstrates cooperativity as the llOK-calmodulin 
concentration increases up to saturation. In addition, the 
UO-kD polypeptide and calmodulin bind as a complex, i.e., 
the calmodulin distribution between the pellet and the super- 
natant follows that of the ll0-kD polypeptide. The critical 
concentration of actin (i.e., the amount of actin remaining 
in the supernatant) appears to decrease in the presence of in- 
creasing amounts of ll0K-calmodulin. It is likely that the 
ll0K-calmodulin acts to stabilize the actin filaments thus 
reducing the likelihood for dissociation of actin monomers, 
the phenomenon responsible for the critical concentration. 

The situation in free calcium >10 -6 M is different. At all 
concentrations used up to saturation, essentially all the U0-kD 
polypeptide binds to F-actin. However, a portion of the cal- 
modulin remains soluble. This suggests that in the presence 
of calcium and F-actin, some calmodulin is dissociated from 
the complex and the partially depleted complex binds better 
to F-actin than the intact complex in the absence of calcium. 
In calcium, the critical concentration of actin is also seen to 
decrease with increasing ll0K-calmodnlin complex. From 
our biochemical data alone, we have not demonstrated that 
binding of ll0K-calmodulin to F-actin in the presence of cal- 
cium is also cooperative. It is possible that cooperativity ex- 
ists in calcium; however, under the conditions used, it was 
not observed. 

We have found that the interaction of ll0K-calmodulin and 
F-actin is remarkably independent of salt concentration. As 
a means of comparison, the cooperative interaction of tro- 
pomyosin with F-actin is tighter at intermediate salt, al- 
though it is abolished in high salt (10). 

Examination by electron microscopy of ll0K-calmodulin 
bound to F-actin revealed filaments apparently saturated with 
bound complex together with a smaller number of undeco- 
rated actin filaments. No partially decorated filaments were 
observed. This result, found either in the presence or ab- 
sence of calcium, provides ultrastructural evidence for the 
cooperative binding seen biochemically in the presence of 
EGTA. At near saturation, decorated filaments were often 
seen to associate laterally. It is not clear what significance 
this association, if any, has. Closer ultrastructural examina- 
tion of ll0K-calmodulin bound to F-actin reveals regular 
structures projecting at an angle from the filament. This 
leads to an arrowhead-like appearance of the ll0K-calmodu- 
lin-decorated actin filaments similar to that seen when actin 
filaments are incubated with the myosin fragments heavy 
meromyosin and subfragment 1 (21). As of yet, we have been 
unable to determine the directionality of the complex's at- 
tachment but presume that like actin filaments decorated 
with myosin fragments, the preferred end for monomer addi- 
tion to the actin filament will be the barbed end. This is al- 
ready implicated by electron microscopy of the cross-links 
in intestine; the cross-bridges have been shown to be angled 
away from the microvillar tip (26), where actin assembly is 
presumed to occur (29). Besides the ultrastructural similari- 
ties with skeletal muscle myosin, there is a striking similarity 
between actin filaments decorated with ll0K-calmodulin and 
those observed in the presence of Acanthamoeba myosin-1 
(24, 32). In both cases, the thickened actin filaments become 
laterally associated and in some regions regularly spaced 
(30-35 nm) cross-links are observed (24). This myosin-like 
decoration of F-actin is not the only similarity between the 
ll0K-calmodulin complex and myosin. Collins and Bory- 
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senko (9) have reported that the complex has K÷-EDTA and 
Ca 2+ ATPase activities characteristic of myosin and that the 
K+-EDTA activity is not stimulated by F-actin. By the use 
of proteolytic digest analysis and immunoblotting they found 
it to be distinct from brush border myosin and therefore not 
a myosin breakdown product. Whether or not the ll0K-cal- 
modulin complex is involved in any contractile activity is not 
yet known. 

The result that the ll0K-calmodulin complex binds to 
F-actin in a calcium-regulated manner and that with this as- 
sociation some of the calmodulin is released is particularly 
interesting. Thus, now two out of the three main actin-associ- 
ated proteins in the isolated microvillous core, i.e., villin and 
the ll0K-calmodulin complex, show calcium regulation in 
the physiologically important range. Consistent with cal- 
cium-regulated events in other cytoskeletal systems, this 
finding adds support to the suggestion that microvillar struc- 
ture may be modified by calcium fluxes during the normal 
functioning of the structure. Exactly what ultrastructural 
changes may be controlled by calcium remain to be deter- 
mined. 

The decorated actin filaments after incubation with the 
ll0K-calmodulin complex revealed with electron micros- 
copy that the ll0K-calmodulin complex projects ,,035 nm 
froza the filament and repeats every 33 nm down the length 
of the filament. These numbers are the same as those mea- 
sured for the cross-filaments that connect the microvillar 
core bundle to the brush border membrane. This lends sub- 
stantial credibility to the proposed role of the ll0K-calmodu- 
lin complex as the link between the actin filaments and the 
membrane. 
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