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The extracellular matrix remodeling in the skin results from a delicate balance of synthesis
and degradation of matrix components, ensuring tissue homeostasis. These processes
are altered during tumor invasion and growth, generating a microenvironment that
supports growth, invasion, and metastasis. Apart from the cellular component, the
tumor microenvironment is rich in extracellular matrix components and bound factors
that provide structure and signals to the tumor and stromal cells. The continuous
remodeling in the tissue compartment sustains the developing tumor during the
various phases providing matrices and proteolytic enzymes. These are produced by
cancer cells and stromal fibroblasts. In addition to fostering tumor growth, the expression
of specific extracellular matrix proteins and proteinases supports tumor invasion after the
initial therapeutic response. Lately, the expression and structural modification of matrices
were also associated with therapeutic resistance. This review will focus on the significant
alterations in the extracellular matrix components and the function of metalloproteinases
that influence skin cancer progression and support the acquisition of therapeutic
resistance.
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INTRODUCTION

The extracellular matrix (ECM) represents the non-cellular compartment of the microenvironment
in all tissues and organs that serves as a scaffold, rendering structure and stability (Clause and Barker,
2013). In healthy human skin, the dermal ECM contains several molecules, including collagens,
glycoproteins (such as fibronectin (FN) and tenascins), proteoglycans (such as versican and decorin),
and glycosaminoglycans (such as dermatan sulfate and hyaluronan), all forming a complex network
that provides structural integrity (Pfisterer et al., 2021). The ECMnetwork is continuously remodeled
and modified by non-enzymatic (e.g., glycation and carbonylation) and enzymatic reactions (Frantz
et al., 2010). These contribute to the ECM mechanical properties, including elasticity, tensile
strength, and tissue stiffness, regulating cellular functions, including cellular proliferation,
apoptosis, and differentiation (Frantz et al., 2010; Clause and Barker, 2013). The homeostasis of
the skin ECM is maintained through the tightly regulated spatiotemporal coordination of
production, deposition, and turnover. Corruption of this highly dynamic process leads to altered
balance that underlies the pathogenesis and progression of many diseases (Winkler et al., 2020).
Matrix metalloproteinases (MMPs) have critical roles in this process, and imbalanced activity is
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implicated in the pathogenesis and progression of many skin
diseases, e.g., inflammatory diseases, healing defects, fibrosis, and
cancer (Zigrino and Mauch, 2017).

In cancer, ECM component synthesis, modification, and
degradation dynamics are deregulated, leading to altered
composition, density, and mechanical properties (Lu et al.,
2012). In various solid tumors, fibroblasts are activated by
these alterations. In turn, the generated CAFs produce more
matrix proteins and build a desmoplastic reaction, thereby
altering the biophysical properties of the peritumoral stroma.
A prominent desmoplastic response can be seen in pancreatic
cancer and some skin cancers (Neesse et al., 2015; Tschumperlin
and Lagares, 2020). A denser peritumoral matrix may reduce
tumor vascularization and enhance interstitial pressure, thus
preventing drug permeation into tumors (Stylianopoulos,
2017). Furthermore, as seen in HNSCC, mechanical stimuli
from the ECM can modulate tumor metabolism and the
interaction of cancer and stromal cells within the tumor niche
to promote growth and aggressiveness (Bertero et al., 2019).

The tumor microenvironment (TME), encompassing the
complex network surrounding the tumor, consists of non-
cellular (ECM) and cellular components. Many cells of the
tumor microenvironment contribute to the production and
deposition of ECM proteins; however, the primary producer of
the ECM is fibroblasts (Hinz et al., 2012). Once remodeled, the
tumor microenvironment activates signaling pathways that
stimulate tumor growth, migration, and invasion. Solid tumors
are often desmoplastic (dense fibrosis around the tumor) due to
altered organization, reduced turnover, and enhanced post-
translational modifications of ECM components (Frantz et al.,
2010; Lu et al., 2012). In these processes, a variety of proteolytic
enzymes are involved, and among the best-studied are the matrix
metalloproteinases (MMPs) and a disintegrin and
metalloproteinases (ADAMS) (Egeblad and Werb, 2002).
These enzymes are pivotal in promoting tumor cell invasion
and metastasis in various ways. They can remodel and degrade
ECM components, increase the availability of growth factors and
release bioactive ECM peptides, the so-called matrikines
(Sternlicht and Werb, 2001; Moro et al., 2014). The proteolysis
of ECM components have both tumor-promoting and
-antagonizing effects (López-Otín et al., 2009; Ford and
Rajagopalan, 2018). For example, matrikines, such as
endostatin a proteolytic product from type XVIII collagen, or
those derived from elastin or plasminogen (angiostatin) cleavage,
are anti-angiogenic and can act in a tumor-promoting or
suppressing manner (O’Reilly et al., 1997; Sim et al., 1997; Da
Silva et al., 2018). During tumor cell migration into the tissues,
the majority of the ECM-degrading events are supportive as they
generate paths and leave space for the deposition of the new
tumor-derived ECM components that facilitates progression
(Wolf and Friedl, 2009). Changes in the composition and
properties of the tumor ECM contribute to modifying the
fundamental cellular processes of tumor cells and resident or
chemoattracted inflammatory cells (Winkler et al., 2020).

The cellular part of the tumor microenvironment includes a
variety of cells: cancer-associated fibroblasts (CAF), epithelial,
endothelial, and immune cells such as macrophages, dendritic

cells, myeloid-derived suppressors, and T cells (CD4+, CD8+, and
Tregs) (Ji et al., 2020). These cells interact in continuous crosstalk
displaying enormous phenotypic plasticity (Avagliano et al.,
2020) and supporting tumor growth and invasion. A general
overview of the role of different ECM remodeling mechanisms in
the various skin cancers is summarized in Figure 1.

In the following paragraphs, we will summarize the available
data on the ECM and metalloproteinases playing a role in the
progression of the most frequent skin cancers such as melanoma,
squamous cell carcinoma (SCC), Merkel cell carcinoma (MCC),
and basal cell carcinoma (BCC). In addition, we will highlight the
emerging roles of ECM proteolytic remodeling for the acquisition
of drug resistance in the various skin tumors undergoing two to
date successful treatments, MAPK and checkpoint inhibitors.

ECM AND REMODELING ENZYMES IN THE
PROGRESSION OF SKIN CANCERS

Melanoma
Melanoma is one of the deadliest cancers, with about 7,000
estimated deaths in the United States in 2021 representing
80% of all skin cancer deaths (Romano et al., 2021; National-
Cancer-Institute, 2022). Unlike breast, lung, and colorectal
cancer, where desmoplasia (the growth of connective tissue) is
strongly linked to the tumor’s aggressiveness (Chan et al., 2019),
melanoma does not display a prominent desmoplastic response
around tumors. Only a specific subtype, desmoplastic melanoma,
has a prominent fibroplasia but a better prognosis (Busam, 2011).
However, melanoma growth and metastasis strongly depend on
the ECM composition. Indeed, in skin aging, age-alterations in
the ECM, including decreased collagen density and
fragmentation, promote melanoma migration and metastasis
but hamper infiltration of CD4+ and CD8+ T cells (Ecker
et al., 2019; Kaur et al., 2019). The alterations underlying these
effects include, in addition to the decreased collagen density,
increased alignment of fibers, and the reduced fibroblasts’
expression of the hyaluronan and proteoglycan link protein 1
(HAPLN1), a cross-linking protein that stabilizes proteoglycan
monomer aggregates with hyaluronic acid (Kaur et al., 2019).
Reduced HAPLN1 in aged skin destabilizes the ECM and
perturbs VE-cadherin connections between the lymphatic
endothelial cells, thus increasing permeability and promoting
melanoma metastasis and extravasation from lymphatic vessels
(Ecker et al., 2019). However, the role of collagen in melanoma
growth is not completely clear. Enhanced expression of collagen I
in the stroma of melanoma is associated with higher invasiveness
and is a predictor of worse prognosis (van Kempen et al., 2008;
Miskolczi et al., 2018). In line with these, it was recently seen that
primary melanomas arising over UV-induced collagen
degradation in the skin are less invasive and reduced invasion
improves survival (Budden et al., 2021).

In contrast, other studies show that increased tissue stiffness
and fibrillar collagen abundance can negatively affect melanoma
cell growth and migration (Liu et al., 2012b; Li Y. et al., 2019).
Furthermore, in 50% early and 69% advanced-stage melanoma,
the COL1A2 promoter is methylated, resulting in reduced
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expression of transcripts (Koga et al., 2009). The controversial
role of collagen and stiffness in melanoma is possibly due to
factors that have not always been considered when analyzing
tissues and isolated cells, such as tumor stage, type, age, gender,
skin location, mutation status, and exposure to external insults.
More detailed investigations are required.

Among the ECM components enhanced in melanoma is
tenascin C (TNC), which mediates melanoma growth and
metastatic spread (Shao et al., 2015). It can bind to various
integrin receptors, and its cleavage by matrix metalloproteases
and serine proteases can generate cryptic sites exposing new
adhesive sequences for cell adhesion receptors (Midwood and
Orend, 2009). Fibronectin (FN) is also crucial for the metastatic
spread of melanoma cells, it is regulated by ERK/MAPK
signaling, modulates the process of epithelial-to-mesenchymal
transition, regulates apoptosis, and supports cell invasion (Li B.
et al., 2019); (Gaggioli et al., 2007). The microenvironment of
human melanoma expresses a variety of additional matrix
proteins, including collagen XIV (Pach et al., 2021),
hyaluronan (Gebhardt et al., 2009), laminin 332 (Pyke et al.,
1994), and several others identified in the matrisome (matrisome
is defined as a combination of ECM proteins and associated
factors) of human melanoma xenografts (Naba et al., 2012).

In addition to the production of ECM components, tumor and
stromal cells express and activate several proteolytic enzymes
(Labrousse et al., 2004). This allows cells to proteolytically process

different ECM components, rearrange them, release bound
growth factors and cellular bonds to invade the underlying
tissue. Several matrix metalloproteinases are expressed in
melanoma, the tumor, and the peritumoral stroma, including
MMP-1, MMP-2, MMP-9, MMP-13, and MMP-14 (Zigrino and
Mauch, 2017). Shaverdashvili et al. (2014) demonstrate in vivo
that melanoma cells expressing MMP-14 activate MMP-2,
thereby maintaining RAC1 activity and promoting the invasive
capacity of melanoma cells. These data explain melanoma cells’
inability to form distant metastasis in vivo when MMP-14
expression is suppressed. In other tumor cells, fibrosarcoma,
inhibition of MMP-14 may indirectly, by reducing FN lysis,
lead to formation of stable focal adhesions, stronger cell
adhesion to collagen type I, FN, and laminin, and reduced cell
migration (Takino et al., 2006). The interaction between MMP-
14, MMP-2, and laminin 332 γ two chains in highly invasive
melanoma also promotes vascular mimicry, inducing melanoma
progression (Seftor et al., 2001). MMP-14 and MMP-2 are active
in melanoma cells and the neighboring stroma, and their co-
localization correlates with melanoma progression (Hofmann
et al., 2000). High MMP-14 expression and active MMP-2 are
predominantly found in highly invasive cell lines, leading to FN
processing and promoting invasion (Kurschat et al., 1999; Sato
and Takino, 2010; Jiao et al., 2012). Given the role of MMP-14 in
melanoma progression, Devy et al. blocking MMP-14 in an in
vivo model of murine melanoma metastasis could reduce

FIGURE 1 | ECM remodeling (and more) in skin cancer. ECM components and metalloproteinase activities may influence skin tumors development and
progression modulating a variety of events. Some of these were shown in specific skin tumors (in red). MM, malignant melanoma; SCC, squamous cell carcinoma; BCC,
basal cell carcinoma; MCC, Merkel cell carcinoma. MØ, macrophages; GF, growth factor; CAF, cancer-associated fibroblasts; EMT, epithelial-to-mesenchymal
transition.
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metastasis formation (Devy et al., 2009). In melanoma patients,
high MMP-14 expression has been linked with poor prognosis
(Wu et al., 2014), and MMP2 expression is a negative
prognosticator independent of tumor thickness and ulceration
(Rotte et al., 2012). Also, in patients with mucosal melanoma,
MMP-14 represents a negative prognosticator. It is upregulated in
BRAF and NRASmutated melanoma, promoting the progression
of these tumors (Iida et al., 2004; Kondratiev et al., 2008).

MMP-1, a collagenase, is produced by melanoma cells and
peritumoral fibroblasts, increasing tumor growth and metastasis.
Interestingly, when made by fibroblasts, it cleaves PAR1
(thrombin receptor), thereby inducing PAR1-dependent Ca2+
signals and enhancing the metastatic capacity of cancer cells
(Wandel et al., 2000; Boire et al., 2005; Blackburn et al., 2009;
Moro et al., 2014). Another collagenase, MMP-13, is increased
during melanoma invasion, and its stromal expression is required
for melanoma vascularization (Airola et al., 1999; Zigrino et al.,
2009).

Expression of MMP-3 and MMP-8 was associated with a
worse prognosis in melanoma (Nikkola et al., 2002; Vihinen et al.,
2008). The collagenase MMP-8 is mainly found in patients with
ulcerated and angio-invasive primary tumors (Vihinen et al.,
2008).

Also, the expression of an ADAM protease, ADAM9, is
associated with human melanoma progression (Alonso et al.,
2007). This protease with adhesive domains is located at the
invasive front of melanoma intra- and peritumoral (Zigrino
et al., 2005). Further studies demonstrated that ADAM9 in
melanoma cells is required to cleave the laminin beta 3 chain
necessary to invade basement membranes and metastasis
(Giebeler et al., 2017). Through its adhesive domains,
ADAM9 on tumor cells interacts with integrin receptors at
the surface of platelets to metastasize to the lung
(Mammadova-Bach et al., 2016). In peritumoral areas,
fibroblasts-melanoma interactions mediated by ADAM9
generate matrix modifications and enhance proteolytic
activities necessary for melanoma growth (Zigrino et al.,
2011; Abety et al., 2020).

Cutaneous Squamous Cell Carcinoma
Cutaneous squamous cell carcinoma (cSCC) is the second
most frequent skin cancer displaying a substantial
metastatic potential. The peritumoral stroma of cSCC
contains many fibroblasts, which become activated into
CAFs that dominate the tumor microenvironment of SCC;
these are the leading producers of ECM components (Öhlund
et al., 2014). CAFs are characterized by the expression of,
among others, fibroblast-specific protein 1 (FSP1, or S100A4),
vimentin, and alpha-smooth muscle actin (alpha-SMA)
(Somasundaram et al., 2016). They have a significant
influence on the remodeling of the peritumoral matrix
(Shiga et al., 2015). Structural changes in various matrix
proteins such as collagens, laminins, and FNs were found in
tumor samples of oral SCC (Ziober et al., 2006; Georgescu
et al., 2020). Although data are available on the ECM role for
growth and invasion of oral SCC and head-and-neck SCC,
slightly less is known on cSCC. The matrisome’ profile of cSCC

shows dysregulated ECM components and thereby altered cell-
ECM interactions, associated with the increased metastatic
potential of this cancer (Föll et al., 2018). Their analysis shows
increased fibrinogen, collagen XVII, periostin (POSTN), and
TNC in high-risk cSCCs resembling tissues with increased
damage and repair. Low-risk tumors expressed more collagen I
and cystatin A, the latter being necessary for epidermal
differentiation (Brocklehurst and Philpott, 2013). Increased
expression of collagen I is detected in transforming malignant
keratinocytes and well-differentiated oral SCC (Stenbäck et al.,
1999). By activating TGF-beta signaling, CAFs increase the
expression of laminin 332 γ two chains in tumor cells, leading
to tumor invasion (Siljamäki et al., 2020). Laminin 332 is
enhanced in invasive head-and-neck SCC (Lyons and Jones,
2007), and expression of the γ two chains is increased at the
invasive front of SCC (Coussens et al., 2000). Accordingly, the
γ two chains, integrin beta 4 and collagen XVII overexpression,
fostered migration and invasion of SCC cells in a tumor mouse
model (Hamasaki et al., 2011). Loss of collagen XV and XVIII
in actinic keratosis is an early sign of cSCC progression, and
the remodeling of these proteins continues in progressing
tumors (Karppinen et al., 2016). In cSCC, collagen IV is
lower in the basement membrane than in BCC samples, in
agreement with the higher metastatic potential of SCC
(Kerkelä and Saarialho-Kere, 2003). In human cSCC,
deposition of FN is enhanced in peritumoral areas of HPV
(human papilloma virus) positive tumors, compared to
negative cSCC (Heuser et al., 2016). This suggests that FN
may result from a virus-induced reaction in the stroma.

Development of aggressive and metastatic cSCC is also
detected in patients with recessive dystrophic epidermolysis
bullosa (RDEB) (Fine et al., 2009). In these patients, the
absence of collagen VII and the generation of a permissive
stroma drive accelerated cSCC progression. SCC is
developed in a tumor-primed dense and stiff matrix
derived from the injured human RDEB skin rather than
induced by the developing tumor (Mittapalli et al., 2016).
Thus, it is a condition in patients causing mechanical tissue
alterations and enhancing inflammation prone to cSCC
development. For example, patients with various forms of
fibrosis, displaying increased inflammation, have an
increased risk for non-melanoma types of skin tumors
(Hill et al., 2003).

Several MMPs, produced by stromal fibroblasts or
transformed keratinocytes, are expressed in cSCC in tissue in
vivo and cSCC cells in vitro, and these are extensively reviewed
elsewhere (Riihilä et al., 2021). In addition to the significant
contribution of CAFs, cells of the immune system also impact
the proteolytic environment of cSCC. Pettersen et al. reported
that in SCC CD163+ tumor-associated macrophages release
MMP-9 and MMP-11 to enhance matrix turnover (Pettersen
et al., 2011). Increased release of these proteases and MMP-10
by tumor-associated macrophages contributes to enhanced
matrix turnover and angiogenesis, allowing for metastatic
spread (Kambayashi et al., 2013; Georgescu et al., 2020).
Naturally, besides releasing proteolytic enzymes, tumor-
associated macrophages attract other immune cells
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generating a proinflammatory milieu that promotes SCC
progression (Tampa et al., 2018).

Basal Cell Carcinoma
Basal cell carcinoma (BCC) is the most frequent cancer occurring
on the skin of elderly individuals, and the growth of BCC is
mainly dependent on a supportive microenvironment (Van Scott
and Reinertson, 1961). Using NGS technology, in basal cell
carcinoma were identified 65 differentially expressed genes
coding for ECM components and CAF markers such as
fibroblast activation protein alpha (FAP-alpha) and platelet-
derived growth factor receptor beta (PDGFR-beta) (Omland
et al., 2017). Although BCC is rarely metastatic, matrix
remodeling is crucial for local growth and invasion of these
carcinoma cells and can be induced by crosstalk between
tumor cells and CAFs in the peritumoral stroma (Micke et al.,
2007; Omland et al., 2017). The enhanced matrix turnover
induced by CAFs is driven by several matrix
metalloproteinases (MMP-1, MMP-3, MMP-8, MMP-9)
(Ciążyńska et al., 2018). MMP-1 is the critical collagen-
processing proteolytic enzyme in BCC (Yucel et al., 2005). Its
activity led to the accumulation of collagen fragments that were
inefficiently cleared by gelatinases and feedback to fibroblasts to
produce moreMMPs to facilitate BCC growth (Yucel et al., 2005).
MMP-2 and MMP-9 are increased in BCC in correspondence
with areas where collagen type I and -IV degradation occur
although these data are of transcript expression and thus
conclusion is only correlative (Goździalska et al., 2016).
Similarly, ADAM10, ADAM12, ADAM17 have been detected
at the invasive fronts of BCC and displayed a different expression
pattern in histologic subtypes of BCC, suggesting a role in BCC
pathogenesis (Oh et al., 2009). In addition, the expression and
function of a variety of other MMPs have been described and
summarized elsewhere (Riihilä et al., 2021).

In addition to the production of ECM components and
proteolytic enzymes, CAFs in the microenvironment of BCC
increase the expression of tumor-relevant chemokines. Among
those are chemokines promoting tumor progression and
immunosuppression (CCL17, CXCL12) (Omland et al., 2017).
In addition, tumor-associated macrophages play a crucial role in
the BCC microenvironment. The proinflammatory M1 and anti-
inflammatory M2 macrophages are balanced in nodular and
fibrosing BCC (Kaiser et al., 2018). However, in highly
invasive BCC, increased macrophage infiltration induces
MMP-9 secretion leading to activation of the p38 MAPK/NF-
kB/COX-2 axis (Tjiu et al., 2009). In turn, COX2-dependent
release of MMP-9, vascular endothelial growth factor (VEGF),
and fibroblast growth factors (FGF) support tumor
vascularization and progression (Tjiu et al., 2009). In addition
to macrophages, in BCC, there are increased numbers of tumor-
infiltrating lymphocytes, 45% consisting of T-regs in peritumoral
areas. Similarly, T-reg attracting chemokines such as CCL17, -18,
-22, and CXCL12 are enhanced in BCC intra- and peritumorally
(Omland, 2017). Thus, although BCC is an immunogenic tumor
and well responsive to immunotherapeutic drugs, the infiltration
of T-regs may generate an immunosuppressive niche hindering
the response to checkpoint inhibitors (Omland, 2017).

Merkel Cell Carcinoma
Merkel cell carcinoma (MCC) is sporadic but a highly aggressive
skin cancer, and more than 80% of MCC are linked to Merkel cell
polyomavirus (MCPyV) (Schadendorf et al., 2017). Intensive
research has been done in MCC tumor biology, from
discovering MCPyV in 2008 to the relevance of the UV-
signature in MCPyV-negative MCC (Schadendorf et al., 2017).
Further immunological studies finally led to the approval of
checkpoint inhibitors for the treatment of MCC patients
(Bradford et al., 2020). However, less is known about the role
of the extracellular matrix in the aggressiveness of MCC. In
primary MCC, an altered scaffold of collagen fibers is in the
peritumoral area and possibly contributes to the invasiveness of
this tumor. However, surprisingly, collagen expression was
independent of prognosis (Laurito et al., 2021). Besides
collagen, TNC expression is enhanced in grown tumors and
localized at the MCC’s invasive front (Koljonen et al., 2005).
Apart from those ECM components, MMPs are increasingly
expressed in MCC. Increased expression of MMP-1 and
MMP-3 are adverse prognostic factors (Massi et al., 2003), and
MMP-10 and MMP-26 may associate with aggressive disease
(Suomela et al., 2009). Furthermore, expression of MMP7,
MMP10/2, and TIMP3 is associated with metastatic tumor
spread (Fernández-Figueras et al., 2007). However, the
functional significance of metalloproteinases in ECM
remodeling in MCC is little explored. It was demonstrated
that the skin cells most permissive for MCPyV infection are
fibroblasts rather than Merkel cells, where this event may rather
be rare. Most interesting, matrix remodeling by MMPs might
support MCPyV infection of human dermal fibroblasts, although
mechanistically is not clear how this occurs (Liu et al., 2016).
Thus, infection of Merkel cells can be a secondary random event.
In line with role of MMPs in supporting viral oncogenesis,
expression of the Merkel cell polyomavirus large T antigen
(LT) from MCC tumors induces MMPs expression in cells
(Richards et al., 2015). Also, ADAM 10 and 17 are
upregulated in MCPyV-positive primary MCC tumors where
they disrupt cellular contacts leading to cell dissociation and
motility underlying invasion (Nwogu et al., 2018).

In MCC, there is also an immune component. In MCC,
overexpression of Chemokine (C-C motif) ligand 1 (CCL17/
TARC) and C-C chemokine receptor type 4 (CCR4) leads to
the attraction of many CD4+ regulatory T cells, Th2 and Th17
cells (Rasheed et al., 2018). Increased T-regs and M2
macrophages generate an immunosuppressive niche facilitating
tumor progression and metastasis in MCC (Gaiser et al., 2018).
However, a stronger infiltrate of CD8+ T cells in MCC is a
favorable prognosticator (Touzé et al., 2011).

ECM AND REMODELING IN THERAPEUTIC
RESISTANCE

Although several new groundbreaking therapies have
revolutionized the treatment of several cancers, including
melanoma, the success is limited by developing various
resistance mechanisms. ECM and its remodeling may
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account for the factors influencing efficacy and resistance to
available anti-neoplastic drugs, radiation treatment, and some
immunotherapies (Huang et al., 2021). Here we will point at
some of the known data on the involvement of ECM and
enzymes in resistance to targeted drugs used to treat skin
cancers. Some of those mechanisms are summarized in
Figure 2.

MAPK Inhibitors
BRAF and MEK inhibitors have revolutionized melanoma
therapy throughout recent years and are prescribed for
patients with melanoma that harbor a BRAF mutation, present
in about 60% of melanoma. By inhibition of the MAPK pathway,
patients achieve previously unconceivable survival rates of about
76% (Davies et al., 2002; Dummer et al., 2018). However, after an
excellent initial response, patients develop resistance over time
and during treatment. Resistance is attributed to acquired new
genetic mutations such as NRAS and MEK or overexpression of
CRAF (Patel et al., 2021). Various other resistance mechanisms
have been described, bypassing mutant B-RAF and reactivating
PI3K/AKT and ERK signaling (Patel et al., 2021). These include
epigenetic and transcriptomic mechanisms, for example
upregulation of transcription factors, alterations in the tumor
microenvironment, and immune, for example enhanced PD-L1
expression (Patel et al., 2021). A further contributor is collagen. In
the initial phases of MAPK inhibitor treatment, increased
amounts of collagen type I are deposited in the
microenvironment to form a scaffold for the cells (Diazzi
et al., 2020). Intravital imaging has localized MEK-inhibitor-
resistant melanoma cells close to bundled collagen where they
survive drug treatment; thus, matrix stiffness and reorganization
are suggested to generate ECM niches fostering drug resistance
(Brighton et al., 2018).

Moreover, although most ECM components are produced by
stromal fibroblasts and CAFs, MAPK inhibitors can induce
production of ECM molecules in melanoma cells, as detected
for collagen and FN (Jenkins et al., 2015; Brighton et al., 2018;
Diazzi et al., 2020; Girard et al., 2020). Melanoma cells with a loss
of PTEN increased FN expression, thereby modifying signaling
and attenuating the response to BRAF inhibitors (Fedorenko
et al., 2016). Enhanced FN expression is only detected in BRAF
inhibitor-resistant PTEN-null melanoma samples (Fedorenko
et al., 2016). This is possibly due to the induced phenotypic
shift in melanoma cells toward a mesenchymal phenotype. That,
in turn, activates alpha5beta1 integrin/PI3K/AKT signaling,
limiting the drug’s cytotoxic effects; this also results in
enhanced expression of myeloid cell leukemia 1 (MCL1)
protein, a mediator of evasion to targeted therapy (Fedorenko
et al., 2015). By intravital imaging, Hirata et al. (2015) show that
treatment of MAPK inhibitors activates peritumoral fibroblasts
and induces enhanced FN whose binding to the integrin beta1/
focal adhesion kinase/Src signaling provides an escape route for
melanoma cells from treatment (Fedorenko et al., 2015; Hirata
et al., 2015). Moreover, BRAF inhibitors activate ERK signaling in
CAFs, leading to activation of beta-catenin and the secretion of
POSTN. This protein, in turn, reactivates ERK signaling in
melanoma cells under BRAFi pressure, further promoting
resistance (Liu et al., 2022).

BRAF inhibitor-resistant cells display increased expression of
active MMP-2, pointing at an increased matrix remodeling and
consequently a higher invasive capacity (Sandri et al., 2016).

The capacity to cleave the extracellular matrix components
using MMP-14 was associated with a resistant cell phenotype
(Marusak et al., 2020). MMP-14 is upregulated in BRAF
inhibitor-resistant cell lines and human tumor samples, and its
upregulation is dependent on TGF-beta. Consequently,

FIGURE 2 |Mechanisms based on ECM remodeling andmetalloprotease that influence response to therapy. Increased accumulation of ECM and its cross-linkage
impedes access of the drugs to the tumor cells, the supply with nutrients and interferes with the migration of inflammatory cells. Dense ECM induces EMT that in turns
fuels ECM accumulation. Active metalloproteinases (MMPs/ADAMs) from tumor and stromal cells help transformed cells cross ECM barriers and release cellular and
ECM-bound growth factors and cytokines that play an essential role in chemotherapy resistance. Tumor cell contact with ECM mediated by integrins lead to the
activation of an out-in pathway that increases survival signaling and helps circumvent the drug’s effect.
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inhibition of MMP-14 or TGF-beta combined with a BRAF
inhibitor reconstituted therapeutic efficacy (Marusak et al.,
2020). In addition to matrix remodeling, MAPK inhibitor
treatment led to rewiring of the cytoskeleton by enhancing
actin fiber formation; thus, inhibiting ROCK1 (a modulator of
the actin cytoskeleton) could represent a possible means to tackle
resistance development (Smit et al., 2014).

Based on those mentioned earlier and several other data,
combination therapy of a BRAF and PI3K inhibitor has been
suggested (Fedorenko et al., 2016). Indeed, therapeutic efficiency
could be reconstituted by combining a BRAF and FAK inhibitor
(Hirata et al., 2015), although, upon both treatments, single or
double therapy, cSCC developed, but with lower incidence in
combination therapy (Flaherty et al., 2012). The development of
these secondary tumors was the consequence of the paradoxical
activation of the MAPK signaling (Gibney et al., 2013). The
phenotypic shift induced in melanoma cells by these double
treatments is dependent on YAP1 (yes-associated protein 1)-
and MRTFA (Myocardin Related Transcription Factor A)-
activity in resistant melanoma cells. Resistant cells are thus
enabled to produce drug-resistant ECM with enhanced
stiffness that counteracts treatment (Girard et al., 2020). In
line with these, combinatorial treatment with a BRAF and a
YAP1 inhibitor has been shown to decrease tumor growth
(Girard et al., 2020). Enhancing ECM density and mechanical
properties may compromise therapeutic efficacy by
phenotypically shifting plastic melanoma cells, reduce tumor
cell migration/invasion as less permissive (Wolf et al., 2013),
by altering immune cells infiltration (see in the following
paragraph), and by inducing myofibroblastic-CAF activation.
A general explanation of the processes leading to ECM
stiffening, its broad consequences on chemoresistance, and the
clinical approaches to target it has recently been reviewed
(Darvishi et al., 2022).

Enhancement of BRAF and MEK inhibitors can influence
melanoma cells’ signaling and activate CAFs. By secreting
hepatocyte growth factor (HGF), CAFs manage to reactivate
MAPK and PI3K/AKT signaling contributing to the
acquisition of resistance (Straussman et al., 2012; Wilson et al.,
2012). Patients with HGF expression in the stroma show weaker
therapeutic responses than patients without HGF expression
(Straussman et al., 2012). Also, the secreted frizzled-related
protein 2 (sFRP2), a Wnt antagonist secreted by peritumoral
fibroblasts, weakens the response toward MAPK inhibitors (Kaur
et al., 2016).

MAPK inhibitors induce an inflammatory reaction enhancing
IL-1beta secretion by tumor-associated macrophages (TAMs)
and production of CXCR-2 ligands by fibroblasts.
Consequently, in vivo blocking IL-1R or CXCR2 signaling
enhanced response to MAPK inhibitors (Young et al., 2017).
TAMs affect melanoma cells by releasing TNF alpha, thereby
sustaining survival signaling pathways in melanoma cells by
enhancing MITF expression (Smith et al., 2014). Increased
MITF expression enhances the secretion of ET-1, a reactivator
of the ERK pathway, thus bypassing mutant BRAF and
maintaining MAPK signaling (Smith et al., 2017). Moreover,
in BRAFi-resistant invasive melanoma cells with MITFlow, the

expression of pentraxin 3 (an acute phase inflammatory
glycoprotein) is high. It induces, likely via the TLR4, activation
of the NFκB signaling pathway leading to enhanced invasion and
expression of TWIST1 (Twist Family BHLHTranscription Factor
1) (Rathore et al., 2019). Melanoma-acquired resistance to
targeted therapy displays a cross-resistance to checkpoint
inhibitors (Haas et al., 2021). This cross-resistance has been
suggested to be derived from a lack of CD103 + dendritic
cells, whereas replenishing CD103 + dendritic cells eliminates
cross-resistance. Based on their work, the authors propose a
therapeutic protocol starting with checkpoint inhibitors
followed by BRAF-inhibitor in BRAF mutated melanoma
patients (Haas et al., 2021).

Checkpoint Inhibitors
Tumor cells and the peritumoral stroma crosstalk generate a
microenvironment that, from suppressive, becomes tumor
promoting (Bhattacharjee et al., 2019). Due to a high
burden of mutations caused by UV radiation and tumor-
associated antigens, skin cancers show high
immunogenicity, making them susceptible to checkpoint
inhibitor therapy (Hodis et al., 2012; Pickering et al., 2014;
Goh et al., 2016; Paulson et al., 2019). The tumor mutational
burden has been suggested as a predictive marker for response
to checkpoint blockade (Yarchoan et al., 2017). However,
checkpoint inhibitors have demonstrated high response
rates in various solid tumors: lung cancer, renal cell
carcinoma, melanoma, SCC, BCC, and MCC (Brahmer
et al., 2012; Paulson et al., 2019). In addition, melanomas
display an enhanced expression of tumor-associated antigens
predisposing melanoma cells for T-cell killing (Ilyas and Yang,
2015). Checkpoint inhibitors have revolutionized therapy for
patients with metastatic melanoma and have demonstrated a
curative potential (Robert et al., 2018). Compared to a 3 year
overall survival rate of 12% with dacarbazine, the combined
checkpoint blockade with ipilimumab (CTLA-4, cytotoxic
T-lymphocyte-associated protein 4, inhibitor) and
nivolumab (PD-L1, Programmed cell death-ligand 1,
inhibitor) reaches about 60% (Robert et al., 2011; Wolchok
et al., 2017). In skin cancer and other solid tumors, the
infiltrate of T cells provides a predictor for a checkpoint
inhibitor response, whereas infiltrating Tregs weaken
therapeutic efficiency (Cristescu et al., 2018; Kugel et al.,
2018). To circumvent the systemic side effects of those
therapies, anti-PD-L1 and CTLA4 antibodies were
conjugated to the extracellular matrix protein-PIGF-2
(placenta growth factor 2) to provide a local treatment in
animal models of melanoma; this resulted in enhanced efficacy
with reduction of tumor growth and improved survival
(Ishihara et al., 2017).

Additionally, the conjugation with PIGF-2 led to a stronger
infiltrate of CD8+ and CD4+ T cells, ensuring higher efficiency of
the checkpoint inhibitor therapy (Ishihara et al., 2017). Similarly,
the combination of checkpoint inhibitors and IL-2 with the
collagen-binding domain of Willebrand factor A3 led to a
mainly intratumoral accumulation of the drug. Thus, it
lowered systemic side effects, reduced tumor growth, and
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enhanced T-cell infiltrate in a murine B16F10 melanoma model
(Ishihara et al., 2019). In addition to limiting the systemic side
effects, preventing the acquisition of resistance to checkpoint
inhibitors remains the major challenge.

Although there is broader knowledge about the influence of the
extracellular matrix on the development of resistance to BRAF/MEK
targeted therapy, less is known on the impact of the ECM and its
remodeling to checkpoint inhibitor resistance or its predictive
potential for immunotherapy. However, recent studies showed
that a marker for collagen type III fibrogenesis (PRO-C3) with
high PRO-C3 in patients’ serum is a predictor of poor overall
survival in metastatic melanoma upon treatment with anti-
CTLA-4 and anti-PD-1 therapy (Jensen et al., 2018; Hurkmans
et al., 2020). ECM proteins may regulate immune cells in the tumor
microenvironment, and the ECM in the skin dramatically changes
with age displaying reduced collagen deposition and enhanced
fragmentation by the activity of MMPs (Russell-Goldman and
Murphy, 2020). Indeed, patients under the age of 50 have a
lower ratio of CD8+Tregs and are less responsive to anti-PD-1
than older patients, possibly due to the reduced ability of PMN-
Myeloid-derived suppressor cells to migrate through the less dense
and lax matrix to the tumor site (Kugel et al., 2018). That is in
contrast with the observed inhibitory function of tumor-fibrosis on
T cell infiltration and migration (reviewed in (Jiang et al., 2017). In
cholangiocarcinoma, breast and pancreatic carcinomas preclinical
tumor models, reverting stiffening of the dense peritumoral matrix
using inhibitors of cross-linking enzymes improves anti-PD-1
therapy by enhancing the T cells infiltration and activation
(Nicolas-Boluda et al., 2021). In contrast, desmoplastic
melanoma, displaying a dense collagenous stroma, has a much
higher response rate to anti-PD-1 therapy than other types of
melanomas that is attributed to the presence of pre-existing
T cell infiltrates in the invasive edge of the lesions (Eroglu et al.,
2018). Altogether these data highlight the complexity of the tumor
microenvironment and the induced cellular reactions that depend
on the tumor type, context, andmost likely on the temporal frame of
therapy. Thus, a generalization concerning the role of peritumoral
stiffening on tumor growth and therapeutic response cannot be
made. Still, if a prediction of therapy efficacy should be made, it
should be based on biophysical properties of the surrounding tissue
that include not only stiffness, but also confinement, and the type of
tumor and time of development.

Tumor evasion from immune control can be obtained by
downregulation of major histocompatibility complex class-I and
-II (MHC-I and MHC-II), which is detected in advanced but not
early melanomas, and correlate to metastatic progression
(Degenhardt et al., 2010). Among the factors regulating the
expression of MHC class I complex is transforming growth
factor-beta 1 (TGF-beta 1) thus being considered among the
drivers of resistance (Lee et al., 2020). Considering the potent
immunosuppressive effects the PD-L1/PD-1 pathway and of
TGF-beta 1, a clinical trial designed to target both in solid
tumors is ongoing and the results are expected soon (Merck/
EMD Serono, NCT02517398). Interestingly, release by
metalloproteinase shedding of the immunoreceptor ligand major
histocompatibility complex class I chain-relatedmolecule A (MICA)
enables melanoma cells to escape immune surveillance (Nausch and

Cerwenka, 2008). Consequently, inhibition of shedding that
enhances MICAs expression restored NK–cell-mediated
immunity against melanoma metastases in an in vivo tumor
model (Ferrari de Andrade et al., 2020). In line with these data,
MHC-II positivity on tumor cells is associated with response,
progression-free and overall survival to anti-PD-1 therapy
(Johnson et al., 2016). Melanoma susceptibility to
immunotherapies is reduced by CAFs production of IL6 and
induction of IL10 in melanoma cells, the latter inhibiting antigen-
presenting cells and weakening the immune response (Terai et al.,
2012; Simiczyjew et al., 2020). In further support of a resistance-
promoting effect of CAFs, CAFs can mediate resistance to
checkpoint blockade by secreting MMP-9, which can cleave PD-
L1 from melanoma cells (Zhao et al., 2018). Interestingly, co-
treatment of an MMP-2/-9 inhibitor and PD-1 or CTLA-4
blockade enhanced the therapeutic efficacy in the treatment of
mouse models of melanoma and lung cancer (Ye et al., 2020).

The immune system has a pivotal role in developing cSCC, as
shown by the frequent growth of cSCC in the skin of
immunocompromised patients (Omland et al., 2018). In recent
years, checkpoint inhibitors, particularly the PD-1 inhibitors
Cemiplimab and Pembrolizumab, have been approved to treat
unresectable or metastatic cutaneous squamous cell carcinoma
(Shalhout et al., 2021). Human cSCC have enhanced expression
of PD-1 and CTLA-4 (Gambichler et al., 2017), and blocking these
proteins results in improved infiltration of T cells (CD4+ and CD8+),
hindering the development of SCC in animal models (Belai et al.,
2014). The response rates to PD-1 inhibitors in SCC patients are
promising, but about 50% of patients do not benefit from checkpoint
blockade or acquire resistance (Migden et al., 2018). Indeed, it has
been reported that in SCC, PD-1-inhibition facilitates immune
escape by inducing infiltration of T-regs (Dodagatta-Marri et al.,
2019). In HNSCC, immune evasion upon PD-1-inhibition was
promoted by the upregulation of Tim-3 (T cell immunoglobulin
and mucin-domain containing-3 receptor; regulator of Th1
immunity) (Shayan et al., 2017).

Checkpoint inhibitors have also demonstrated high and long-
lasting efficacy in MCC with a lately reported 42-months overall
survival rate of 31% under avelumab. Most long-term survivors
had MCC with a positive PD-L1 expression status (D’Angelo
et al., 2020). The amount of MCPyV specific T cells increases with
MCC tumor load displaying an enhanced expression of PD-1 and
Tim-3 exhaustion markers (Afanasiev et al., 2013). Also,
MCPyV-negative tumors showed elevated T cells and PD-L1
levels, indicating checkpoint inhibitors’ therapeutic efficacy in
MCPyV-negative tumors (Afanasiev et al., 2013; Schadendorf
et al., 2017). The most recent FDA approval is for checkpoint
inhibitors in BCC treatment as second-line after hedgehog
inhibitor therapy. Cemiplimab, a PD-1 antibody, treatment of
BCC patients led to an objective response in 31% of patients, of
which 6% showed a complete and 25% partial response (Stratigos
et al., 2021). Since the history of checkpoint inhibitor therapy in
non-melanoma skin cancer is very short, data on the acquisition
of resistance and research about the underlying mechanisms are
up to now very scarce. Thus, with the establishment of checkpoint
inhibitors in non-melanoma skin cancer, subsequent long-term
detailed studies are needed to analyze resistance drivers from the
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microenvironment in these tumor entities to obtain more durable
responses.

NEW THERAPEUTIC APPROACHES

Treatment with BRAF and MEK and checkpoint inhibitors
represent very efficient therapeutic options for patients with
metastatic melanoma. However, the acquisition of resistance
constitutes the principal and still unsolved clinical challenge.
The reasons for the development of resistance are, as
described beforehand, intensely investigated, and most
approaches to tackle the evolution of resistance are based on a
combinatorial approach, combining the established therapies
with further complementing drugs.

Although ECM is suggested to contribute to the acquisition of
resistance, very few therapeutic approaches focus on inhibiting
resistance mechanisms deriving from the extracellular matrix. The
critical, although the sometimes controversial, role of collagen
deposition is described in the context of resistance to MAPK
inhibitors. Collagen synthesis is strongly dependent on TGF-beta
1 (Liu et al., 2012a). In various solid tumors, including melanoma,
inhibiting TGF-beta 1 reduced collagen synthesis in vivo (Diop-
Frimpong et al., 2011). Moreover, Losartan, an antihypertension
drug, has been shown to inhibit collagen synthesis and is generally
well tolerated (Lim et al., 2001). As suggested in an early study,
Losartan or neutralizing TGF-beta 1 has been suggested for the
treatment of RDEB patients to prevent cSCC onset (Mittapalli et al.,
2016). The related drug candesartan has been demonstrated to
inhibit melanoma growth and vascularization in an animal model
(Fujita et al., 2002). Thus, collagen inhibitors could represent an add-
on therapy to BRAF and MEK inhibitors to impede or at least limit
the development of resistance. Besides collagen, other therapeutic

approaches may target FN, particularly the EDA and EDB domains
whose appearance and upregulation in tumors impact tumor
vascularization (Rybak et al., 2007). A monoclonal antibody
against BC-1 (recognizing the EDB domain) fused with murine
IL-12 could inhibit tumor progression in xenograft models of skin
cancer. When applied to a small cohort of patients, about half
achieved stable disease (Lo et al., 2007; Rudman et al., 2011).
Another fusion antibody, L19-IL-2, targeting the EDB domain of
FN combined with the IL2, was effective in an animal model and
achieved stable condition in a clinical trial including patients with
melanoma and renal cell carcinoma (Carnemolla et al., 2002;
Eigentler et al., 2011). There have been a variety of early phase
clinical trials with MMP inhibitors (Rudek et al., 2001; Winer et al.,
2018), tumor-targeting immunocytokines (Johannsen et al., 2010),
and fibronectin-targeting agents (Eigentler et al., 2011; Rudman et al.,
2011; Danielli et al., 2015), in skin cancers which are
comprehensively summarized in Table 1. However, up to now,
especially for MMP inhibitors, dose-limiting toxicity is an unsolved
clinical problem. The field is still open for more extended
investigations to efficiently exploit the tumor microenvironment’s
therapeutic potential and the ECM.
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TABLE 1 | Clinical trials with ECM-targeting agents.

Clinical trial Molecular profile Tumor type Results Toxicity References

Oral COL-3
(NCT00001683)

Modified tetracycline
derivative, MMP inhibitor

Melanoma, lymphoma, renal
cell carcinoma

Disease stabilization in patients
with a non-epithelial type of
malignancy

Dose-limiting
phototoxicity

Rudek et al. (2001)

Batimastat MMP inhibitor Malignant pleural effusion
(melanoma, NSCLC, etc.),
malignant ascites

Terminated in phase III due to local
toxicity

Intolerable local
toxicity

Reviewed by Winer
et al. (2018)

131I-labeled
Tenatumomab
(NCT02602067)

Tenascin-C moAb labeled
with iodine I 131

Skin cancer and others Terminated, negligible uptake of
the drug in tumors

n.a n.a

AS1409 (NCT00625768) BC1, Ab to FN ED-B linked
to IL 12

Melanoma, renal cell carcinoma Stable disease in 46% of patients;
partial response in melanoma

adverse events
grade 2 and 3

Rudman et al.
(2011)

L19-IL2 (NCT01253096) L19, Ab to FN EDB
combined with IL 2

Metastatic melanoma, renal cell
carcinoma and others

Stable disease; tolerable toxicity in
renal cell carcinoma and other
solid tumors

Tolerable toxicity Johannsen et al.
(2010)

L19-IL-2 + dacarbazine
(NCT01055522)

L19, Ab to FN EDB
combined with IL 2 and
dacarbazine

Metastatic melanoma, renal cell
carcinoma

28% of patients with objective
response, including a complete
response

Tolerable and
reversible toxicity

Eigentler et al.
(2011)

L19IL2+L19TNF
(NCT02076633)

L19, Ab to FN EDB
combined with IL 2 or TNF

Melanoma stage III or stage
IVM1a

Reduced local tumor burden;
prevented progression

Limited Danielli et al. (2015)

L19IL2+L19TNF
(NCT04362722)

L19, Ab to FN EDB
combined with IL 2 or TNF

BCC or cSCC Awaiting n.a n.a

Ab, antibody; moAb, monoclonal antibody; n.a., not available.
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