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The genus Bartonella comprises facultative intracellular bacteria with a unique lifestyle. After
transmission by blood-sucking arthropods they colonize the erythrocytes of mammalian hosts
causing acute and chronic infectious diseases. Although the pathogen-host interaction is well
understood, little is known about the evolutionary origin of the infection strategy manifested by
Bartonella species. Here we analyzed six genomes of Bartonella apis, a honey bee gut symbiont that
to date represents the closest relative of pathogenic Bartonella species. Comparative genomics
revealed that B. apis encodes a large set of vertically inherited genes for amino acid and cofactor
biosynthesis and nitrogen metabolism. Most pathogenic bartonellae have lost these ancestral
functions, but acquired specific virulence factors and expanded a vertically inherited gene family for
harvesting cofactors from the blood. However, the deeply rooted pathogen Bartonella tamiae has
retained many of the ancestral genome characteristics reflecting an evolutionary intermediate state
toward a host-restricted intraerythrocytic lifestyle. Our findings suggest that the ancestor of the
pathogen Bartonella was a gut symbiont of insects and that the adaptation to blood-feeding insects
facilitated colonization of the mammalian bloodstream. This study highlights the importance of
comparative genomics among pathogens and non-pathogenic relatives to understand disease
emergence within an evolutionary-ecological framework.
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Introduction

Many host-restricted bacterial pathogens causing
chronic infectious diseases have evolved from free-
living environmental ancestors through a stepwise
evolutionary process of host adaptation (Toft and
Andersson, 2010; McCutcheon and Moran, 2012).
Broadly, two major genomic changes accompany the
evolution of pathogens: (i) genome reduction due to
population bottlenecks and nutrient-rich host envir-
onments and (ii) acquisition of virulence factors for
host invasion and persistence (Ochman and Moran,
2001; Pallen and Wren, 2007). Investigating the
genomic changes associated with the transition of
lifestyle is key to understand pathogen ecology and
evolution (Parkhill et al., 2003; Rohmer et al., 2007;
Langridge et al., 2015). To this end, comparative
genome analysis of pathogens and closely related

Correspondence: P Engel, Department of Fundamental Microbiol-
ogy, University of Lausanne, CH-1015 Lausanne, Switzerland.
E-mail: philipp.engel@unil.ch

*Current address: Institute of Zoology, Johannes Gutenberg
University Mainz, Johannes von Miiller Weg 6, 55128 Mainz,
Germany

Received 3 September 2016; revised 25 November 2016; accepted
30 November 2016; published online 24 February 2017

non-pathogenic environmental bacteria can provide
valuable insights (Reuter et al., 2014; Bentley and
Parkhill, 2015).

The alphaproteobacteria provide excellent subjects
for comparative studies due to the large diversity of
lifestyles within this class (Ettema and Andersson,
2009). Intracellular animal-associated pathogens
emerged in several alphaproteobacterial lineages, each
time associated with an overall reduction of genomic
content and the acquisition of genes for the adoption
of specific host infection strategies (Batut et al., 2004;
Ettema and Andersson, 2009).

A striking example represents the genus Bartonella
belonging to the Rhizobiales. This alphaproteobacterial
order is dominated by plant and soil-associated
bacteria. In contrast, Bartonella species include host-
restricted facultative intracellular pathogens that have
evolved a unique stealth infection strategy (Harms and
Dehio, 2012): They colonize the erythrocytes of
mammalian reservoir hosts resulting in acute or
chronic, often asymptomatic, bloodstream infec-
tions. Transmission between hosts is ensured by
blood-sucking arthropods. The evolutionary success
of this life cycle is reflected by the adaptive radiation
of this pathogen (Engel et al., 2011; Guy et al., 2013):
More than 30 pathogenic Bartonella species have
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been described to date (Ke$nerovd et al., 2016),
infecting a wide variety of mammalian host species.

The divergent adaptation of the genus Bartonella
to distinct hosts has been linked to the horizontal
gene transfer of several factors for host interaction
(Saenz et al., 2007; Engel et al., 2011; Guy et al.,
2013), including Type IV secretion systems, auto-
transporters and adhesins (Saenz et al., 2007; Engel
et al., 2011; Guy et al., 2013). Moreover, bartonellae
evolved a gene transfer agent, which mediates
the transfer of genomic DNA between strains
thereby facilitating diversification of genes for
host interaction and enabling host adaptation (Guy
et al., 2013).

Despite the acquisition of these genetic elements,
the overall genomic evolution of Bartonella has been
dominated by gene loss (Boussau et al., 2004).
Bartonella genomes range in size from 1.4 to
2.6 Mb, which is small compared with soil or plant-
associated Rhizobiales (Batut et al., 2004; Ettema and
Andersson, 2009). The closest related family, the
Brucellaceae, is phylogenetically already quite dis-
tant from the Bartonellaceae. Therefore, previous
comparative analyses (Alsmark et al., 2004) provided
limited insights into the evolutionary history of the
genus Bartonella, especially in regard of the genomic
makeup and ecology of its last common ancestor
(LCA). However, microbial community analyses
have recently indicated that honey bees and diverse
ant species possess gut bacteria that are more closely
related to the genus Bartonella than the family
Brucellaceae (Cox-Foster et al., 2007; Martinson
et al.,, 2011; Hu et al., 2014; Sanders et al., 2014).
These insect-associated bacteria form deeply rooted
sister lineages of the pathogenic Bartonella species
(Kesnerova et al., 2016). Their symbiotic functions
have so far remained elusive. However, several lines
of evidence suggest that in ants these bacteria might
play a role in nitrogen uptake by either fixing
atmospheric nitrogen or recycling excreted insect
waste products (Feldhaar ef al., 2007; Russell et al.,
2009; Anderson et al., 2012; Sapountzis et al., 2015).
The symbiotic relationship between the Rhizobiales
bacteria and the honey bee is so far unexplored.

We have recently cultivated several strains of the
Rhizobiales gut symbiont of honey bees. On the basis
of 16S rRNA sequence similarity (>95%), this
bacterium belongs to the genus Bartonella and
accordingly was named Bartonella apis (Ke$nerova
et al., 2016). The closest related Bartonella species to
date is Bartonella tamiae, a pathogen that was
isolated from the blood of three human patients in
Thailand (Kosoy et al., 2008) and since then,
B. tamiae-like DNA has been detected in various
blood-sucking arthropods (Billeter et al., 2008;
Kabeya et al., 2010; Leulmi et al., 2016). The close
phylogenetic relationship with pathogenic Barto-
nella species renders B. apis promising to elucidate
the evolutionary history of the unique infection
strategy of the genus Bartonella. Here we sequenced
the genomes of six divergent strains of B. apis. Our
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phylogenomic and comparative analyses shed light
on the ancestral genomic state of the genus Barto-
nella providing novel insights into the evolutionary
origin of these pathogens.

Materials and methods

Genome sequencing, assembly and annotation

Six cultured strains of B. apis were chosen for
sequencing. Three strains (PEB0122, PEB0149 and
PEB0150) originated from a honey bee colony (Apis
mellifera) in West Haven, CT, US. Three other strains
(BBC0122, BBC0178 and BBC0244) were isolated
from a colony in Lausanne, Switzerland. The US
strains were sequenced with Illumina MiSeq tech-
nology (2 x 250 bp reads) and assembled with Spades
v3.6 (Bankevich et al., 2012). The Swiss strains were
sequenced with SMRT technology (Pacific Bios-
ciences, Menlo Park, CA, USA) and assembled with
HGAP (Chin et al., 2013). All six genomes were
annotated with the Integrated Microbial Genomes
system (Markowitz et al., 2014). Additional details
regarding DNA extraction and genome assembly are
available in the Supplementary Methods and in
Supplementary Table 1.

Determining orthologous gene families

For phylogenomic analyses, we determined ortholo-
gous gene families between the six strains of
B. apis, two strains of B. tamiae (Bartonella initia-
tive, Broad Institute) and 14 species representing the
radiating lineage within the genus Bartonella
(Supplementary Table 2). The latter group will be
referred to as the eubartonellae in accordance with a
previous study (Zhu et al., 2014). As outgroup taxa,
we included the genome of the recently sequenced
ant gut symbiont Ca. Tokpelaia hoelldoblerii
(Neuvonen et al., 2016) and five other Rhizobiales.
An all-against-all BLASTP analysis of the proteomes
of these 28 strains identified candidate orthologs.
BLAST hits with an e-value >10~° and for which the
query and the hit sequence had less than 50%
overlap of their gene length were excluded. Clusters
of orthologous gene families were created using
OrthoMCL (Li et al., 2003) with recommended
settings (—abc -I 1.5), resulting in a total of 7192 gene
families.

Inferring phylogenetic trees

Genome-wide phylogenies were inferred from 589
orthologous gene families based on protein and DNA
sequence alignments. Tree topologies and branch
support values were inferred with maximum like-
lihood and Bayesian inference methods using
RAXML v8.0.0 (Stamatakis, 2014) and PhyloBayes
v4.1 (Lartillot et al., 2009), respectively. Additional
details regarding the phylogenetic analyses are
available in the Supplementary Methods.
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Comparison of genome structure, genome divergence
and gene content

To compare and visualize genomic regions we used
the R-package genoPlotR (Guy et al., 2010). TBLASTX
comparison files were created with Double ACT (www.
hpa-bioinfotools.org.uk). For comparison of specific
regions, we generated pairwise comparison files
with command-line TBLASTX. To estimate sequence
divergence between genomes, we calculated pairwise
average nucleotide identity (ANI) with JSpecies
(Richter et al., 2015). We further estimated the number
of synonymous substitutions per synonymous site (dS)
with the Nei and Gojobori (1986) method in PAML-4.8
(Yang, 2007) for the 589 genes used in the phylogenetic
analysis. The dS values were averaged over all genes to
obtain genome-wide values for species comparisons.
Pan genomes of B. apis, B. tamiae and the eubarto-
nellae were based on the gene families identified with
OrthoMCL.

Inferring gene gain and gene loss

To identify at which branch of the genome-wide
phylogeny genes have been gained and lost, and to
infer the gene content of the LCA of the genus
Bartonella, we performed a gene flux analysis in
PAUP v4.0 (Wilgenbusch and Swofford, 2003). We
followed the method used in previous publications
(Boussau et al., 2004; Guy et al., 2013): with generalized
parsimony the 7192 protein families were mapped onto
the phylogenetic tree. A cost-matrix was used which
penalizes gene gain with 12, gene loss with 5, gene
duplication with 1 and copy changes with 0.2 units.
These parameters were based on previous publications
(Guy et al., 2013; Tamarit et al., 2015), except that the
gene gain penalty was increased from 10 to 12 based on
empirical testing of a range of parameters.

Analysis of functional gene contents
Gene contents were categorized based on COG
functions. We used the COG database, which was

updated in 2014 (www.ncbi.nlm.nih.gov/COG).
Analysis of amino acid and cofactor biosynthesis
pathways were based on KEGG pathway maps and
EC (Enzyme Commission) numbers.

Analysis of virulence factors

To analyze virulence factors in B. apis and B. tamiae,
we compiled a list of 88 eubartonellae genes which
were either experimentally identified to be essential
for host colonization (Saenz et al., 2007; Harms and
Dehio, 2012) or predicted to be involved in host
interaction (Guy et al., 2013). We categorized these
virulence factors into ‘conserved’ (n=69) and
‘Bartonella-specific’ (n=19) genes depending on
their presence in the genomes of the outgroup. We
then validated how many of these genes had
orthologs in any of the eight genomes of B. apis
and B. tamiae based on the OrthoMCL results.

Results and discussion

B. apis genomes reveal intra-species diversity, but a
conserved genome structure

Assemblies of genomes sequenced with Illumina
technology consisted of 7-16 contigs, whereas gen-
omes sequenced with SMRT technology assembled
into single circular chromosomes (Supplementary
Table 1 and Supplementary Figure 1). The contigs of
each draft genome were ordered according to the
complete genome of strain BBC0122 (Supplementary
Figure 2). The six B. apis genomes range in size
between 2.53 and 2.91 Mb (Table 1), which is larger
than the genomes of other bartonellae (1.39-2.38 Mb),
except for B. tribocorum (2.64 Mb). The GC content
(45—46%) is slightly elevated compared with other
bartonellae (36—42%). ANI within B. apis ranges
from 85% to 98% indicating substantial sequence
divergence between strains, which is consistent with
previous findings of intra-species diversity in other bee
gut symbionts (Engel et al., 2012; Engel et al., 2014;

Table 1 Genomic features of the six sequenced B. apis strains and comparison with the genomes of other Bartonella species

Strain® Size* (Mb) Contigs® GC %* CDS* rRNA loci* tRNAs genes® ANP dsbe
B. apis PEB0122 2.60 16 45.5 2174 2 46 - -

B. apis PEB0149 2.53 7 45.5 2113 2 46 98.3 0.03 (589)
B. apis PEB0150 2.58 12 45.6 2196 1 43 97.5 0.05 (589)
B. apis BBC0178 2.60 1 45.3 2228 2 47 85.8 0.77 (584)
B. apis BBC0244 2.64 1 45.2 2264 2 46 85.8 0.77 (586)
B. apis BBC0122 2.91 1 45.7 2396 2 47 85.1 0.82 (585)
B. tamiae Th239 2.25 10 38.0 1983 2 44 69.8 1.61 (408)
B. tamiae Th307 2.25 10 38.0 1977 2 44 69.8 1.62 (407)
B. australis NH1 1.60 1 41.8 1265 2 42 68.4 1.24 (284)
B. bacilliformis KC583 1.45 1 38.2 1322 2 44 68.6 1.48 (359)
B. bovis 91-4 1.62 1 37.3 1379 2 43 68.5 1.58 (379)
B. clarridgeiae 73 1.52 1 35.7 1326 2 59 68.6 1.48 (368)
B. henselae Houston-1 1.93 1 38.2 1611 2 44 68.6 1.56 (374)

*For previously published genomes, values are taken from the integrative microbial genomes (IMG) data management and analysis system
(Markowitz et al., 2014).°Pairwise ANI and average number of synonymous substitutions per site (dS) are in respect to B. apis PEB0122".°dS values
could not be calculated for each of the 589 genes due to saturation of sequence divergence. The numbers in brackets indicate the number of genes

for which a dS value was obtained.
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Ellegaard et al., 2015). Despite the marked degree of
sequence divergence, the genomic organization
between the B. apis strains is conserved (Figure 1).
A high degree of genome structure conservation also
exists between B. apis and B. tamiae, with a few
larger rearrangements present around the terminus
of replication. In contrast, eubartonellae display a
lower degree of structural conservation and many
more rearrangements (Figure 1).

B. apis and B. tamiae are sister clades that diverged
before the radiation of the eubartonellae

The phylogenetic analysis of the concatenated
protein alignments using maximum likelihood and
Bayesian methods grouped B. apis and B. tamiae
into a monophyletic clade that diverged before
the radiation of the eubartonellae (Figure 2 and
Supplementary Figure 3a). In contrast, maximum
likelihood and Bayesian trees inferred from aligned
DNA sequences suggests that B. tamiae is mono-
phyletic with the eubartonellae, and that B. apis
branched off earlier (Supplementary Figures 3
and 4). The DNA analysis, however, was strongly
affected by the similar GC content of B. tamiae and
the eubartonellae. When only considering the first
and second codon position for the maximum like-
lihood analysis (Supplementary Figure 4), the mono-
phyletic group of B. tamiae and the eubartonellae
was no longer supported by bootstrap analysis.
On the basis of these findings and the fact that
protein sequences are more reliable for divergent
taxa (see high dS and low ANI values, Table 1), we
decided to use the protein tree for further analyses.
Sampling of additional taxa, closely related to B. apis
or B. tamiae, will help to resolve the phylogenies
further in the future. Independent of the slightly
different topologies, both phylogenies show that
B. apis and B. tamiae are sister clades that
diverged before the radiation of the eubartonellae.
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This suggests that B. tamiae has a different evolu-
tionary history than the eubartonellae despite the
fact that both colonize the bloodstream of mammals
and can cause human illness. Moreover, monophyly
of B. apis and B. tamiae would suggest that
pathogenicity in the genus Bartonella has evolved
twice, once in an ancestor of the eubartonellae and
independently in the lineage of B. tamiae.

B. apis and B. tamiae share a large number of genes
which are absent from the eubartonellae

The close phylogenetic position and conserved
genomic synteny of B. apis and B. tamiae prompted
us to analyze the gene content which they have in
common with the eubartonellae (Figure 3a). We
found that the three groups share a relatively large
fraction of their pan genomes (1081 genes) of which
805 genes were present in all 22 analyzed genomes,
thus representing the core genome of the genus
Bartonella. Surprisingly, B. apis and B. tamiae share
an additional 551 genes, which are absent from the
eubartonellae. This represents a large fraction of
their total genetic content, for example, 28% of the
genome of B. tamiae strain Th239. In contrast, the
eubartonellae only share 111 and 46 genes with
B. apis and B. tamiae, respectively (Figure 3a). These
results show that in terms of gene content, B. apis is
more similar to B. tamiae than the eubartonellae,
providing further evidence that the two pathogenic
groups of the genus Bartonella have distinct evolu-
tionary histories.

The accessory gene content of B. tamiae and B. apis
was vertically inherited from the LCA of the genus
Bartonella

Analysis of the genomic structure revealed no
clustering of the 551 genes exclusively shared by
B. apis and B. tamiae providing little evidence for
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, AN VT [
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i ‘ [ | \
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L | AR
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B B.apis
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Figure 1 Comparative genome alignments of different Bartonella strains. Bartonella genomes are shown as gray horizontal lines. Genes
specific to B. apis are shown in blue. Genes shared between B. apis and B. tamiae, B. apis and eubartonellae and B. tamiae and
eubartonellae are shown in green, black and red, respectively. TBLASTX hits between genomes are shown in gray (bit score cutoff=600).
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Figure 2 Genome-wide phylogeny of the genus Bartonella and related alphaproteobacteria. Tree topology and bootstrap support values
were inferred with RAXML (model: JTT+G+I). The three Bartonella clades (B. apis, B. tamiae and eubartonellae) are highlighted in blue,
green and yellow, respectively. Ca. Tokpelaia hoelldoblerii is highlighted in orange. Values above branches show bootstrap support values
(>80%). Numbers below certain branches indicate percentage of single gene trees with congruent topology at this branch. The branch
toward the outgroup species Bradyrhizobium japonicum was shortened. A list of all strains with accession numbers is given in
Supplementary Table 2. Scale bar indicates number of substitutions per site.
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Figure 3 B. apis and B. tamiae share a large number of ancestral genes that have been lost in the eubartonellae. (a) Numbers of pan
genome genes shared between B. apis (six genomes), B. tamiae (two genomes) and the eubartonellae (14 genomes). The number of core
genome genes is shown in gray (that is, genes present in all 22 genomes). (b) Loss and gain of gene families mapped onto the phylogeny of
Figure 2. Blue and red numbers indicate number of genes gained and lost at each branch, respectively. Black numbers below branches
indicate number of gene families present in the ancestral genome at a given branch. Colored shading highlights the three groups of interest:
B. apis (blue), B. tamiae (green) and eubartonellae (yellow). (c) Distribution of the 737 genes that were lost on the ancestral branch of the
eubartonellae into subsets of shared genes according to the pan genome analysis in a.

horizontal gene transfer en bloc (Figure 1). Using a  revealed an extensive gene loss before and after the
gene flux analysis, we inferred when genes were  split of the families of Brucellaceae (Brucella
gained and lost along the species tree shown in  melitensis and Ochrobactrum anthropi) and Barto-
Figure 2. In agreement with previous studies nellaceae (Ca. T. hoelldoblerii and genus Bartonella)
(Boussau et al., 2004; Guy et al., 2013), this analysis (Figure 3b). This general trend of genome reduction
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continued within the genus Bartonella. Our analysis
predicted that an additional 737 gene families were
lost after the divergence of B. apis and B. tamiae, on
the ancestral branch toward the eubartonellae
(Figure 3b, Supplementary Table 3). Strikingly, 456
of the 551 shared genes by B. tamiae and B. apis
belong to these 737 gene families (Figure 3c),
indicating that a large fraction (83%) of the genes
exclusively shared by these two species were
vertically inherited from the LCA of the genus
Bartonella. A BLASTP analysis of these 551 genes
against the non-redundant database corroborated
these findings yielding mainly hits to other Rhizo-
biales (Supplementary Figure 5).

Among the remaining genes that were lost by the
eubartonellae are 214 genes present only in B. apis
(Figure 3c). Apparently, these vertically inherited
genes were also lost by B. famiae and only retained
by B. apis. Conversely, only 60 genes were retained in
B. tamiae, but lost by B. apis (Figure 3c). Moreover,
only 31 genes were lost by B. tamiae and B. apis, but
retained by the eubartonellae (Figure 3b). These
findings show that B. tamiae and B. apis harbor a
markedly larger set of ancestral gene functions than the
eubartonellae and that B. apis has retained the largest
number of such ancestral gene families. Consequently,
based on its functional potential, B. apis seems to
resemble most the LCA of this genus. Considering that
all bartonellae colonize insect hosts, it is conceivable
that the LCA of the genus Bartonella was already an

Genome evolution of Bartonella
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insect-associated gut symbiont, from which mamma-
lian pathogens evolved. In support of this scenario
is the existence of a deeply rooted sister lineage
comprising gut symbionts of diverse ant species
(including Ca. Tokpelaia hoelldoblerii, Figure 2)
(Stoll et al., 2007; Russell et al., 2009). Similar to this
suggested evolutionary trajectory for the eubartonellae,
vertebrate pathogens of the genus Rickettsia are
thought to have emerged from insect symbionts.
Pathogenic rickettsiae are transmitted by blood-
feeding arthropods. However, the largest part of the
currently known diversity of this genus consists of non-
pathogenic arthropod associated strains (Perlman et al.,
2006; Weinert et al., 2009). Also like B. apis, rickettsiae
seem to be mainly facultative symbionts of their
invertebrate hosts (Perlman et al., 2006). Possibly, a
larger diversity of Bartonella-like bacteria is still to be
discovered among insects.

The LCA of the genus Bartonella encoded amino acid
and cofactor biosynthesis pathways

One hundred ten of the 456 ancestral gene families
that were retained in the genomes of B. apis and
B. tamiae, but lost in the eubartonellae belong to the
COG categories ‘Amino acid transport and metabo-
lism’, and ‘Coenzyme transport and metabolism’
(Figure 4a; Supplementary Table 3), suggesting that
core metabolic functions were lost by the eubarto-
nellae. For example, B. tamiae and B. apis both
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100 — s /, Defense mechanisms
_?Llpld transport and metabolism
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Figure 4 Functional classification of ancestral gene families that were lost in the eubartonellae, but retained in B. apis and B. tamiae.
(a) COG category distribution of B. apis and B. tamiae shared genes, which were lost in the eubartonellae. Of 456 gene families 387 that
could be assigned to a COG category are shown in the bar graph. Categories were sorted according to the number of assigned gene families.
Numbers indicate percentages. (b) Presence of amino acid and cofactor biosynthesis pathway genes in 22 Bartonella genomes and their
inferred LCA. Only pathways for which genes were detected in the inferred genome of the LCA are shown (Supplementary Tables 4 and 5).
Cofactors marked with asterisks indicate that some genes of the pathway were missing in the LCA and could not be identified in any of the
analyzed genomes of contemporary Bartonella species. Intensity of blue coloring indicates number of genes present in each pathway

according to the depicted scale.
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encode complete biosynthesis pathways for all
amino acids except Asn and Ala (Supplementary
Table 4). According to our gene flux analysis, these
pathways were vertically inherited from the LCA of
Bartonella. The eubartonellae, however, have experi-
enced substantial gene loss in these pathways
(Figure 4b). Only six pathways were found to be
complete in all analyzed genomes of the eubartonel-
lae (Lys, Asp, Glu, Gln, Pro and Gly) (Supplementary
Table 4). Although most genes were lost on the
ancestral branch of the eubartonellae, we noted that
further gene loss must have occurred within sub-
lineages, as some species were missing more genes
than others (Figure 4b and Supplementary Table 4).

A similar pattern of gene loss was found for
cofactor biosynthesis (Figure 4b). All strains of
B. apis and B. tamiae encode ancestral pathways
for the biosynthesis of cofactors including heme,
vitamin B12, vitamin B6, molybdopterine and
tetrahydrofolate (Supplementary Table 5). It remains
elusive whether B. apis and B. tamiae are completely
autonomous in producing these cofactors, because
some necessary enzymes could not be identified in
the analyzed genomes. However, in the eubartonel-
lae, these pathways are practically absent with most
genes predicted to have been lost on the ancestral
branch preceding the radiation (Supplementary
Table 5).

The eubartonellae likely exploit the host for amino
acid and cofactor acquisition, which makes the
corresponding biosynthetic pathways superfluous.
Indeed, genome-wide experimental screens have
previously revealed that amino acid transporters
and heme-binding proteins and transporters are
essential for eubartonellae to colonize and persist
in the mammalian bloodstream (Mavris et al., 2005;
Saenz et al., 2007). These findings are in line with
the absence of biosynthesis capabilities in other
(facultative) intracellular pathogens (Zhang and
Rubin, 2013).

In contrast, the honey bee gut symbiont B. apis
does not seem to rely on amino acids and
cofactors from the host. Its extracellular lifestyle,
the competition with other gut bacteria and the
nitrogen-limited plant diet of the host may impose
strong selective pressure to retain the vertically
inherited biosynthetic capabilities. Accordingly,
these pathways were also found to be conserved
in other honey bee gut symbionts (Kwong and
Moran, 2016).

The conservation of the vitamin B12 biosynthesis
pathway is particularly interesting. This pathway
involves over 30 different steps, but only a few
enzymes require vitamin B12 as cofactor, including
methylmalonyl CoA mutase (MCM, EC 5.4.99.2) and
methionine synthase H (MetH, EC 2.1.1.13). Both
enzymes are encoded in the genomes of B. apis and
B. tamiae, but are absent from the eubartonellae.
MetH catalyzes the last step of the methionine
biosynthesis. Thus, the conservation of the vitamin
B12 and the methionine biosynthesis pathways is
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likely coupled. The second vitamin B12-dependent
enzyme, MCM, catalyzes the last step in the
degradation of propionate. This pathway is present
in all six B. apis strains, but in none of the other
bartonellae (Supplementary Figure 6). As in mam-
mals or termites (den Besten et al., 2013; Brune,
2014), propionate may be an end product of bacterial
fermentation in the honey bee hindgut, which could
be utilized by B. apis for energy production.

The presence of ancestral biosynthetic pathways
in B. apis suggests that the LCA of the genus
Bartonella was a metabolically self-reliant bacter-
ium. However, it was rather surprising to find that
the pathogen B. tamiae has retained most of these
ancestral pathways. In line with the evolution of the
eubartonellae, adaptation to the mammalian blood-
stream should have resulted in the loss of these
pathways. Possibly, the primary ecological niche of
B. tamiae is in the gut of hematophageous insects
and colonization of mammals only happens inciden-
tally. Thus, the genome of B. tamiae may not be
streamlined to a host-restricted intraerythrocytic
lifestyle as in the case of the eubartonellae. Indeed,
to date little is known about a possible mammalian
reservoir host of B. tamiae. Only three studies have
so far detected B. tamiae in mammals, two in
humans (Kosoy et al., 2008; 2010) and one in bats
(Leulmi et al., 2016).

Bartonella apis-specific gene contents

We analyzed the B. apis-specific gene content to
obtain insights into possible functional roles of this
symbiont in the honey bee gut, but also to better
understand the functional capabilities of the
inferred ancestor of the entire genus. Out of 1241
B. apis-specific genes (Figure 3a), 289 are present in
all six strains suggesting key functions for the
ecology of this bacterium. On the basis of the gene
flux analysis, 158 genes were vertically inherited
from the LCA and 131 genes were acquired
by horizontal gene transfer.

Anaerobic respiration via nitrate reduction. Interest-
ingly, a large fraction of the B. apis-specific core genes
are predicted to be involved in nitrogen metabolism.
All six strains of B. apis encode a nitrate reductase
gene cluster for anaerobic respiration (Supplementary
Figure 7a). Two nitrate/nitrite antiporter genes are
located upstream of the reductase genes and four to
five ABC-type nitrate/taurine transporters are encoded
elsewhere in the six genomes. According to the gene
flux analysis and phylogenetic trees, the reductase
genes were vertically inherited, whereas the ABC-type
transporters were acquired by horizontal gene transfer
(Supplementary Figure 7b and 7c). The acquisition of
these additional transporters suggests that B. apis has a
high demand for nitrate, possibly as an electron
acceptor to acquire energy via anaerobic respiration.
Previous experiments have indeed shown that B. apis,



in contrast to other bartonellae, reduces nitrate to
nitrite in vitro (Kesnerova et al., 2016).

Recycling of nitrogenous waste products. For several
herbivorous insects, it was proposed that gut bacteria
may recycle nitrogenous waste products into amino
acids (for example, Anderson et al., 2012). Strikingly,
all six strains of B. apis encode a vertically inherited
urease gene cluster to degrade urea into ammonia,
which in turn can be converted into glutamine and
glutamate (Supplementary Figure 8). Urea may derive
from uric acid, the major waste product released by
insects into the hindgut (McNally et al., 1965; Gullan
and Cranston, 2009). Accordingly, a gene cluster for
uric acid degradation is encoded in all six strains of B.
apis. However, genes for two key enzymes are missing,
suggesting that B. apis is not capable of converting
uric acid on its own (Supplementary Figure 9). It is
interesting to note that also the related ant gut symbiont
Ca. Tokpelaia hoelldoblerii has retained the urease
gene cluster suggesting that recycling of urea may be an
important function of rhizobial gut symbionts that was
also present in the LCA of the genus Bartonella. In
contrast, neither the analyzed eubartonellae, nor the
two B. tamiae strains encode the urease gene cluster.
Thus, it was recently hypothesized that the loss of this
function may have been a critical step toward the
adaptation to hematophageous insect hosts (Neuvonen
et al., 2016).

Degradation of plant secondary metabolites. Among
the B. apis-specific gene content were also genes for the
degradation of secondary plant metabolites. Four of the
six strains encode the complete protocatechuate
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pathway for the degradation of 4-hydroxybenzoate, a
common plant-derived aromatic compound (Figure 5).
In addition, all six B. apis strains encode two quinone-
dependent quinate dehydrogenases. One of these genes
and the genes for the biosynthesis of the cofactor
pyrroloquinoline quinone are located upstream of the
gene cluster of the protocatechuate pathway (Figure 5).
Quinate is a plant-derived cyclic polyol that is degraded
by bacteria into shikimate and hippuric acid and sub-
sequently used for amino acid biosynthesis (Teramoto
et al., 2009). The protocatechuate pathway and the two
quinate dehydrogenase genes were likely acquired by
horizontal gene transfer, as the gene trees are incon-
gruent with the species phylogeny (Supplementary
Figures 10 and 11).

As plant secondary metabolites are present in pollen
and nectar, they could be used by bee gut symbionts for
energy and amino acid production. Likewise, these
functions may have been beneficial for a herbivorous
insect-associated ancestor of the genus Bartonella.
However, at which point in evolution these genes
were acquired, whether in a common ancestor of the
entire genus or specifically in the lineage of B. apis,
cannot be concluded from the current data.

Acquisition and expansion of virulence factors in the
eubartonellae after divergence from B. apis and

B. tamiae

To learn more about the evolutionary origin of the
genus’ pathogenicity, we analyzed which virulence
factors of the eubartonellae are present in B. apis and
B. tamiae. We searched for 88 virulence factors (that
is, genes important for host interaction or establish-
ment of an intraerythrocytic infection) of which 69
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Figure 5 Genomic region encoding genes for the degradation of aromatic compounds in B. apis. The genomic regions of the six B. apis
strains are compared with the corresponding region in B. tamiae strain Th239. Genes are depicted as arrows in different colors according
to the legend. TBLASTX hits between genomes are shown as bands, with gray intensity reflecting the percentage identity of a given hit
(e-value cutoff=10""°). In strain BBC0122 and PEB0150, the gene cluster of the protocatechuate pathway (that is, 4-hydroxybenzoate
degradation) is interrupted by the insertion of a gene cluster coding for several dehydrogenase genes.
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were classified as conserved (that is, present in

alphaproteobacterial outgroup species) and 19 as
Bartonella-specific (Supplementary Table 6). Except
for two genes of unknown functions, none of the
Bartonella-specific virulence factors are present in
the genomes of B. apis and B. tamiae (Figure 6a)
including the well-characterized trw and virB T4SS
and most autotransporter genes (Harms and Dehio,
2012). Consequently, these virulence factors must
have been acquired after the divergence of B. apis
and B. tamiae, consistent with the hypothesis that
they were key innovations for the radiation of the
eubartonellae, facilitating the adaptation to different
mammalian host species (Engel et al., 2011; Guy
et al., 2013).

The majority of the conserved virulence factors
have orthologs in B. apis and B. tamiae (Figure 6a).
Interestingly, both strains of B. tamiae encode
orthologs of the YadA-like trimeric autotransporter
family (TAA) (Supplementary Figure 12). Represen-
tatives of this adhesin gene family, for example,
BadA of B. henselae, mediate important interactions

c
100%

90% -
80%
70%
60% 1

of the eubartonellae with their mammalian hosts
(Riess et al., 2004; Zhang et al., 2004; Saenz et al.,
2007; Lu et al., 2013). Both homologs of B. tamiae
have the conserved C-terminal anchor domain as
well as the characteristic stalk repeats of TAAs
(Figure 6b). However, the N-terminal YadA-like head
domain, thought to mediate binding to host compo-
nents (Riess et al., 2004; Szczesny et al., 2008), is not
conserved. Instead, one of the two homologs of
B. tamiae contains a 600-bp N-terminal extension
including a signal peptide. Future experimental
studies need to verify whether the TAAs of B. tamiae
play similar roles for mammalian host interaction as
their homologs in the eubartonellae.

Another group of conserved virulence factors,
which show distinct patterns of evolution within
the three major lineages of Bartonellae are hemin-
binding proteins (Hbp). Although both B. apis and B.
tamiae encode two ancestrally duplicated paralogs
(one is pseudogenized in B. tamiae), this gene family
has substantially expanded and diversified in the
eubartonellae. Certain strains encode up to eight
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Figure 6 Bartonella virulence factors in B. apis and B. tamiae. (a) Distribution of 88 virulence factors in B. apis and B. tamiae categorized
according to their evolutionary history (conserved in Rhizobiales versus Bartonella-specific). (b) The YadA-like trimeric autotransporter
gene badA of B. henselae Houston-1 (GenBank accession CAF26961) compared with three homologous genes or gene fragments identified
on different contigs in the draft genome of B. tamiae Th239. Protein domains are shown in different colors according to the legend and
based on Riess et al., (2004). Contig names are indicated below the gene representations. AIMB01000003 and AIMB01000004 are adjacent
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phylogeny (model: WAG) of the hemin-binding proteins (Hbps) of Bartonella and corresponding homologs identified in outgroup species.
The tree is based on the protein alignment (273 aa) of the conserved C-terminal region. The alignment was stripped of alignment positions
with less than 50% coverage. Colors indicate different Bartonella species. A tree including the Hbps identified in all analyzed Bartonella
species is shown in Supplementary Figure 13a. Bar indicates number of substitutions per site.
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copies of hbp genes. Phylogenetic analysis suggests
that this expansion occurred after the divergence of
B. apis and B. tamiae via repeated duplication events
(Figure 6c). Moreover, paralogs of this gene family
show higher levels of sequence divergence in the
eubartonellae than in B. tamiae and B. apis
(Supplementary Figure 13b). Hbps are outer mem-
brane proteins involved in the acquisition of heme
and iron from the environment (Lee, 1992). Thus, the
expansion of this family may have complemented
the loss of the heme biosynthesis genes in the
eubartonellae (Figure 4b). Expression of a diverse
set of Hbps may increase the efficiency to absorb and
uptake heme from the blood. Alternatively, the
binding properties of the Hbps may lead to an
extracellular heme coat that could serve as a
nutritive reservoir for Bartonella during passage
through the arthropod host, as shown for Y. pestis
(Hinnebusch et al., 1996), or may act as antioxidant
barrier against reactive oxygen species (Harms and
Dehio, 2012). Independent of the precise role of the
Hbps, our data strongly suggests that the expansion
of this gene family is an adaptation to the specific
infection strategy of Bartonella.

Conclusion

In this study, we sequenced the first six genomes of
the honey bee gut symbiont B. apis, the closest
known relative of the pathogenic members of the
genus Bartonella. Our results show that B. apis has
retained a large ancestral gene pool, which allowed
us to reconstruct the metabolic capabilities of the
Bartonella LCA. This provided compelling new
insights into the genomic changes associated with
the evolution of the characteristic intraerythrocytic
infection strategy of Bartonella.

We conclude that the LCA of Bartonella was likely
an amino acid and cofactor self-reliant gut symbiont
that recycled nitrogenous waste products from its
insect host. This is corroborated by the fact that a
deeply rooted lineage of the genus Bartonella com-
prises a large group of ant-associated Rhizobiales
with presumably similar functional capabilities (for
example, Stoll et al., 2007; Russell et al., 2009;
Neuvonen et al., 2016). Our hypothesis that the
mammalian pathogens of the genus Bartonella
derived from an insect-associated gut symbiont is
in contrast to the evolution of other vector-borne
pathogens. For example, Y. pestis is believed to have
been adapted to the mammalian host before it
evolved insect-vector transmission (Chain et al.,
2004). It is similar, however, to the emergence of
pathogens in the genera Rickettsia (Perlman et al.,
2006; Weinert et al., 2009) and Coxiella (Duron et al.,
2015). Bacterial strains of the genus Coxiella have so
far only been found in ticks and among them are
maternally inherited endosymbionts that form a
basal lineage to the mammalian pathogen Coxiella
burnetti (Duron et al., 2015). Genome analyses of
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these endosymbionts suggest that they provision
their tick hosts with vitamins and cofactors (Gottlieb
et al., 2015; Smith et al., 2015). A key step in the
evolution of the pathogenic Bartonella, Coxiella and
Rickettsia was probably the colonization of blood-
sucking arthropods. In Bartonella, this transition
could have happened twice, once in the ancestor of
the eubartonellae, and another time in the lineage of
B. tamiae. Because our phylogenetic analyses based
on amino acid and DNA sequences disagree on the
placement of B. tamiae, discovery of more Barto-
nella-like bacteria could further resolve the evolu-
tion of the genus.

In contrast to the eubartonellae, B. tamiae has
retained ancestral amino acid and cofactor biosynth-
esis pathways and lacks most Bartonella-specific
virulence factors. This indicates that B. tamiae may
have a different ecology than the eubartonellae.
Possibly, B. tamiae presents an intermediate state
of the evolutionary transition from a gut symbiont to
a mammalian parasite. Although it is adapted to
colonize hematophageous insects, it may not be
adapted to a mammalian reservoir host and only
causes opportunistic infections. Future experimental
studies focusing on the infection course of B. tamiae
in mammals will shed light on the stepwise evolu-
tion of virulence in the genus Bartonella. For
example, it is currently unknown whether B. tamiae
can enter erythrocytes and persist in the blood-
stream, as in the case of the eubartonellae (Harms
and Dehio, 2012).

Finally, our study shows that genome reduction in
host-restricted bacterial pathogens may be counter-
acted by the expansion of vertically inherited gene
families. Besides the acquisition of dedicated viru-
lence factors, we find that the eubartonellae have
compensated the loss of the heme biosynthesis
pathway by the expansion of an ancestral family of
Hbps. This may allow pathogenic Bartonella to
efficiently acquire heme and iron from the mamma-
lian host and overcome nutritional shortages during
passage through the insect vector.

Bartonellae are experimentally amenable and
in vivo colonization models are established for both
honey bee gut symbionts (Engel ef al., 2015) and
Bartonella mammalian pathogens (Harms and Dehio,
2012). Thus, our comparative genomic analysis sets
the ground for future experimental studies to under-
stand how changes in gene content affect host
interactions during the evolutionary transition from
an insect-associated gut symbiont to a mammalian
pathogen.
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