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Abstract: We investigated agent-based model simulations that mimic an ant transportation system
to analyze the cooperative perception and communication in the system. On a trail, ants use co-
operative perception through chemotaxis to maintain a constant average velocity irrespective of
their density, thereby avoiding traffic jams. Using model simulations and approximate mathematical
representations, we analyzed various aspects of the communication system and their effects on
cooperative perception in ant traffic. Based on the analysis, insights about the cooperative percep-
tion of ants which facilitate decentralized self-organization is presented. We also present values of
communication-parameters in ant traffic, where the system conveys traffic conditions to individ-
ual ants, which ants use to self-organize and avoid traffic-jams. The mathematical analysis also
verifies our findings and provides a better understanding of various model parameters leading to
model improvements.

Keywords: cooperative perception; congestion-free transportation; ant traffic; communication; intel-
ligent transportation systems; decentralize transportation; self-organisation in transportation

1. Introduction

With the rise in communication and sensing technology, cooperative perception for
intelligent transportation systems (ITS) is attracting attentions of various researchers in the
field [1–6]. Cooperative perception allows vehicles to collect and share information with
other vehicles and infrastructure, enabling vehicles and infrastructure to detect beyond
their local capabilities [1,2]. Research has shown that cooperative perception can increase
autonomous driving systems’ robustness by increasing the perception’s accuracy and
detecting objects beyond their local capabilities [7–9]. Moreover, the research has also
shown that cooperative perception can allow individual vehicles in ITS to collaborate on a
transportation system level to increase the ITS system’s efficiency and safety [3–5,7–10].

However, although the cooperative perception might be new in vehicular trans-
portation systems, in nature, transportation systems that use cooperative perceptions are
common phenomena [11]. In the recent past, studies of cooperative perception among ants
are attracting various multidisciplinary researchers. Many practically blind ant species
create chemical trails to share and collect information through chemotaxis. Ants use the
collected information for efficient transportation, food exploration, immigration, and the
colony’s defense [12]. The transportations in ant colony have remarkable similarities with
vehicular traffic systems [12–16]. Thus, it is argued that the collective movement of ants on
trails [here onwards called as “ant traffic” (AT)] is analogous to vehicular transportation
network [11,17]. In AT, considering visual sensing limitations, cooperative perception
through chemotaxis (chemical communication) plays a crucial role in managing the trans-
portation activity [12,18]. Thus, it is believed that learning about the cooperative perception
and communication (CP&C) system in AT will help us to design and manage cooperative
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perception in ITS. In the case of AT, multiple previous studies have indicated that biological
evolution may have optimized communications in AT, leading to efficient transportation
systems; examples include (i) use of chemotaxis for selecting the shortest path to a food
source and (ii) the formation of three lanes in bidirectional AT [12,18–20]. Recent experi-
ments about unidirectional AT from a transportation perspective revealed other exciting
properties of AT [21]. The studies show that ants collaboratively achieve constant average
velocity independent of density through CP&C. Consequently, no jamming phase was
observed in the fundamental diagrams for AT. Predominantly tendency to form clusters
was also observed. The fundamental diagrams for AT are contradictory to the fundamental
diagrams for vehicular traffic. A decreasing average velocity with density is observed in
the latter, leading to congestions [21,22].

Motivated by AT’s new findings, several previous studies makes an effort to explain
the CP&C behind congestion-free AT [13,22–25]. These studies proposed models of AT
that attempt to replicate AT behaviors through computer simulation. Although the studies
in [22–24] are successful in presenting models of AT, which can replicate the behavior of
AT from [21], all of these models contradict multiple previous studies about ant physi-
ology. Whereas in contrast, the [13]’s model is simple yet non-contradictory to previous
studies [25]. Simultaneously, the model is well analyzed [11,15,16,26–28]. However, the
model in [13] is a generic model, proposed and analyzed before [21]. Hence, it needed to be
improved and analyzed while considering [21]’s findings. Therefore in [25,29,30], we pre-
sented an improved model of AT with a new perspective on the mechanism of congestion-
free AT in light of new findings from [21]. Similar to [23,24], the model in [25,29,30] also
assumes that ants use CP&C through chemotaxis for traffic management on AT. However,
in contrast to [23,24], the studies argue that for an increase in pheromone concentration, ants
increase their velocity. The modelling assumptions in [25,29,30] use references from physi-
ological studies of ants as the base. Simultaneously the model simulation captures [21]’s
main findings. Thus proving that the model represents real AT.

In the study reported in [25,29,30], an introduction and analysis of an agent-based
model of AT [ant-trail model (ATM)] are presented. As shown in [30], ATM’s design and
assumptions are based on an extensive survey of previous studies of ant’s physiology. The
study in [30] also presents traceability between the previous studies of ant’s physiology
and the ATM’s dynamics and assumption. The traceability provides us with confidence
that the model dynamics and assumption in ATM represent real-life ant. On the other
hand, [25,29] presents a comparison between ATM model simulations and all the empirical
findings from [21,22]. As shown in [25,29], ATM simulation captures all the characteristics
of real-life AT. Thus based on the finding in [25,29,30], we argue that ATM simulations not
only represents real-life ant’s physiology, but it also represents real-life AT as transportation
system. Hence, we argue that ATM simulations can be used for analyzing real-life AT.

The study in [25,29] also presents an analysis of AT from the traffic flow perspective.
The analyses in [25,29] indicate that ants use CP&C through chemotaxis to implement a
jam-absorption mechanism (JAM), which allows ants to maintain traffic flow on the trail.
The studies indicate the use of a slow-in-fast-out strategy by ants for creating multiple
platoons with considerable distance between the platoons (inter-platoon distance), which
facilitate AT in implementing the JAM explained in [31,32]. The inter-platoon distances
lead to sufficient time headway, allowing ants to absorb the queuing effect due to the
platoon ahead [25,29,31,32]. Because of the jam absorption mechanism, no platoon gets
caught up in the stop-and-go motion that existed in the platoon ahead, causing emergent
congestion-free traffic [25,29].

However, although the studies in [25,29,30] explain JAM in AT from the traffic flow
perspective, it does not elaborate on how ants use CP&C to achieve it. The studies explain
the actions of individual ants in the implementation of collaborative JAM. The studies also
explain how individual ants’ actions collectively lead to management of the traffic flow in
AT. Yet, the studies fail to elaborate on information that ants use through CP&C to make
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those decisions or the communication mechanism that enables individual ants to receive
that information.

To implement complex collaborative behavior such as JAM, ants require decentralized
collaboration between multiple, independently operated ants. Such collaborations need
to be based on a collective understanding of a larger transportation scenario than the
immediate surrounding [33]. On the other hand, for the same individual ants, the decisions
also need to accommodate the information about the immediate surroundings for safety
and efficiency [33,34]. For the CP&C system in AT, an ideal system should facilitate the
system-wide understanding of transportation scenario for collaboration while conveying
the immediate surroundings for avoiding collisions [33,34]. Thus, to collaboratively im-
plement the decentralized JAM, the individual ants need to receive information about the
larger and ever-evolving traffic system while also acknowledging local surroundings. In
addition, from an ITS research perspective, to design AT inspired CP&C for a congestion-
free ITS, we must understand (i) the information that allows ants to understand the holistic
traffic scenario and (ii) the communication system that provides that information. It is
also critical to understand the environmental or communication conditions in which the
communication system is functional.

Therefore, taking the lead from the introduction, validation and analysis of ATM
in [25,29,30], this paper investigates various CP&C related parameters and their effects
on AT. The study analyses the traffic information that individual ants receive through
chemotaxis and the various ways ants use it to collaborate. We also analyzed the AT con-
ditions and environment for the communication system in which the system conveys the
information about traffic condition to individual ants. Model simulations and approximate
but simple mathematical expressions of key transportation scenarios in ATM were used for
the analysis. The model simulations allow us to analyze system-level emergent cooperative
perception in AT. Whereas the mathematical expressions help us validate our observations
and better understand the model parameters leading to model improvements. Understand-
ing the above parameters and scenarios should clarify the critical cooperative perception
behind jam absorption mechanisms in AT, which can be used to design efficient ITS.

2. Model and Simulation Scenario

For the readers’ convenience, we briefly re-introduce ATM from [25,29,30] here. Indi-
vidual ants in AT cooperate to understand traffic scenario through CP&C. In AT, individual
ants’ travelling decisions depend on traffic perception through the chemical substances
known as pheromones [18,19]. As ants move forward on the trail, they excrete pheromones,
which other ants can sense and follow [12,18–20]. The forward movements of ants depend
on the local pheromone concentration (σ) ahead of them, where the detected concentra-
tion of pheromone is converted into a self-propelling force. Ant’s self-propelling force
increases with increasing concentration until the concentration (σsat) that saturates the
antennae [12,18–20,35,36]. The antennae cannot differentiate between pheromone concen-
trations above σsat. Thus the propulsion force for the corresponding pheromone remains
approximately similar to the saturation one [12,35,36]. Based on the aforementioned chemo-
taxis behavior of ants, [25,29] present a model of the AT in ATM. Although the previous
study in [13] uses cellular automaton for its analysis, considering that ants parameters are
important for our analysis, we use agent-based modelling for our study. The agent-based
ATM simulations have two types of agent, namely (i) stationary agents representing the
cells of the trail (environment in the model) and (ii) moving agents representing the ants.
Each cell of our one-dimensional ant trail can accommodate, at most, one ant at any time
step (see Figure 1). The cells are labeled by the index i (i = 1, 2, . . . , L), where L is the
length of the trail. For the analysis, we associate the following two numerical variables
with each cell.
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Figure 1. The single-lane ant-trail model (ATM) with a left to right motion is represented, where each cell of one-dimen-
sional ant trail is indexed by 𝑖, and each ant is indexed by 𝑗. At any given time, there can be only one ant in any cell [25,29]. 

• 𝑠 (𝑡) is a binary variable, which either can be 0 or 1 depending on whether the cell 
is empty (0) or occupied (1) by an ant at time step 𝑡. 

• 𝜎 (t) is a numerical variable, which represents the pheromone concentration in the 
given cell. 𝜎 (𝑡) ranges from 0 to 𝜎 , where 𝜎 (𝑡)  =  0 means that there is no pher-
omone at time step 𝑡, whereas 𝜎 (𝑡)  = 𝜎  means that the cell is saturated with 
pheromone at that time step. In a real-life AT study, pheromone concentration is 
measured in the number of molecules per cubic centimeter ( 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑐𝑚⁄ ). 
Whereas in ATM, pheromone concentration is measured in units of pheromone per 
cell (𝑝 𝑢𝑛𝑖𝑡𝑠/𝑐𝑒𝑙𝑙). 
It is important to note that [25] have another variable associated with the cells on the 

trail (resistance of the cell), which was used to analyze ATM on heterogeneous surfaces. 
However, as this paper’s focus is ant chemotaxis, we used a homogeneous trail through-
out the simulations. Therefore, for mathematical simplicity, we avoided the variable in 
the present analysis. 

In ATM, the ants are also indexed with a unique variable 𝑗 (𝑗 = 0,1,2, … , 𝑁), where 𝑁 is the total number of ants in the simulation at the time of the measurements. As ex-
plained later in simulation scenarios, the number of ants changes over time. All ants in 
ATM have the following two variables assign to them. 
• 𝑣  (𝑡) is the instantaneous velocity of ant 𝑗 at time step 𝑡, measured in cells per time 

step (𝑐𝑒𝑙𝑙𝑠 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝⁄ ). 𝑣  (𝑡) is continuous and ranges from zero to one. 
• 𝑝  (𝑡) is the position of ant 𝑗 on the trail at time step 𝑡 and ranges from zero to 𝐿. 

Similar to 𝑣 (𝑡), 𝑝 (𝑡) is also continuous. 
For the simulations in this paper, it is assumed that: (i) ants cannot move backwards; 

(ii) the probability of forward motion is constant; and (iii) the distance travelled by an ant 
in a single time step depends on the cooperative perception through concentration of 
pheromone in the next cell. At every time step, the variables in the model simulation are 
updated in two stages. 

2.1. Stage I: Ant Motion 
The first stage of the update represents the ants’ behavior, which depends on a per-

ception of a given ant of its surroundings (surroundings of an ant include the trail and 
other ants in the simulation). Here, based on the information about pheromones and the 
presence of ants in the cell ahead, the value of the instantaneous ant velocity (𝑣  (𝑡)) is 
generated for a given time step 𝑡. At the end of Stage I, we obtain the value of 𝑝  (𝑡 + 1) 
for each ant and scan the values of 𝑠 (𝑡 + 1) for each cell. The ants’ positions and param-
eters are updated according to the following rules. If ant 𝑗 is in cell 𝑖, the instantaneous 
velocity of that ant from cell 𝑖 toward cell (𝑖 + 1) depends on 𝑠 (𝑡) and 𝜎 (𝑡), as 
shown in Equation (1). 

𝑣 (𝑡) =
⎩⎪⎨
⎪⎧ 0                                                                                         , 𝑖𝑓 𝑠 = 1𝑚𝑎𝑥(𝑣 (𝑡 − 1) − 0.1, 𝑣 ) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃𝑣 (𝑡 − 1)            𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑃) , 𝑖𝑓 𝑠 = 0  & 𝜎 (𝑡) < 1𝑣 + 𝑎 ⋅ 𝜎 (𝑡)                                                                        , 𝑖𝑓 𝑠 = 0 & 1 ≤ 𝜎 (𝑡) < 𝜎(𝑣 + 𝑎 ⋅ 𝜎 )                                                                            , 𝑖𝑓 𝑠 = 0 & 𝜎 (𝑡) ≥  𝜎  (1) 

Figure 1. The single-lane ant-trail model (ATM) with a left to right motion is represented, where each cell of one-dimensional
ant trail is indexed by i, and each ant is indexed by j. At any given time, there can be only one ant in any cell [25,29].

• si(t) is a binary variable, which either can be 0 or 1 depending on whether the cell is
empty (0) or occupied (1) by an ant at time step t.

• σi(t) is a numerical variable, which represents the pheromone concentration in the
given cell. σi(t) ranges from 0 to σsat, where σi(t) = 0 means that there is no
pheromone at time step t, whereas σi(t) = σsat means that the cell is saturated
with pheromone at that time step. In a real-life AT study, pheromone concentra-
tion is measured in the number of molecules per cubic centimeter (molecules/cm3).
Whereas in ATM, pheromone concentration is measured in units of pheromone per
cell (p units/cell).

It is important to note that [25] have another variable associated with the cells on the
trail (resistance of the cell), which was used to analyze ATM on heterogeneous surfaces.
However, as this paper’s focus is ant chemotaxis, we used a homogeneous trail throughout
the simulations. Therefore, for mathematical simplicity, we avoided the variable in the
present analysis.

In ATM, the ants are also indexed with a unique variable j (j = 0, 1, 2, . . . , N), where N
is the total number of ants in the simulation at the time of the measurements. As explained
later in simulation scenarios, the number of ants changes over time. All ants in ATM have
the following two variables assign to them.

• vj (t) is the instantaneous velocity of ant j at time step t, measured in cells per time
step (cells/time step). vj (t) is continuous and ranges from zero to one.

• pj (t) is the position of ant j on the trail at time step t and ranges from zero to L.
Similar to vj(t), pj(t) is also continuous.

For the simulations in this paper, it is assumed that: (i) ants cannot move backwards;
(ii) the probability of forward motion is constant; and (iii) the distance travelled by an
ant in a single time step depends on the cooperative perception through concentration of
pheromone in the next cell. At every time step, the variables in the model simulation are
updated in two stages.

2.1. Stage I: Ant Motion

The first stage of the update represents the ants’ behavior, which depends on a
perception of a given ant of its surroundings (surroundings of an ant include the trail and
other ants in the simulation). Here, based on the information about pheromones and the
presence of ants in the cell ahead, the value of the instantaneous ant velocity (vj (t)) is
generated for a given time step t. At the end of Stage I, we obtain the value of pj (t + 1) for
each ant and scan the values of si(t + 1) for each cell. The ants’ positions and parameters
are updated according to the following rules. If ant j is in cell i, the instantaneous velocity
of that ant from cell i toward cell (i + 1) depends on si+1(t) and σi+1(t), as shown in
Equation (1).
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vj(t) =


0 , i f si+1 = 1{

max
(
vj(t− 1)− 0.1, vmin

)
vj(t− 1)

with probability P , i f si+1 = 0 & σi+1(t) < 1

vmin + a · σi+1(t) with probability (1− P) , i f si+1 = 0 & 1 ≤ σi+1(t) < σsat
(vmin + a · σsat) , i f si+1 = 0 & σi+1(t) ≥ σsat

(1)

pj(t + 1) = pj(t) + vj(t) (2)

For a given time step, there are four possible cases of the ant’s surroundings and
corresponding ant’s behavior as follows:

The first case represents the action of an ant in cell i, if another ant occupies the next
cell. In that case, the former ant cannot move forward, which is represented by vj(t) = 0
(study in [21] have indicated an absence of overtaking in AT). It is important to note that the
first case represents exclusion dynamics, which ATM has inherited from Total Asymmetric
Simple Exclusion Process (TASEP) model. As explained in [25,29], the TASEP model is the
foundation model for ATM. The exclusion dynamics explain above plays an important role
in the later analysis.

In the second case, the next cell contains no ant (si+1(t) = 0), but the pheromone con-
centration is also meager. Ants are sensitive to the pheromone concentration, where ants
can detect the pheromone even at an extremely low concentration [18]. Thus, we assumed
that ants could detect pheromones for σi+1(t) > 0. However, for the ants to differentiate
pheromone concentrations, the concentration needs to be above a certain level [18,19].
Thus, we also assume that, although ants can detect pheromone for σi+1(t) ≤ 1, ants
cannot differentiate in the concentration if σi+1(t) ≤ 1. In such a scenario, although
the ants might perceive the trail, the meager pheromone concentration will limit ants’
capacity to differentiate the concentration and perceive traffic scenario. Thus, consider-
ing the unknowns, to avoid wastage of energy and collision due to a high velocity, we
assumed that the ants reduce their velocity or move with vmin, whichever is higher, and
the probability P gives the probability of this event (change in velocity). Conversely, the
ants maintain the same velocity as t− 1 with probability (1− P). In the second case, we
assumed P = 0.7(> 0.5) representing the ants’ higher sensitivity to a meager pheromone
concentration. Similar to [25,29], to have a larger velocity range for simulated ants, we also
chose vmin = 0.15 cells/time steps.

In the third case, the next cell contains no ants (si+1(t) = 0), but it contains a differ-
entiable level of pheromones below saturation (1 < σi+1(t) < σsat). In this case, the ant
can perceive its surrounding through differentiation of pheromone concentration. Hence,
the ant’s instantaneous velocity depends on the pheromone concentration in the next cell.
We use a deterministic equation to represent velocity changes related to the third case.
Deterministic dynamics represent ants’ high sensitivity to pheromones and low inertia on
the trail. In this scenario, the value of the prefactor ′a′ is decided based on σsat and vmax
(upper-velocity limit (= 1)), where for the functioning of the model within given velocity
limits, ( a · σsat ≤ vmax − vmin) needs to be satisfied. On the other hand, from [25,29], we
know that a lower value of a · σsat will lead to a lower velocity range. Therefore, considering
the above restriction, similar to [25,29], we selected a · σsat = 0.8. Whereas considering that
in the range of 5 < σsat ≤ 80, ATM simulation remains independent of σsat, for mathemat-
ical simplicity, similar to [25,29], we chose σsat = 80 (p units/cell), and a = 0.01. Although
here in the model definition, we arbitrarily defined σsat = 80(p units/cell), which is the
extreme value in the above mentioned σsat range, the later sections of the paper show that
the above assumption of σsat does not affects the ATM simulation which correspond to real
life AT. Whereas the same assumption allows us to analyse different chemotaxis parameters
independent of σsat, which is important for our study.

The last case represents a scenario where the next cell contains no ant. At the same
time, it represents a scenario where the pheromone level in the cell is above saturation. In
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such a scenario, the velocity of the given ant becomes equal to the velocity at saturation
(σsat), which we calculated by using the third case equation ( vmin + a · σsat).

As specified by Equation (2), the new position pj(t + 1) of the given ant is calculated
by adding the position of the ant at time t to the distance traveled in unit time (vj(t)).

2.2. Stage II: Pheromone Updating

In the second stage of the update, changes in surrounding and their effects on
pheromone are presented for a given time step. For every time step, the concentration
of pheromone on the trail changes for two reasons: (i) evaporation due to environmental
factors (usually, the effect of surrounding on the evaporation rate (re) remains constant
if the surroundings remain approximately unchanged) and (ii) pheromone accumulation
due to further discharge of the pheromone by the ants (in one-time step, an ant releases
an amount τ (p units/time step) of pheromone, referred to as a pheromone unit). At the
end of Stage II, we obtain the subset σi(t + 1) using the subsets si (t) and σi(t), and the
velocity of the ant (antj) in the cell (celli) as follows:

• Evaporation:
σ′i (t + 1) = σi(t)− (σi(t) · re), i f σi(t) > 0 (3)

• Accumulation:

σi(t + 1) =
{

σ′i (t + 1) + τ, i f si(t) = 1 & σ′i (t + 1)< σsat & vj(t) >0
σsat, i f si(t) = 1 & σ′i(t + 1) ≥ σsat

(4)

As given by Equation (3), evaporation depends on present pheromone concentration,
where a certain fraction of the present pheromone evaporates from all cells at every time
step depending on re. After evaporation, the remaining pheromone concentration on the
cell is further affected by the addition of pheromone emitted by the ant in the cell at the
same time step. As shown in Equation (4), for accumulation, there are two possibilities.

In the first case, the cell is occupied by an ant (si(t) = 1) that moved forward in the
previous time step (vj(t) > 0). Moreover, the pheromone concentration in the cell after
evaporation (σ′i (t + 1)) is below saturation. In this case, the ant releases a unit volume of
pheromone in the cell, leading to increased pheromone concentration.

In the second case, an ant is occupying the cell (si(t) = 1), at the same time step,
the pheromone in the cell is above saturation

(
σ′i (t + 1) ≥ σsat

)
. In the second case, the

σi(t + 1) will be undifferentiable from σsat. Thus, it was assumed that the concentration
remains at the saturation level (σsat). It is important to acknowledge that assuming the
pheromone detected and actual pheromone on the trail as the same could cause discrep-
ancies between real-life AT and ATM simulation. However, as explained in the later
analysis, the above assumption does not affect our analysis results and can be neglected.
An overview of all the variables in ATM is provided in Table 1.

2.3. Simulation Scenarios

In this study, we wanted to analyze the AT on a trail that has formed over a pe-
riod of time without any external interference. Thus, data were always collected after a
considerable amount of time from the beginning of the simulation (collected data was
from an established traffic flow). Moreover, the horizontal periodic boundary conditions
were used to make the simulation scenario equivalent to a circular trail by connecting
the last cell (cell1000) to the first one (cell1). Although natural ATs are open boundary
systems, as we wanted AT simulations to form over a period of time without any exter-
nal interference, we used the periodic boundary condition. Simultaneously, by using a
trail of length 1000 cells, we ensured that the trail was long enough to make any ant’s
self-interaction effects negligible, which arise under the periodic boundary condition with
a short track [25,29].
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Table 1. An overview of the parameters in the ant-trail model (ATM).

Description Symbol

Unique identity of a cell in the trail i
Presence or absence of an ant in the trail celli at time t si(t)
Pheromone concentration in the trail celli at time t σi(t)
Pheromone concentration saturation level σsat
Unique identity of an ant in the simulation j
Velocity of the antj at time t vj (t)
Position of the antj at time t pj (t)
The minimum velocity of an ant towards the cell with
no pheromone and no other ant

vmin

Number of ants in simulation N
Stochastic parameter in velocity reduction scenario P
Trail length L
Evaporation rate re

At the start of the simulations, only one ant (ant0) was introduced on the trail, and
pheromone concentration in all cells was set at zero (σi(0) = 0). Whereas during the
simulation, at each time step, if cell1 was empty, we introduced a new ant there (cell1)
with a probability known as the inflow rate. At the time of introduction, the new ant was
assigned the variable j based on the N value before the introduction. The assigned j value
was equal to the N. With the addition of new ants, the density in the simulation increases
with time. In the present study, we conducted simulations until the density reached its
limit (density = 1), where no further addition of ants was possible. Although foraging
ants use multiple recruiting mechanisms, new foragers are usually recruited slowly [18].
Therefore, we were able to assume that the inflow of ants onto the trail was sufficiently
low. For the simulations presented herein, we used an inflow rate of 0.001 (� 1), which
allowed sufficient time for the traffic flow to become established in each density scenario.

3. Analysis of Pheromone Concentration and Its Implications for Cooperative
Perception in the ATM
3.1. Evaporation Rate and Fundamental Diagrams

On a trail, ants release pheromone while moving forward, which other ants sense to
understand trail and traffic conditions. Pheromone is a chemical substance, which ants
use for communication [18,19]. If considered in isolation, pheromone released by an ant at
a point on the trail contains information about the time passed since the ant passed that
location. Considering a trail consisting of a single ant, the pheromone at any point on the
trail contains information about the location and the time when the ant passed that location
(location-time data). However, in real-life AT, the pheromone released by all ants have a
similar chemical structure [18,19]. Hence, in AT’s CP&C, the pheromones released by all
ants at any given location get added and cannot be used to understand the location-time
information of an individual ant. Instead, as explained later, collectively location-time data
(collected pheromone) at a given location from all the ants leads to an understanding of the
traffic scenario through collective perception.

In the same CP&C, the evaporation represents a mechanism of discarding the collected
pheromone (hence collected information) over time. For the CP&C of AT, mechanism for
discarding the older information (pheromone evaporation) is a critical factor affecting
cooperative perception in the system [11,13,15,25,26,28,30]. A trail with higher re will
discard the information quickly leading to the evaporation of the trail before it serves its
purpose. Whereas a trail with low re might also cause problems due to higher concentration
and the need for higher cost for information storage and transmission [29,30]. Thus, for the
CP&C of ants, it’s important to optimized the discarding mechanism by optimizing re. In
this part of the paper, we present an analysis of different re values and their effect on the
CP&C in AT using ATM simulations. As shown in Figure 2, the fundamental diagrams of
the relationships (a) the average velocity–density and (b) the flow–density, were obtained
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from ATM simulations for different re values. For a time step in the simulations, we
calculated (i) the average velocity (vavg) by averaging the observed displacement of all of
the agents for that time step, (ii) the density (d) by dividing N at that time step with L
(d = N/L), and (iii) the flow ( f ) by multiplying d by vavg at the same time step ( f = d · vavg).
The fundamental diagrams in Figure 2 are similar to the fundamental diagrams in [25].
However, as the purpose of the study in [25] was to present and validate ATM simulation,
it did not provide a detailed analysis of re. In contrast, this paper focuses on the analysis of
CP&C related parameters of AT. Thus here, we present a detailed analysis of re and its effect
on overall cooperative perception by using the fundamental diagrams and approximate
mathematical analysis. In the case of ATM simulations, based on the fundamental diagrams
in Figure 2, re values in simulations can be divided into three ranges as follows.
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3.1.1. High-Medium Evaporation Rate (0.5 < re ≤ 1)

As Figure 2 shows, simulations with 0.5 < re ≤ 1 had monotonic vavg with respect
to d. In high-medium re range, vavg is seen to be approximatively constant for the free flow
phase (FFP). For the jamming phase (JP), vavg has a monotonic decrease for corresponding
d values. The flow-density graphs of ATM in high-medium re range are similar to usual
traffic systems [30]. In most traffic systems at lower density, a rising value of d leads to
a linear increase in f values. Whereas after critical density, a rising d leads to a linear
decrease in f . Interestingly, as discussed in [25,29,30], the ATM fundamental diagrams
discussed above are similar to the fundamental diagrams for the TASEP model with a low
hopping probability. From [25] we know that ATM used TASEP as a foundational model.

3.1.2. Meager Evaporation Rate (0 ≤ re ≤ 0.001)

In this range of re value, a sharp rise in vavg is observed at a very low density (d < 0.1).
Whereas thereafter, a gradual increase or constant vavg is observed for the rest of the FFP
(see Figure 2); which leads to a peculiar flow–density graph that is distinct from most
other traffic systems. In the JP of the fundamental diagrams, vavg is decreasing, which is
similar to other traffic systems. As shown in Figure 2, the overall behavior of vavg in ATM
in the above range of re is non-monotonic, which causes anomalous fundamental diagrams.
Although not precisely, the fundamental diagrams of ATM in the above range also resemble
the fundamental diagrams of TASEP model but with high hopping probability [25].

3.1.3. Low Evaporation Rate (0.005 < re < 0.1)

In the low re range, as shown in Figure 2, initially constant vavg is observed for most of
the FFP, whereas just before JP begins, a sharp rise in vavg (hereafter referred to as “rise-up”)
is observed and then decreasing vavg is seen in JP. The above discussed non-monotonic
behaviour of vavg in ATM leads to peculiar flow-density relation, where at the junction of
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FFP and JP, the flow in the system rise sharply before the system transit in JP. As explained
in [25,30], the above behavior of rise-up in ATM is a hypothetical one. As ants in real-life
AT avoid the JP, the rise-up between FFP and JP never happens naturally. Whereas, as
explained in Appendix A, the rise-up in ATM happens because of the combination of two
phenomena: (i) use of information about flow by ants to decide velocity and (ii) formation
of the infinite cluster at high density. In vehicular traffic, as drivers primarily depend
on the information about headway between themselves and the car ahead for velocity
decision, vehicles’ velocity decreases monotonically with density. Thus rise-up never
happens in vehicular traffic. Nevertheless, similar to meager re, low re also leads to peculiar
fundamental diagrams, which differ from those of typical traffic systems [11]. Furthermore,
as shown in Figure 3, another exciting observation in low re range is observed in regard to
critical density, where initially decreasing re lead to increasing critical density. Whereas
later the same decreasing re leads to a decrease in the critical density. In the above initial
increase and later decrease in the critical density, the optimal critical density is observed
around re ≈ 0.02, which was the value of re used in [25] to represent real-life AT.
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3.2. Pheromone Concentration and the Corresponding States of the CP&C in AT

Pheromone evaporation limits the pheromone concentration in a trail’s cells, affecting
the cooperative perception in AT. Therefore, based on the above division of re values, and
corresponding pheromone concentration, we hypothesize the following three states of
CP&C in ATM.

3.2.1. Minimal Pheromone State

When the re value for the ATM simulations is in the above-mentioned high-medium
range, pheromone on the trail evaporates quickly. Thus, most of the time, ants in the
simulations find only a meager pheromone concentration on the trail, which helps them
identify the trail. However, it does not help them to understand traffic conditions in
AT. In such a scenario, CP&C fail. The ants are forced to make their travel decisions
based only on their immediate surroundings through limited visual and tacit information
(based on the information about ant in the cell ahead). Whereas due to the lack of larger
traffic information, ants cannot collaborate on any level with any other ants. The lack of
collaboration considerably reduces AT efficiency, resulting in low vavg and low f in the
simulations. In the paper, the state mentioned above (trail with high-medium re) is calleda
“minimal pheromone trail”, and the corresponding CP&C state is called a “minimal state.”
In the case of a high-medium re value, owing to a meager pheromone concentration, most
of the time ants travel with vmin (constant) leading to the fundamental diagrams similar to
the TASEP with low hopping probability [11].
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3.2.2. Inactive State

When the re value for ATM simulation is in the above-explained meager range, the
pheromone on the trail practically never evaporates. Whereas the boundary condition in
the simulation leads to a traffic scenario where ants pass through the same point repeatedly.
The combination of the above phenomena leads to a trail, where few ants can cause a rapid
increase in pheromone, and hence a sharp rise in vavg and f , even at a low d value. In such
a scenario, the pheromone concentration in all the cells will be the same, and it will depend
on overall system parameters such as overall simulation density, overall simulation flow
and others.

On the other hand, the same pheromone concentration becomes insensitive to the local
environment of that cell. Furthermore, the above scenario makes pheromone concentration
in a cell insensitive to the present time. Thus, in other words, the CP&C system in the
above scenario will contain no information or only contains information about the overall
system and time. The lack of local information makes the information useless for local
decision. Whereas the overall system information is complex enough to cause information
overload, making decentralized collaboration impossible [33]. Simultaneously, making
the overall communication system inefficient. In the paper, the above communication
state where although there is a large pheromone, it does not contain any substantial
information is referred to as an “inactive state.” In an inactive state of CP&C, most of the
ants experience near saturation pheromone. Therefore, travel with velocity near to vmax
(constant), which leads to fundamental diagrams similar to TASEP with a high hopping
probability [11]. As [30] indicates, the inactive state represents a perfect system without
errors. In a perfect, error-free system, motiles have unlimited energy and no delay. In
such a system, irrespective of communication, motiles can move with maximum efficiency
(instantaneous velocity) all the time and does not need cooperative perception to achieve
efficiency. However, considering that usually the real life systems have delays and limited
energy forcing them to move below maximum efficiency at some time or other, we suspect
that the above system is a hypothetical one [25,29,30]. As shown in the later analysis, the
above inactive state might only be observable in simulations, and real-life AT might never
be entering in the above states.

3.2.3. Active State

In the case of a low re value, pheromone on the trail neither evaporates quickly nor
gets saturated. In such a scenario, the pheromone concentration in a cell will depend on the
flow of ants through the cell in the recent past [29]. Thus, in the low re range, CP&C system
through the chemotaxis will convey information about flow in the recent past. The trail
mentioned above (a trail created with low re pheromone) is called as an “active trail” and
the corresponding CP&C state an “active state.” As [25] indicates the active state AT leads
to velocity management based on the pheromone concentration, which, as mentioned,
provides information about the flow in the recent past. We also know from [25] that active
trail AT leads to the creation of multiple platoons, and the platooning leads to emergent
behavior of congestion-free AT.

As mentioned in [29], in the active state, the pheromone concentration ahead of an ant
depends on the flow through the cell in the recent past. However, if considered an ant from
a platoon, then for that ant, the flow in the recent past will depend on the number of ants
from the same platoon ahead of it. This happens because, as explained in [29], platoons in
active trail ATM are separated by a considerable distance, and pheromone in a cell due
to the platoon ahead evaporates to an indifferentiable level (σi ≤ 1) before the following
platoon reaches the cell. Thus, the pheromone concentration (hence the flow in the recent
past) perceived by an ant could only be the result of the ants, who have already passed
through the cell and who belong to the same platoon. In other words, the flow perceived
by ants conveys the number of ants from the same platoon ahead of the ant.

On the other hand, in a traffic system, flow in the recent past also depends on differ-
ent environmental and transportation factors in the same time period, including platoon
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density, velocity, and trail conditions. Thus, it could be argued that the pheromone concen-
tration ahead of a given ant also conveys the environmental and transportation aspects
discussed above. Therefore, based on the above discussion, we argue that for a given ant
on an active trail in ATM, the instantaneous velocity is managed based on the perception
of: (i) the number of ants from the same platoon ahead of the given ant; and (ii) the envi-
ronmental and transportation factors. Moreover, we argue that the ants perceive the about
information by understanding traffic flow in the recent past.

It is important to note that the information received by an ant in an active state is only
about the limited surrounding of that ant. Ants receive limited information both from a
space and a time perspective. From a space perspective, ants only receive information
about the number of ants ahead in the same platoon. Whereas in the case of time, ants only
receive information about the recent past. Thus, here onward, we define a concept of the
extended local environment in space and time. The extended local environment from the
space perspective includes the immediate local environment (cell ahead) and ants ahead
from the same platoon. The extended environment from a time perspective includes the
present time information and recent past information (the time when ants from the same
platoon passed through the cell).

As shown in Figure 3, another observation of the fundamental diagrams in low re
range is also interesting one, where, as described above, initially the critical density is
observed to increase with decreasing re and then later the same is observed to decrease
with decreasing re. As described above, in the above initial increase and latter decrease,
the critical density is optimised at re ≈ 0.02, which was the re value assuption in [25,29]
to represent real-life AT. The above observation indicates that the real-life AT not only
evolved to have a pheromone, which can function in an active state, but it also indicated
that the AT is further biologically evolved to optimized the pheromone to have optimum
free flow phase by having optimum re (re ≈ 0.02) to have an optimum critical density
(critical density ≈ 0.8).

3.3. Pheromone Concentration and Cooperative Perception in AT

The discussion presented in the minimal state’s and inactive state’s sections indicates
ITS with two extreme and non-functional CP&C systems. In the minimal state, the infor-
mation on the trail is discarded quickly, preventing CP&C from cooperative perception.
Minimal state CP&C forces ants to make decisions based on the only immediate local
environment. The immediate local environment of a given ant in ATM is the cell ahead of
the ant, which the ants analyze using limited visual and tacit inputs. In the minimal state,
the CP&C system is of minimal help for travel decision due to the lack of larger traffic sce-
nario’s understanding. Although minimal state CP&C conveys the trail, it does not provide
any substantial information for traffic management. The minimal state presents a commu-
nication system, where although ants need low resources (less pheromone (information)
production, storage and less sensitive chemoreceptors (sensors)), the system is minimal in
functionality due to the speed of information discarding. Thus create minimal value.

Whereas the inactive state represents another extreme non-functional CP&C system.
As the information is practically never discarded in the inactive state, the CP&C is highly
influenced by the distant past information, which makes the information insensitive to the
local environment. Here the CP&C only provides information about the entire simulation
system (ITS) and the entire past time when the trail was in use. In contrast, the same
information becomes insensitive to the local environment and present time. In real-life ITS,
due to the complex nature of interactions between motiles, self-organisation can only be
done from bottom-up efforts [33,34]. In bottom-up self-organisation, constituent motiles
(like vehicles or ants) collaborate on a manageable and local level, leading to emergent
behaviors at the system level. Therefore, from individual motiles’ perspective, where
information is needed to make decisions for self-optimization on the local level, the CP&C,
like an inactive state, causes information overload to become useless. The information
overloading happens because of the insensitivity of CP&C to the local level. In the inactive
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state, although there is a CP&C system that uses a lot of resources (higher pheromone
(information) production, storage and highly functional chemoreceptors (sensors)), it does
not lead to any meaningful insights. Perhaps that is why, as indicated in later parts of the
paper, real-life AT never operates in the inactive state.

On the other hand, the discussion in the active state’s section presents a functional CP&C
of AT. The discussion indicates that location-time data from individual ants (pheromone) in
AT is collectively used to understand flow in the recent past. Whereas through the CP&C,
individual ants use the flow information to understand traffic scenario. The traffic scenario here
includes the information about platoon ahead, trail and transportation conditions in the recent
past. Moreover, the analysis also indicates that the information discarding mechanism plays a
crucial role in AT’s CP&C. The CP&C regularly discard past information to keep the information
sensitive to the present time. The analysis indicates that the information perceived by ants in
the active state is sensitive to the extended local environment both from the space and the time
perspective. In the active state, the ants receive information about extended surrounding and
past while ensuring that the information remains sensitive to the local environment and present
time. Furthermore, the analysis indicates that ants are further evolved to optimize the critical
density of AT by optimizing information discarding mechanism (re ≈ 0.02).

Based on the analysis, we argue that an AT inspired CP&C for vehicular traffic can use
individual vehicles’ location-time information to collectively understand traffic flow in the
recent past. Using such information, vehicles can collaborate to achieve JAM similar to AT.
The studies in [31,32], have already shown that JAM is implementable in vehicular traffic.
Whereas the above analysis of ATM shows that flow information in the recent past can be
used for the JAM. The analysis also showed that the AT inspired vehicular traffic’s CP&C
needs optimization of its information discarding mechanism. The mechanism should
be optimized to maintain the CP&C system in the active state where the information
is sensitive to the recent past. Such CP&C will allow vehicles to achieve JAM on the
local, manageable level (inside platoon). The active state system should facilitate synergy
between individual vehicles’ needs and the entire ITS’s need by facilitating vehicles to
make their local individual travel decisions while simultaneously allowing them to have
manageable, bottom-up self-organisation.

4. Analysis of Pheromone Dynamics in Cooperative Perceptions of AT

Analysis and discussion in Section 3 elaborate on the general effect of the pheromone
concentration on the CP&C system in AT. The analysis indicates that ants use flow informa-
tion through chemotaxis for understanding the traffic scenario to achieve jam-free traffic. It
also explains different aspects of the functional communication system in AT, including
the sensitivity of the information to different traffic scenarios, and the relation between the
sensitivity and resource management in AT. Moreover, the analysis explains and give us
possible reasoning about findings from [25,29], which indicates that ants on a trail might
have optimized trail pheromone evaporation rate (re = 0.02) to function in an active trail
state for foraging efficiency.

However, the results presented in Section 3 do not give us specific boundaries between
different re ranges. Similarly, it does not give us specific simulation values and definitions
of the different pheromone concentration and the corresponding CP&C states. We also
need further evidence to support our above findings and hypothesis in Section 3. Thus,
this section presents a detailed analysis of pheromones’ impact on the CP&C system by
introducing an approximate mathematical expression for pheromone-related scenarios. As
explained in [30], the pheromone concentration on the trail has two dynamics that affect
pheromones on a given cell: (i) pheromone aggregation due to passing of ant (aggregation
of pheromone), (ii) pheromone depletion due to evaporation (depletion of pheromone).
The following section begins with examining the effect of pheromone aggregation and the
corresponding traffic scenario.
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4.1. Aggregation of Pheromone

It is known that ants on a trail form multiple platoons, and ants use low re value
pheromone for trail creation [25,26,28,29]. Thus, for our analysis of pheromone aggrega-
tion, we consider a scenario in ATM simulation with low re (Figure 4), where we assume
an already established traffic flow. We also assume a scenario where ants have already tcre-
ated platoons.
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cell [29,30].

At the start of the aggregation scenario (Figure 4a), the cellX (yellow cell) is considered,
where a considerably long platoon is poised to pass through the cell. As the platoon is ready
for passing, from [29,30], it is known that the leader of the platoon detect a pheromone
concentration below the differentiable pheromone level (σ ≤ 1), in the constant vavg phase
(constant vavg phase is a phase in fundamental diagrams of ATM simulation with low re,
where vavg remains constant irrespective of the density on the trail). Thus, based on the
model description, the pheromone concentration in cellX at the beginning of the scenario
(time = t0) will be σX(t0) < 1. However, similar to [29,30], for simplicity, σX(t0) = 0
is considered. It was also assumed that ants in the platoon are closely spaced with no
empty cell between them. Thus, during the passing of the platoon, the cell is always
occupied. Assuming that it takes M time steps for the passing of the platoon, where M is
a considerably high number of steps, at the end state (tM), simulation reach the scenario
explained in Figure 4b, where the pheromone in cell at tM is given by [29,30],

σX(tM) = τ · (1− re)
M + τ · (1− re)

M−1 + . . . + τ · (1− re)
1 (5)

σX(tM) = τ ·
M

∑
k=1

(1− re)
k (6)

Mathematically, we know that Equation (6) converges for (1− re) < 1. Therefore,
rather than considering M time steps, we consider the extreme scenario with an infinite
length platoon where the above expression converges.

σX(tM) = τ ·
∞

∑
k=1

(1− re)
k (7)

σX(tM) =
τ · (1− re)

re
(8)

Combining the model dynamics with Equation (8), the pheromone in cellX at the end
of the aggregation scenario can approximately be given as,

σX(tM) =

{
τ·(1−re)

re
, f or σx(tM) < σsat

σsat, f or σx(tM) ≥ σsat
(9)

As mentioned above, and as can be inferred from Equation (9), the aggregated
pheromone after passing of platoon through a given cell is converging with respect to the
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M value. In other words, Equation (9) indicates that the CP&C in aggregation scenario
is highly sensitive to lower values of M and hence to the lower length of the platoon.
Whereas as the M value increases the pheromone concentration become less and less
sensitive to the value and hence platoon length. The above findings of Equation (9) support
the hypothesis in Section 3, which argues that the CP&C system in AT is sensitive to the
information in the recent past. Whereas the sensitivity decreases with time length and
platoon length. Another interesting finding from the above analysis is observed in Figure 5,
which presents σX(tM) for varying re. As the figure shows the converging pheromone
value for most of the active state re simulations in below the σsat value assumed in our
analysis (σsat = 80 p units/cell). In other words, the observations showed that in the active
state ATM simulation, pheromone concentration never reach the assumed σsat value. This,
thereby confirms our findings in [29,30]. The observation indicates that assumed σsat in the
modelling is misleading and is much higher than the σsat representing real AT. The above
analysis, along with previous findings in [29,30] indicates that considering pheromone
chemoreceptors’ evolutionary optimization, the saturation pheromone concentration for
AT might be dependent on re and might be equal to the σX(tM) in the aggregation scenario.
We argue that, as the analysis indicates that the σX(t) never increase above the σX(tM) in
aggregation scenario, the ants do not need an evolution of chemoreceptors to differentiate
pheromone higher than the σX(tM). The analysis also confirms that the arbitrary value
of σsat in the model can be neglected [30]. Similarly, the analysis shows that the possible
discrepancy that could have arrived due to assumption in accumulation dynamics in the
model description, in practicality, does not affect the analysis (the assumption arguing
that pheromone detected beyond saturation value and actual pheromone concentration
as same). Along the same line, as shown in Figure 5 and calculated by Equation (9),
for re < 0.012, σx(tM) becomes saturated, which means that for the simulation scenario
presented here, re = 0.012 is the boundary between an active state and an inactive state.
However, as discussed above σsat for real-life AT might be dependent on re, where, with
decreasing re, σsat might be increased. Nevertheless, considering that the real-life platoons
are finite, the discussion above also indicates that for a given set of re and σsat (assuming
all other parameters unchanged), pheromone concentration on AT might not be exceeding
that saturation value. Thus, we argue that perhaps real-life AT might never be entering
the inactive state, and the observed inactive state in simulation might only be a hypothet-
ical scenario, which does not represent any real-life AT. The above findings of ours are
supported by the empirical observation in [21], which shows that density in real-life AT
never exceeds the critical density (d < 0.8) indicating the absence of the jamming phase
and pheromone concentration that could saturate the chemotaxis system (inactive state).

4.2. Depletion of Pheromone

Taking the lead from Section 4.1, the current section presents an analysis for the depletion
of the pheromone mentioned above (pheromone after aggregation (σx(tM) from Equation (9) )
and its effect on cooperative perception in AT. Therefore, for the analysis here, σx(tM) becomes
the σx(t0): starting time for the depletion scenario. As stated earlier, usually active trail ATM
simulations have multiple platoons in constant vavg phase and the platoons are separated
from each other by a substantial distance [25,29]. There are no ants or very few of them in the
inter-platoon distance in an active state ATM. Thus, we can assume that once a platoon passes
through the cell, the pheromone in that cell will deplete without further substantial addition. If
the pheromone in the cell depletes for time D, then the relationship between σX(t0) and σX(tD)
can be given as,

σX(tD) = σX(t0) · (1− re)
D (10)
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Equation (10) represents pheromone in cellX at the end of the depletion scenario (after
D time steps from the σX(t0) for depletion analysis). However, from [25,29], we know
that in the constant vavg phase of simulation, pheromone accumulated due to the passing
of the platoon ahead evaporates to an indifferentiable level before the following platoon
reaches a given cell (σx(tD) ≤ 1). Thus, considering D as the time headway between
following platoon and the last ant from leading platoon and replacing σX(t0) by σX(tM),
Equation (10) becomes,

σX(tM) · (1− re)
D ≤ 1 (11)

Using the logarithmic operator on both sides, we calculate the value of D as follows.
D is the minimum time for which a leader of the following platoon will not reach the given
cell from the beginning of the depletion scenario.

D = − ln(σx(tM))

ln(1− re)
(12)

Based on Equation (12), Figure 6 presents the value of D for various re, where, as
shown in the figure, the D value exponentially decreases against increasing re. Based on
the Figure 6, we can predict that for re lower than a specific value, the D value will become
so short that even the ants in the platoon will not experience a pheromone concentration
from immediately preceding ants (concentration higher than the differentiable level). As
Section 3.2.1 explains, the above mentioned high evaporation scenario is characterized
by the minimal state. The mathematical expression also gives us the extended local
environment radius that we discussed in Section 3.2.3 and also confirms the characteristics
of the active states. In the case of high-medium re, the extended local environment is limited
below the immediate local environment range (less than cell ahead), representing the
minimal state. Whereas as the re decrease, the extended local environment length increases
both in time and space, which represents an expansion of extended local environment
characterised by active state. The mathematical expression also shows that a further
decrease in re will lead to inactive trail by making the extended local environment equal to
the overall system and insensitive to the local environment.
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low differentiable concentration (σx ≤ 1) in depletion scenario is plotted against corresponding
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To find the boundary between the active state and the minimal state of ATM simulation,
we consider the exclusion dynamics of ATM, which it has inherited from the TASEP
model [25]. In the exclusion dynamics, the following agent does not move forward if the
cell ahead is occupied by another agent (explained in case 1 from Equation (1)). As shown
in Figure 7, the exclusion dynamics are expected often in a platoon where there will be
many agents that have a distance headway (headway = positionleader – Position f ollower) of
greater than 1 (see Figure 7). We assume a minimal condition of the above scenario, where
due to the exclusion dynamics, the ants have a distance of one cell between them. In the
scenario in Figure 7, to have a minimal state, pheromone in the given cell must evaporate to
an indifferentiable level before the following ant reaches the cell. Whereas, as the following
ant is unable to differentiate the pheromone concentration and thereby travel with vmin, the
approximate time taken by the following ant to reach the cell is given as in Equation (13).

time =
d
v

, where v = vmin & d = 1 (13)

time = 6.66 time steps (14)
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Figure 7. Schematic representation of the exclusion dynamics, which leads to creation of distance
headway between adjoining ants from the same platoon in a single time step. In the diagram, the
yellow cell represents the cell separating the rare end of the leading ant and the front end of the
following ant.

Using the values of Equations (4), (12) and (14), we calculate the re value (re = 0.19), which
leads to the minimal state scenario for the simulations (Simulation scenario:
σsat = 80 p units/cell, vmin = 0.15 cell/time step, τ = 1 p units). Thus, the above analysis
shows that in the presented ATM simulation, in the case of re > 0.19, the CP&C will be in a
minimal pheromone state. The analysis also verifies the characters of the different state of the
trail, where it shows that in the minimal state, the information in the cell ahead erases before
the next ant arrives in the cell. Whereas in the active state, the information in the cell is available
and depends on the extended local environment.

Based on the above approximate mathematical analysis, different re ranges and corre-
sponding trail state for the ATM simulations in the simulation mentioned above, can be
given as follows,
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• Minimal state: 1 ≥ re > 0.19
• Active state: 0.19 ≥ re ≥ 0.012
• Inactive state: 0.012 > re ≥ 0

The analysis presented above confirms the three communication states and the char-
acteristics of those states in AT’ CP&C. The aggregation scenario analysis shows that the
pheromone concentration ahead of a given ant provides the information about flow of
ants through the cell in the recent past. The same analysis also confirms that the active
state CP&C is sensitive to the information in the extended local environment both in space
and time. Whereas from the perspective of the re boundary between an inactive state and
the active state, the analysis provides an expression to calculate the one. It also indicates
that real-life AT might not be operating in the inactive state, and the observation in ATM
simulation represents a hypothetical scenario. The same analysis also predicts some of the
characteristics of ant chemoreceptor regarding saturation pheromone and its relationship
with the evaporation rate in AT, which helped us clarify the ATM modelling discrepancies.

On the other hand, the depletion scenario analysis gives us the boundary between
the active and minimal states. The analysis also confirms the characteristics of both the
state. More importantly, the analysis also gives us the relation between the extended local
environment and pheromone concentration (data) from both time and space dimensions.
(In Appendix A, we have provided the verification of the above mathematical expressions.)

5. Analysis of Pheromone Emission Rate and Its Effect on CP&C System

From previous studies, we know that the Q:K ratio is a critical parameter for CP&C in
the AT: (1) Q is the amount of pheromone (number of molecules) emitted by an ant in a
one-time step, and (2) K is the smallest change in pheromone concentration (molecules per
unit volume) at which the animal responds to the change [18,19]. In Section 4.1 of the paper
(Equation (9), we note that Q represented by τ in the paper has an effect on pheromone
concentration on the trail and hence CP&C in ATM simulation. Thus, to further understand
the effects of τ on CP&C in ATM, we analyze the effect of different τ values on the traffic
and information dynamics in ATM. Whereas, due to the limitations of the current model,
the analysis of K is not considered in this paper. From a CP&C perspective, τ represents
a weightage of information from a single ant in a one-time step. T has a similar effect as
re on CP&C, where ants with a lower τ value will create a pheromone trail that vanishes
quickly, leading to a minimal pheromone trail. Whereas ants with a higher τ value will lead
to slower depletion of pheromone, leading to ants faraway affecting traffic at any point on
the trail, and perhaps causing inactive CP&C. Thus, ants need to optimize τ (weightage of
information from single ant) to keep the CP&C in the active state.

To analyze the effects of τ on CP&C in AT, ATM was simulated with different τ in the
active state, and the resulting fundamental diagrams are presented in Figure 8. As shown
in the figure, with the rise in τ value, initially rise in FFP density was observed. However,
after τ = 1.5, stabilization occurred, with no further increase in FFP density.

From Equation (9), we note that pheromone aggregation after the platoon’s passing is
directly proportional to the τ value in the simulation. Thus, with a rise in τ, pheromone
aggregation increases, which consequently increases the efficiency of ants inside the pla-
toon, leading to the higher velocity of ants in the platoon. In the case of two adjoining
platoons, the above mentioned higher velocity due to higher τ leads to compact platooning,
which consequently leads to higher inter-platoon headway for the following platoon. As
explained in [25], an increase in the inter-platoon distance leads to a higher capability for
jam absorption, leading to an increase in FFP density indicated in Figure 8.
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Figure 8. A fundamental diagrams from the ATM simulations with various τ values: (a) average velocity (cells/time step)—
density relationship and (b) flow (ants/time step)—density relationship. Variables other than τ were kept constant:
L = 1000 cells, σsat = 80 p units /cell, vmin = 0.15cells/time step, re = 0.02.

However, the efficiency mentioned above can only be increased up to a certain limit,
which is imposed by saturation concentration (σsat). To understand these dynamics of τ
with respect to σsat, σX(tM) from Equation (9) was analyzed for different τ values against
different re values. As shown in Figure 9, using Equation (9), we calculated pheromone
aggregation with respect to different τ and re. For a given re, with an increase in τ, σX(tM)
increases, but only up to a specific value. Any further increase in τ beyond the specific
value leads to saturation of pheromone. For example, in the case of re = 0.02, initially with
an increase in τ, an increase in pheromone concentration is observed. However, τ = 1.63
(calculated from Equation (9)) leads to the saturation of pheromone, after which any rise in
pheromone is undetected. This explains the stabilization in FFD density seen in Figure 9.
However, as mentioned in the pheromone aggregation scenario analysis, the σsat in real-
life AT might be depending on convergent pheromone concentration in the aggregation
scenario, and hence on re. By the same logic σsat in real life, AT will also depend on τ value
in the system, which means that in real life AT, hypothetically σsat for the system should
be increasing with a higher value of τ, leading to a further increase in FFP density with τ.
Thus theoretically, the stabilization that we observed here might not be expected in real life
AT and AT’s efficiency will continue to increase with τ.
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Figure 9. Approximate σsat calculated for different τ is presented against evaporation rate (re). The
dotted line represents the re that has been used for the analysis in the Section 5 (re = 0.02, σsat =

80 p units /cell).

Although the increasing τ is expected to increase the traffic system’s efficiency in AT,
a larger value of τ needs higher production of pheromone and a larger pheromone storage,
which is biologically expensive. A larger value of τ also means higher weightage for the
information from a single ant, which will lead to the further extension of the extended
local environment both in time and space. However, such a scenario will make the CP&C
system comparatively less sensitive to a local environment in both time and space by
increasing the importance of ants far away. It is also important to note that in the figure
with increasing τ the range of re for active state decrease. Considering that Ats are in an
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open environment, the decrease in the re range makes CP&C vulnerable to fluctuations
in surrounding environments. Thus, from the optimization perspective, it is preferable
for ants to work with low τ. Our above finding argues that the information weightage
for individual ant is optimized in trade-offs with the range of extended local environment
and the system’s robustness. It also argues that the weightage of the information from
single ant has a trade-off with storage and information transmission systems’ cost, which is
crucial for any ITS. Interestingly, the above findings support and explain previous findings
of ant physiology, which assert that, through biological evolution, ants have evolved to
work with lower τ for efficiency reasons [18,19].

The discussion presented above suggests that in AT inspired CP&C for vehicular traffic,
the weightage of data for an individual vehicle should be optimized for trade-offs with the
range of extended local environment. The weightage of the information about an individual
vehicle needs to be optimized to maintain the extended local environment to keep CP&C
in the active state. Simultaneously, it suggests that the weightage of the information
from motile will have trade-offs with information storage and transmission systems’ cost,
which is crucial for any ITS. Suppose a higher weightage is given to information about
an individual vehicle. In that case, the system will need to store that data longer, needing
higher storage and transmission capabilities. Thus, it might be preferable to work with
a lower weightage. The discussion also suggests that the lower weightage will make the
system resilient to environmental changes, which might be a crucial advantage. However,
care should be taken to ensure that weightage is high enough to avoid minimal state CP&C.

6. Discussion and Conclusions

The paper presents an investigation of the ATM to understand the CP&C system
behind congestion-free AT. Using model simulations and simple mathematical representa-
tions of key scenarios in the model simulations, we analyzed various aspects of the CP&C
system and their effects on AT. Our analysis gives detail insight into the communication
and how it enables ants to collaborate for congestion-free transportation. The analysis also
leads to some interesting observations and predictions about AT, which help us improve
ATM modelling.

In CP&C of AT, ants collectively use chemotaxis to convey traffic scenario to individual
ants. The pheromone from an ant on a trail contains location–time information of that
ant throughout the transportation. Whereas in the same AT, pheromone from all the ants
at any location gets accumulated. Individual ants use the accumulated pheromone to
understand a larger traffic scenario. In AT’s CP&C, pheromone evaporation plays the role
of information discarding mechanism, where older pheromone vanishes with time. In our
analysis of pheromone concentration and its effects on cooperative perception in ATM,
we found that different re in the simulation lead to different pheromone concentration-
dependent CP&C states: (1) the high-medium re leads to a minimal state, (2) the meager re
leads to an inactive state, and (3) the low re leads to an active state.

The high-medium re represents CP&C, which discards the data quickly. In the high-
medium re due to quicker discarding, the information is reduced to minimal. Although
the minimal information enables ants to identify the trail, it prevents ants from deducing
any insight into the current traffic scenario. Thus, in this scenario, ants make their travel
decisions only based on information about the immediate local environment. The lack
of information in a minimal state prevents ants from establishing communication and
understanding traffic scenario, which is vital for the collaboration. Thus, although the
CP&C system needs fewer resources in the minimal state, the system only enables minimal
communication and only achieves minimal synergy.

The meager re represents CP&C, which practically never discard the data. In the
meager re, due to the meager discarding of data, the data in the CP&C becomes saturated
and insensitive to the local environment. Although the CP&C contains information about
the entire system in the inactive state, the information’s insensitivity to the local environ-
ment makes it useless for the ants to make complex local decisions. Thus, even after using
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significant resources, the CP&C does not lead to any meaningful insight into the inactive
state, causing wastage of resources. Perhaps that is why, as indicated in our analysis,
real-life AT might be avoiding operations in the inactive state. The above two-state in
CP&C represents two extreme and non-functional communication systems, which should
be avoided.

On the other hand, the low re’s analysis showed that a pheromone trail resulting
from low re neither discard the information quickly nor does it get saturated. The same
analysis indicates that in the low re, the pheromone concentration on the trail depends
on the flow in the recent past. We refer to the CP&C state corresponds to the low re as
the active state. Previous studies have indicated that ATM simulations in the active state
represent real-life AT.

In the active state CP&C, the ants’ location-time information is collectively converted
into information about flow in the recent past. The ants use the flow information to un-
derstand traffic scenario and implement JAM. In the active state CP&C, the information
discarding mechanism (pheromone evaporation) is optimized, where CP&C only provides
information about flow in the recent past and discard the older data. The information
that ants receive in the active state is sensitive to the local environment of the ant. Si-
multaneously, it also conveys information about the extended local environment both
from space and time. Ants use the information to conduct JAM through collaboration
in platoons (small groups). Because of the characters mentioned above, the active state
CP&C system enables ants to establish synergy between individual decisions and the
manageable bottom-up self-organisation leading to emergent behavior of jam-free traffic.
The discarding mechanism in the CP&C system is not only optimized to function in the
active state, but it is further optimized to have a free flow phase up to optimum density.

Moreover, to further investigate CP&C in AT, we analyzed pheromone dynamics and
its effect on CP&C using approximate mathematical representations of critical simulated
scenarios. Our mathematical analysis confirms the above mentioned three states and their
characteristics. The characteristics of data collecting as well as discarding mechanism in
the CP&C is confirmed. The expressions to define boundaries between different states
are also provided. The analysis of pheromone aggregation also gives us some insight and
predictions about ant chemoreceptor’s saturation limit. It predicts that the ant chemorecep-
tor’s saturation limit might be dependent on the pheromone evaporation rate and emission
rate. The same analysis predicts that the inactive state observed in ATM simulation is
just a hypothetical one that does not exist in real-life AT. Similarly, some of the ATM
model’s discrepancies are clarified, which leads to model improvement. On the other hand,
the depletion scenario analysis enabled us to understand the relation between the data
discarding mechanism (evaporation rate) and the extended environment range.

Moving forward, the analysis of τ in ATM is presented, which gives us insight into
the effect of changes in weightage of information from a single ant on the overall commu-
nication system. Our analysis indicates that theoretically, with an increase in weightage of
information from a single ant, the traffic system’s efficiency increases. However, the anal-
ysis showed that the increase comes with higher cost and lower robustness of the CP&C
system, indicating a trade-off between the weightage of individual motile’s data and the
other two. The analysis also indicates that in the CP&C, the weightage of information for
individual ant is optimized, with consideration for trade-offs with (i) the range of extended
local environment, (ii) the system’s robustness, (iii) the cost of information storage and
transmission. The weightage of information is optimized for maintaining the active state
in the varying environment while avoiding the minimal state or the inactive state of CP&C.
The analysis of τ in ATM also verified that ants prefer to work with a low τ, supporting pre-
vious physiological study about ants. The studies have suggested that, through biological
evolution, ants have evolved to work with a low pheromone emission rate.

Most of the findings of this paper are new and thus need to be further verified and
validated. Nevertheless, they give us a better understanding of the CP&C system that
enables collaboration in the AT. The current findings of ants’ CP&C system and previous
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findings of JAM in AT could provide inspiration and insight for cooperative perception
based ITS. Such an ITS could leverage AT’s learnings to utilize cooperative perception in
collaboration for congestion-free transportation. Therefore, in future, further investigation
needs to be done from that perspective. An investigation needs to be conducted to design
and test AT inspired CP&C for JAM in vehicular traffic. Modified simulations of vehicular
traffic and car-following models could be conducted considering AT inspired CP&C to
investigate the efficiency of such a CP&C in vehicular traffic. A study comparing CP&C
in the two systems should also be conducted to evaluate the two systems’ comparative
efficiency. Simultaneously, the technical aspect for the design of such a CP&C needs to be
looked at, which will include sensors designs.
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Appendix A. Validation of Analysis by Verifying the Non-Monotonic
Behavior in ATM

One of the interesting aspects of ATM fundamental diagrams with varying re is the
anomalous fundamental diagrams which have attracted the attention of researchers for
a long time [11,13,15,25,26,28]. In the ATM fundamental diagrams, contrary to usual
transportation systems, vavg has a non-monotonic behavior with respect to density for
low and meager re values (0.19 > re > 0), where at a specific density, the velocity of
agents on a trail suddenly rises (rise-up), leading to a sharp rise in vavg and f value for a
negligible increase in d value (see Figure 2). Although we understand that this phenomenon
happens due to the effect of pheromone, we are not sure how or why this happens for a
particular density. However, as the approximate mathematical expressions presented in
Section 4 are based on the fundamental diagrams presented in Figure 2, the expressions
should explain and predict the anomalous fundamental diagrams. Thus we can use the
anomalous fundamental diagrams behavior of ATM to validate the above approximate
mathematical expressions.

In a constant vavg phase, most of the agents travel in platoons, and all of the platoons
in ATM travel with vmin [25]. In this phase, regardless of density, vavg (= vmin) remains
constant. The constant vavg can only happen if the leaders of all of the platoons do not
experience pheromone from the platoons ahead. In other words, pheromone due to
platoons ahead evaporates to an indifferentiable level before the leader of the following
platoon gets to the cell. From [25], we also know that in the constant vavg phase, initially
inter-platoon distance increases with density, but after a specific density, it starts to decrease;
and finally, the multi-platoon structure collapses to form a single platoon. During the latter
phenomenon of decreasing inter-platoon distance, there must be instances, where the inter-
platoon distance is small enough for the leader of the following platoon to catch up with
the pheromone from the leading platoon, leading to an increase in velocity of the leader
until it catches up with the leading platoon. The increasing velocity of the leader leads to
an increase in velocity of all of the agents in the following platoon, which eventually leads
to a sudden increase in the vavg. We hypothesize that the phenomena described above are
represented by the rise-up that we see in Figure 2.

To test the above hypothesis, the approximate distance headway for different re at
which the rise-up phenomenon is hypothesized is calculated using Equations (9) and (12)
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(see Table A1). The calculated value was used to predict rise up density which ware tested
using simulations. We conducted verification simulations with re values from the low
re range, where we tracked average headway of all of the platoons at low densities. As
Figure A1a shows, fitting curves were used to predict the headways at higher density
based on the observed average headways at a lower density. Based on the fitting curves
and using Table A1, we predicted the density at which the rise-up phenomenon occurs. We
compared those predicted values with the actual rise-up densities from the simulations. As
shown in Figure A1a,b, our approach could predict the rise-up densities with considerable
accuracy, proving our hypothesis and validating the approximate mathematical expression
provided above.

Table A1. Data for distance headway prediction based on evaporation rate (re).

re σX(tM) (Equation (9)) D (Equation (12)) Distance Headway=D×0.15

0.005 80.00 874.21 131.13
0.01 80.00 436.00 65.40
0.03 32.33 114.12 17.12
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curves, we have calculated the density at which rise-up is expected (indicated by a dotted circle on the fitting curve). In
(b) average velocity from ATM simulations is presented against density to verify the rise-up phenomenon. (Simulation
scenario: L = 1000 cells, σsat = 80 p units/cell, vmin = 0.15cells/time step, τ = 1 p units/time step).
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