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SUMMARY

Federated learning (FL) in healthcare allows the collaborative training of models on distributed data sour-
ces, while ensuring privacy and leveraging collective knowledge. However, as each institution collects
data separately, conventional FL cannot leverage the different features depending on the institution.
We proposed a personalized progressive FL (PPFL) approach that leverages client-specific features and
evaluated with real-world datasets. We compared the performance of in-hospital mortality prediction be-
tween our model and conventional models based on accuracy and area under the receiver operating char-
acteristic (AUROC). PPFL achieved an accuracy of 0.941 and AUROC of 0.948, which were higher than the
scores of the local models and FedAvg algorithm. We also observed that PPFL achieved a similar perfor-
mance for cancer data. We identified client-specific features that can contribute to mortality. PPFL is a
personalized federated algorithm for heterogeneously distributed clients that expands the feature space
for client-specific vertical feature information.

INTRODUCTION

Federated learning (FL) is a collaborative machine learning approach used for solving data problems, such as data leakage, while leveraging

the collective knowledge and preserving privacy in distributed environments acrossmultiple devices and institutions in a communication-effi-

cient manner.1–4 Consequently, researchers are increasingly focusing on comprehensive research on FL for healthcare. Depending on the

participating client settings in FL, FL is classified into two types: cross-silo and cross-device categories.5 When considering the cross-silo

aspect of FL, several studies based on various medical data collected from healthcare organizations have been presented. Dayan et al. pro-

posed an electronic medical record (EMR) chest X-ray AI model, called EXAM, to conduct FL using data frommultiple sites spread across four

continents and under the oversight of different regulatory bodies, thus achieving a generalized model that can be applied to different regu-

lated markets in an expedited way.6 A study published in 20207 utilized FL for predicting mortality in patients hospitalized with coronavirus

2019 (COVID-19) based on data obtained from five clients, which is the study to evaluate the efficacy of applying FL to predict mortality in

patients with COVID-19. Another study conducted in 2021 used cloud-based FL with two cloud tenants to identify different FL models

that have achieved statistically significant performances.8 In addition to electronic health record (EHR)-based FL, FL research focusing on

medical image data, including functional magnetic resonance imaging, chest computed tomography, and breast density classification

data, has also been suggested.9 Most cross-silo FL studies in the healthcare domain are horizontal FL (HFL) studies,2,10–15 which assume

that clients have the same dataset, in which case client-specific features are ignored.

Recently, the development of cross-device FL has become prominent, and it has been adopted for healthcare applications. To handle

heterogeneous data distribution in the internet of things field, Gao et al. suggested a cross-technology communication-based FL for

considering different types of standardizations for wireless network technology.16 To enhance robustness and precise performance, an

optimizer was also studied using global model optimization.17 Lian et al. proposed a decentralized, efficient, and privacy-enhanced feder-

ated edge learning method for cyber-physical systems in healthcare.18 They designed a hierarchical ring topology to alleviate the central-

ization of the conventional algorithm and proposed an aggregation algorithm for distributed medical institutions to generate a global

model.

In this study, we focused on solving the FL problem that has been identified in cross-silo studies. In real-world healthcare applications in

cross-silo settings, different clients have different feature spaces, except for some common features, which implies that the FL model must
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Table 1. Description of data distribution based on the type of intensive care unit for different demographic variables obtained from Severance Hospital

and electronic intensive care unit datasets

Variable

Internal validation External validation

p value *HICU (n = 5,266) MICU (n = 14,550) SICU (n = 10,644) NSICU (n = 12,706)

Demographic

Age, year, mean G SD 65.0 G 13.2 63.1 G 17.2 62.3 G 17.2 60.9 G 17.7 <0.001

Gender (female), n (%) 1,604 (30.5) 7,017 (48.2) 4,602 (43.2) 6,087 (47.9) <0.001

Height, cm, mean G SD 164.3 G 11.6 169.0 G 12.8 170.1 G 11.5 169.6 G 12.4 <0.001

Weight, kg, mean G SD 66.5 G 13.3 83.8 G 27.8 84.0 G 26.5 83.0 G 25.0 <0.001

Clinical

HR, beats/min, mean G SD 72.8 G 18.0 103.8 G 31.1 102.3 G 29.7 95.6 G 30.5 <0.001

RR, breaths/min, mean G SD 17.4 G 4.1 28.0 G 15.0 24.7 G 14.9 22.3 G 14.2 <0.001

BP, mm Hg, mean G SD 83.8 G 13.3 86.1 G 42.0 88.9 G 42.1 97.2 G 42.1 <0.001

TEMP, �C, mean G SD 37.0 G 0.5 36.4 G 1.0 36.4 G 0.9 36.5 G 0.8 <0.001

RBC count, million/mm, mean G SD 4.1 G 0.6 3.7 G 0.7 3.6 G 0.7 3.9 G 0.7 <0.001

HCT, vol %, mean G SD 38.0 G 5.4 32.9 G 6.4 32.3 G 6.0 35.2 G 5.7 <0.001

Creatinine, umol/L, mean G SD 4.0 G 16.3 1.8 G 1.9 1.5 G 1.5 1.1 G 1.2 <0.001

BUN, mg/dL, mean G SD 18.4 G 10.8 32.0 G 23.6 24.3 G 17.7 19.4 G 15.4 <0.001

Sodium, mEq/L, mean G SD 137.7 G 7.8 137.5 G 5.7 137.4 G 4.7 138.6 G 4.9 0.012

Potassium, mEq/L, mean G SD 4.3 G 1.4 4.1 G 0.5 4.0 G 0.4 4.0 G 0.4 <0.001

In-hospital death, n (%) 368 (7.0) 1,887 (13.0) 949 (8.9) 1,056 (8.3%) <0.001

HICU, heart intensive care unit; MICU, medical intensive care unit; SICU, surgical intensive care unit; NSICU, neurosurgical intensive care unit; HR, heart rate; RR,

respiratory rate; BP, blood pressure; TEMP, temperature; RBC, red blood cell; HCT, hematocrit; BUN, blood urea nitrogen; SD, standard deviation.

* p value was calculated with one-way analysis of variance for continuous features and c2 test for categorical features.
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consider both HFL and vertical FL which assumed clients have different datasets but share the same feature space. Certain studies have ad-

dressed these limitations.19,20 Lu et al. proposed FedAP to utilize client-specific layers by using a batch normalization layer to solve the dis-

tribution gaps among clients.21 A model-agnostic meta-learning approach was also suggested for personalized learning based on gradient

descent with respect to their own data.22 Ma et al. proposed PerHeFed, a convolutional neural network-based representation aggregation for

personalized layer.23 A personalized FL framework for image data was proposed for aggregating local-submodels. Liu et al. suggested feder-

ated autonomous deep learning to predict patient mortality based on data from 58 hospitals.24 They split the architecture into two parts: the

first half of the neural network was trained globally using all data sources in a federatedmanner and the second half of the neural network was

trained locally on data from each data source. Arivazhagan et al. developed FL with personalization layers (FedPer) by separating the model

into base and personalized layers to address the common and personal knowledge.20 Similar and shared weights were assigned for the base

layer, and a distinct layer was added to adapt the vertical features. However, most of these algorithms exhibited limitations in the utilization of

the same feature space and distinct layers for considering client-specific records, resulting in poor performance. Moreover, many of them

required validation and generalization before being applied to diverse real-world datasets.

The aim of this study was to develop an approach called personalized progressive FL (PPFL), which combines FL with variants of progres-

sive neural networks that can simultaneously consider common and client-specific features.25
RESULTS
Basic characteristics of experiment datasets

The intensive care unit (ICU)-related data for PPFL consisted of 5,266, 14,550, 10,644, and 12,706 data points from the medical ICU (MICU),

surgical ICU (SICU), heart ICU (HICU), and neurosurgical ICU (NSICU), respectively. Themean (standard deviation [SD]) age of patients ranged

from 60.9 (17.7) to 65.0 (13.2) years. Female patients accounted for 30.5% to 48.2% of these datasets. Among these, 7.0%, 13.0%, 8.9%, and

8.3% of data were of in-hospital mortality patients in the HICU, MICU, SICU, and NSICU datasets, respectively. Details of these characteristics

are listed in Table 1.

The non-small cell lung cancer dataset for PPFL comprised 2,315 and 982 data points from the Memorial Sloan Kettering (MSK) Cancer

Center and The Cancer Genome Atlas (TCGA) datasets, respectively. Themean (SD) ages of the patient were 56.3 (26.6) and 64.5 (14.4) years.

Female patients comprised 60.3% and 40.2% of the data in theMSK and TCGAdatasets, respectively. Among these data, 49.6% and 28.4% of

the data were of deceased patients, respectively. Details of patient demographics are listed in Table S1.
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Figure 1. Performance comparison between PPFL and FedAvg, FedProx, FedPer, FedRep, Local (c), and Local (c, s) in terms of AUROC

PPFL (c, s) shows the highest AUROC score for predicting in-hospital mortality task. PPFL, personalized progressive federated learning; HICU, heart intensive care

unit; MICU, medical intensive care unit; SICU, surgical intensive care unit; NSICU, neurosurgical intensive care unit; AUROC, area under the receiver operating

characteristic; FedAvg, federated averaging; FedPer, federated learning with personalization layers; Local, local algorithms; (c), using only common features;

(c, s), using both common and specific features.
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Performance comparison between PPFL and conventional algorithms

When predicting in-hospital mortality, PPFL (c, s), which is based on both common and specific features, showed the highest score, with an

accuracy of 0.939 and area under the receiver operating characteristic (AUROC) score of 0.934 on average in the internal assessment (Figure 1;

Table 2).

In most ICU data, PPFL (c, s) achieved the highest AUROC, except for the HICU. In the HICU data, PPFL (c), which is based on only common

features, exhibited the highest performance, with an AUROC of 0.892 and accuracy of 0.932, which were 0.1% and 0.3% higher than those of

PPFL (c, s), respectively. Compared to the local algorithm using common and specific features (Local (c, s)) and federated averaging algorithm

using common features (FedAvg (c)), the AUROC values of PPFL (c, s) improved by 2.5% and 19.7% on average, respectively. FedAvg

(c) exhibited an average AUROC of 0.744, which was the lowest score among all models. Moreover, as the number of clients increased,

the AUROC increased for all clients. In the external evaluation based on the NSICU data from the electronic ICU (eICU) dataset, PPFL

(c, s) showed an AUROC of 0.948, which was 3.1% higher than that of the local algorithm based on both common and specific features

(Local (c, s)).

When predictingmortality on non-small cell lung cancer data, PPFL (c, s) achieved the highest performance with AUROCs of 0.71 and 0.75

on MSK and TCGA datasets, when compared to the average values of 0.62 and 0.57 of the other algorithms, respectively, as shown in Fig-

ure S1. PPFL (c, s) achieved 7% and 30% higher AUROCs than those of PPFL (c) for MSK and TCGA datasets, respectively. Local (c) and PPFL

(c) showed the lowest performances on the MSK and TCGA datasets, respectively.
Statistical analysis for performance comparison among algorithms

The AUROCs were compared based on the DeLong test, and the results are listed in Table 3. The p values of PPFL (c) and Local (c, s) on the

HICU data (0.25 and 0.2) were not statistically different from those of PPFL (c, s). The p value of Local (c, s) on TCGA data (0.06) was also not

different. Among the 28 results, 23 (82.1%) showed critical statistical significance (p < 0.001).
iScience 27, 110943, October 18, 2024 3



Table 2. Performance evaluation of PPFL in comparison with FedAvg, FedProx, FedPer, FedRep, and Local algorithms in internal and external

validations using distributed real-world data

In-hospital mortality

Model Accuracy AUROC

Internal validation

Sev-HICU

FedAvg (c) 0.929 0.753

FedProx (c) 0.930 0.706

FedPer (c) 0.930 0.876

FedRep (c) 0.931 0.800

PPFL (c) 0.932 0.892

PPFL (c, s) 0.931 0.889

Local (c) 0.930 0.886

Local (c, s) 0.927 0.886

eICU-MICU

FedAvg (c) 0.812 0.697

FedProx (c) 0.870 0.756

FedPer (c) 0.874 0.800

FedRep (c) 0.848 0.666

PPFL (c) 0.867 0.785

PPFL (c, s) 0.928 0.955

Local (c) 0.881 0.789

Local (c, s) 0.906 0.918

eICU-SICU

FedAvg (c) 0.890 0.747

FedProx (c) 0.911 0.693

FedPer (c) 0.910 0.763

FedRep (c) 0.890 0.645

PPFL (c) 0.916 0.790

PPFL (c, s) 0.957 0.946

Local (c) 0.911 0.752

Local (c, s) 0.927 0.915

External validation

NSICU

FedAvg (c) 0.890 0.780

FedProx (c) 0.917 0.689

FedPer (c) 0.875 0.737

FedRep (c) 0.902 0.661

PPFL (c) 0.918 0.787

PPFL (c, s) 0.941 0.948

Local (c) 0.915 0.765

Local (c, s) 0.908 0.917

PPFL, personalized progressive federated learning; c, common features; s, client-specific feature; HICU, heart intensive care unit; MICU, medical intensive care

unit; SICU, surgical intensive care unit; NSICU, neurosurgical intensive care unit; eICU, electronic intensive care unit; Sev, Severance Hospital; FedAvg, federated

averaging; FedPer, federated learning with personalization layers.
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Table 3. Comparison between the area under receiver operating characteristic scores of PPFL (c, s) and other algorithms on two datasets

DeLong PPFL (c) FedAvg FedProx FedPer FedRep Local (c) Local (c, s)

ICU

HICU 0.25 <0.001 <0.001 0.008 <0.001 0.01 0.2

MICU <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

SICU <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002

NSICU <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

NSCLC

MSK 0.068 0.009 0.012 0.007 0.004 0.004 0.006

TCGA 0.001 0.007 0.013 0.009 0.008 0.006 0.06

ICU, intensive care unit; NSCLC, non-small cell lung cancer; PPFL, personalized progressive federated learning; HICU, heart intensive care unit; MICU, medical

intensive care unit; SICU, surgical intensive care unit; NSICU, neurosurgical intensive care unit; NSCLC, non-small cell lung cancer; MSK, Memorial Sloan Ketter-

ing; TCGA, The Cancer Genome Atlas; c, common feature; cs, common and specific features p value was calculated using DeLong test for the AUROC compar-

ison. p value > 0.05 indicates no statistical difference with the AUROC score of PPFL (c, s) and is presented in bold and italicized font.

ll
OPEN ACCESS

iScience
Article
Contribution of common and vertical features based on Shapley value for each client

The contributions of the common and vertical features from all clients in predicting in-hospital mortality are shown in Figure 2. The Shapley

value patterns of the HICU varied from those of other ICUs (MICU, SICU, and NSICU). Among the common features, the heart rate and blood

pressure exhibited the highest Shapley additive explanations (SHAPs) values in the HICU and other ICUs, respectively. Higher values of heart
Figure 2. SHAP values of common and vertical features in predicting in-hospital mortality

(A) Heart intensive care unit.

(B) Medical intensive care unit.

(C) Surgical intensive care unit.

(D) Neurosurgical intensive care unit. Client-specific vertical features are highlighted with a black box. BUN, blood urea nitrogen; BP, blood pressure; RBC, red

blood cell; HCT, hematocrit.
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rate for all ICUs and blood urea nitrogen for the MICU, SICU, and SICU indicate a higher likelihood of mortality; conversely, smaller values of

temperature for the HICU, SICU, and NSICU and blood pressure for the MICU, SICU, and NSICU indicated a greater likelihood of mortality.

Among the vertical and common features, hemoglobin for HICU and fraction of inspired oxygen (FiO2) for the other ICUs exhibited the high-

est SHAP values. Larger value of FiO2 and smaller value of albumin in the MICU, SICU, and NSICU indicated a higher risk of mortality.
DISCUSSION

In this paper, we propose a PPFL algorithm for heterogeneously distributed clients that expands the feature space for client-specific vertical

features. The proposed model not only learns global knowledge from common feature information but also expands the feature space

related to client-specific vertical features by creating column networks. In previous studies, vertical feature information and its parameters

were never transmitted or exchanged. We achieved the highest score, with AUROCs of 0.939 and 0.948 for the internal and external evalu-

ations, respectively. We also determined client-specific feature importance using the proposed algorithm. This is the FL study in the medical

field that considers not only common features but also client-specific vertical features by applying progressive learning.

Our proposed model can solve the primary limitation existing in clinical practice that features from different hospitals are typically

collected in different ways. Recently, several studies have been conducted to train different properties of data based on personalized feder-

ated networks. However, they only utilized the weight allocation method with the same feature space using public open datasets. A study

proposed in 2023 divided the contribution of training components into two: sharing and personalized components; however, the difference

is not related to the feature set view, but it is related to patient-level separation.26 Federated personalized networking using EMRwas studied

with respect to covariate adjusting with the propensity score matching method with the same feature space.27 The proposed PPFL can

consider all the collected features and samples ofmultiple clients that othermodels cannot utilize. Therefore, it exhibits superior performance

when compared to the existing models. FedAvg exhibited a limited feature space because only common features from multiple clients are

considered as inputs to the model in terms of its structure. The local model uses only a sample from each client; therefore, the number of

samples is inevitably smaller than that of the PPFL input dataset.Moreover, the proposedmodel is generic and can be applied to other collab-

oratively aggregated methods based on deep learning models.

We identified differences in the importanceof features in ICUs and feature type for predictingmortality based on the Shapley value, as shown

in Figure 2. TheHICUexhibited a different pattern in terms of feature importance. Bloodpressurewas the highest contributor in theMICU, SICU,

andNSICU,whereas heart ratewas themajor factor in theHICU, which is consistentwith the results of Fallah et al.28 As PPFL can consider specific

featuresofeachclient formodeling,wedetermined that largerFiO2and smaller albumin levels in theMICU, SICU, andNSICUcould contribute to

mortality,which is consistentwithprevious research.29,30Moreover, all themost important featureswere client-specific vertical features.We iden-

tified this finding using the PPFL; however, a conventional model that considers only common features cannot achieve this.

As only a few studies have been conducted with real-world data scenarios on FL, and demands for experiments with real-world data are

being emphasized,28,31 this study used real-world clinical data frommultiple ICU clients, which showed high performance. This is the rationale

for the PPFL becoming a clinically applicable algorithm.

Communication costs in FL can affect real-world applications. The PPFL architecture for weight updates comprises two main parts. First,

after updating the weight with a common vertical network, the vertical network was fine-tuned at each local client. Because we utilized the

vertical network weight as an initial weight and only fine-tuning was conducted, the communication cost for constructing the models was

significantly less. As shown in Figure S2, PPFL required around 25 epochs for the model to achieve a certain performance, whereas other

models required 200 epochs which implies the applicability for real-world applications.
Limitations of the study

This study has several limitations. First, the study was not conducted in a real distributed environment. However, the database was allocated

and treated as a dependent object to mimic real-world distribution. Second, an algorithm pipeline should be developed for clinical applica-

tion and prospective validation. Each client must define specific parameters for the application. A prospective evaluation should be conduct-

ed after implementation, which is a future direction for our study. Third, the statistical challenge of FL when the local data are not independent

and identically distributed (non-IID) was not considered. Data distribution can significantly affect the performance of the learning process. To

consider non-IID settings, updating the PPFL, including distillation or allocation of weight, should be conducted in future studies. Finally, we

did not consider the practical delay between obtaining data from different clients in the FL environment, which can affect communication

costs. However, we measured the number of epochs required for each algorithm to calculate the communication cost.

In real-world healthcare problems, the feature spaces of data from different clients can differ. In addition to utilizing specific and common

features from each client, we proposed a high-performance PPFL algorithm to personalize federated algorithms for heterogeneously distrib-

uted clients and expand the feature space for client-specific vertical feature information. Moreover, we investigated the performance

improvement and robustness of our proposed model using real-world EMR data and validated the usefulness of the model.
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Materials availability

This study did not generate new unique reagents.

Data and code availability

� The datasets generated and/or analyzed during the current study are available on the website (https://eicu-crd.mit.edu/gettingstarted/access/) for eICU
data, and the Severance Hospital data can be obtained from the corresponding author upon reasonable request.

� The underlying code for this study is available at GitHub and can be accessed via the link https://github.com/DigitalHealthcareLab/Personalized-
Progressive-Federated-Learning.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python (version 3.7.15) Python Software https://www.python.org

Deposited data

MIMIC open data Physionet https://physionet.org/content/mimiciv/3.0/

MSK https://pubmed.ncbi.nlm.nih.gov/36357680/ https://www.cbioportal.org/study/

clinicalData?id=nsclc_ctdx_msk_2022

TCGA https://pubmed.ncbi.nlm.nih.gov/27158780/ https://www.cbioportal.org/datasets/

Code for PPFL This paper https://github.com/DigitalHealthcareLab/

Personalized-Progressive-Federated-Learning
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Experimental setting and hyperparameters

We evaluated the performance of the binary classifications for in-hospital mortality as a binary class (dead or alive). We divided the training,

validation, and test datasets in a ratio of 6:2:2 for each client participating in the PPFL training. The validation dataset was used to search for

hyperparameters using a random-search algorithm.

Among the eICU datasets, the NSICU data were defined as unseen data for external validation. After selecting the common features from

the HICU, SICU, andMICUdata, we trained the algorithms to learn the weights via HorizontalNet.We optimized theweight parameters of the

models by incorporating stochastic gradient descent using the Adam optimizer.32 For the application of our proposed and comparative

models for binary classification, we utilized the cross-entropy loss function. For hyperparameter tuning, 100 epochs were set for local training

in FL and 30 rounds were used to aggregate the local models. This study was approved by the Institutional Review Board of Severance Hos-

pital (IRB approval no. ‘‘4-2021-0820’’).

METHOD DETAILS

Problem setting and overall network architecture of PPFL

We propose the PPFL algorithm for conducting client-specific personalized inferences on heterogeneous data settings. The PPFL also ad-

dresses the limited information availability of FL design by leveraging not only common features but also client-specific vertical features

across distributed clients. The proposed process comprises twomajor steps. First, we built an HFL on a central server using only the common

features of distributed clients. Second, the pre-trained horizontal federated model was deployed for each client to learn personalized knowl-

edge for client-specific inference tasks through the PPFL. The proposed PPFL considered both a horizontal FL network (HorizontalNet), which

receives inputs as weights from a globally trained model based on common features of the client, and a vertical network (VerticalNet), which

learns specific features of the client.

This study addressed the problem of solving the case in which both common and client-specific features exist (Figure S3). For better un-

derstanding, a mathematical description is presented in Table S2. Let us assume that an individual client k has a dataset

Dkdfcki ; ski ; yki gm
ðkÞ

i = 1 = fCk ; Sk ; ykg consisting ofmðkÞ samples, where the client k˛Kdf1;.;Kg. The dataset of client k comprises a common

feature matrix Ck ˛Rm3p and client-specific vertical feature matrix Ck ˛Rm3q. The i-th sample of Dk can be represented using a common

featurewith ap-dimensional column vector cki dfc1ðkÞi ;c
2ðkÞ
i ,., c

pðkÞ
i g˛R13p and a client-specific vertical featurewith a q-dimensional column

vector ski dfs1ðkÞi ;s
2ðkÞ
i ,., s

qðkÞ
i g˛R13q; moreover, the corresponding target variable is yki . Note that the attributes and dimension pðkÞ of the

common feature vector cki are identical for all clients k ˛K; However, the attributes and dimension qðkÞ of the client-specific vertical feature

vector ski may not be identical for all clients.

The PPFL model is proposed to address the limitations of FL design with respect to data availability, and aims to personalize the client-

specific inference of every client while maintaining the globally learned information. PPFL is a multi-model-based approach that generates

different values for every client at the deployment step and aims to personalize the client-specific inference of every client while maintaining

the globally learned information and solve the problembetween globally generalized knowledge and client-specific knowledge. The concept

of lateral connection was utilized in progressive neural networks,25 which were proposed for leveraging transfer and avoiding catastrophic

forgetting in multitask learning. Figure S3 shows the architecture of the PPFL model.

In PPFL, building a personalized model allows client-specific distributions to be learned from a globally learned FL model by transmitting

layer-wise knowledge to different network columns. PPFL contains three network columns: HorizontalNet, VerticalNet, and PersonalizedNet.
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The PPFL network, denoted by f kð $Þ, is trained and personalized for each client k. f kð $Þ is a final function that maps the inputs cki and ski to

estimated output yki . We omit the notation k in the notations related to the weights and hidden layers in the three network columns that are

subsequently.

Horizontal network for common features

HorizontalNet, which is the first column of PPFL, is a network that is transferred from the horizontal federated model. The internal weight pa-

rameters of the HorizontalNet column uc were initialized using parameter uc of the horizontal federated model.

Under the federated learning framework, the internal parameters of HorizontalNetuc was globally updated based on FedAvg through the

communication between the central server and participating clients. In this communication, the weights of client k, was globally updated

considering only common features.

Aggregate algorithm, FedAvg, integrates the weight parameters of the models within each client uk using weighted averaging to train

internal weight parameters of HorizontalNet uc . The weight parameters of client k, uk is updated by solve the object function with loss func-

tion lið$Þ of the prediction on example of the prediction on example ðc i;yiÞ. m is the total sample size of K clients. Therefore, the objective

function for solving the empirical risk minimization is:

min
uc ˛Rd

LcðucÞd
XK
k = 1

mðkÞ

m
Lc

k

�
uk

�
;where Lc

k

�
uk

�
d

X
ci ˛Dk

li
�
uk

�
: (Equation 1)

This network column aims to pass generalized knowledge to personalized networks using the common feature data xk of the client as input

information. Note that the internal weight matrixuc in HorizontalNet, which is not connected, is ‘‘frozen’’ to train. However, the lateral weight

parameter uc0 , which is the weight parameter connected between HorizontalNet and the final layer can be updated using an optimization

algorithm.

The hidden layers hcl in the HorizontalNet column for the common feature vector xk of the client are computed using the internal weight

parameter ucint

l of HorizontalNet is computed as follows:

hc
l+1 = s

�
uc

l h
c
l + bc

l

�
;where hc

0 = ck : (Equation 2)

The output values of the HorizontalNet hidden layers hcl are transferred to PPFL via the lateral weight parameteruc0 without overlaying the

original internal weight parameteruc of HorizontalNet. Thus, the internal parameter of HorizontalNet uc is not a trainable weight parameter

for retaining the globally learned knowledge for the common feature space, and its lateral weight parameteruc0 allows the transfer of proper

knowledge from hcl to the final layer hpl .

Vertical network for specific features

The second network column is VerticalNet. This network progressively expands the feature space with respect to the specific vertical features

of the client. The input of VerticalNet is the client-specific vertical feature data, sk ˛Dk . The weight parameteruv is the internal weight param-

eter of VerticalNet, which is not connected to the last layer. The lateral weight parameteruv 0 consists of the parameters of VerticalNet and the

last layer. Both uv and uv 0 can be learned through the training step because these parameters are constructed to expand the feature space

and to connect to the layer used for an inference task. Thus, the internal and lateral weight parameters uv and uv 0; respectively, learn client-

specific vertical feature information and transmit this knowledge to the last layer. The hidden layers hvl in the VerticalNet column with respect

to the client-specific vertical feature sk and internal weight parameter uvint are obtained as follows:

hv
l+1 = s

�
uv

l h
v
l + bv

l

�
;where hv

0 = sk : (Equation 3)

PPFL for common and specific features

We applied a lateral connection in a progressive neural network25 to expand the layer-wise feature space from a globally pre-trained FL

model. The weight parameters of the PersonalizedNet column learn the specific personalized knowledge of the client by acquiring the values

of HorizontalNet, VerticalNet, and its previous layer as inputs.

The computation between network columns is achieved via a lateral connection, whose parameters uc 0 and uv 0 are lateral weight param-

eters. Thus, the lateral parameters uc 0 and uv 0 determine the amount of activation of the globally learned common feature information and

vertical feature information within the client, respectively. Its internal parameter up indicates the internal weight parameter used to mix the

information from both HorizontalNet and VerticalNet to learn more complex information to achieve the inference tasks of individual clients.

The hidden layers h
p
l in the PPFL column are computed as follows:

hp
l+1 = s

�
uc0

l h
c
l + uv 0

l h
v
l + u

p
l h

p
l +b

p
l

�
;where hp

0 = 0: (Equation 4)

The proposed method can be applied even in the absence of client-specific vertical features. In this case, the hidden layer of the PPFL is

expressed as

hp
l+1 = s

�
uc0

l h
c
l + u

p
l h

p
l +b

p
l

�
;where hp

0 = 0: (Equation 5)
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Algorithm 1. Learning procedure of horizontal federated model

Input: Dataset Dcommon
k := fðcki ; yki Þgm

ðkÞ
i = 1;where client k ˛Kdf1;.;Kg; B is the local mini-batch size, E is the number of local epochs, and h is the

learning rate.

Output: Horizontal federated model C and its weight parameter uc

1: Central server execute:

2: Construct the horizontal federated model C and initialize its weight parameter uc

3: for each round t = 0, 1, 2 ., N do

4: Randomly set the St from the clients with the number of m)max ðS $K ;1Þ, where 0<S% 1

5: for each client k˛ St in parallel do

6: uk
t +1)ClientCommonUpdateðk;uk

t ; x
k
i Þ

7: end for

8: uc
t + 1)

PK
k = 1

nk
nu

k
t + 1

9: end for

10: return uc to all clients

11: def ClientCommonUpdateðk;uk ; xi ; yiÞ: //Run on client k

12: B)ðsplit Dcommon
k into batches of size B)

13: for each local epoch e from 1 to E do

14: for batch b˛B do

uk + 1)SGDðuk ;l;hp;bÞ
15: end for

16: end for

17: return uk
t + 1 to central server
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The final predictors for a specific client with or without client-specific vertical features are learned as follows:

by = s
�
uc0

l = Lh
c
= L + uv 0

l = Lh
v
l = L+u

p
l = Lh

p
l = L+b

p
l = L

�
; (Equation 6)
by = s
�
uc0

l = Lh
c
= L + u

p
l = Lh

p
l = L+b

p
l = L

�
: (Equation 7)

These outputs are the results of the mapping function of PPFL fkð $Þ on a specific client k. Note that the notation L denotes the last layer of

the PPFL network. The objective function for the personalization based on a client k is defined as

min
uc0 ;us ;us0 ;up

Lkðuc ;uc0 ;us;us0 ;up Þ =
X

ci ;si ;yi ˛Dk

lki ðfkðc i; siÞ; yiÞ: (Equation 8)

This objective function can be solved using stochastic gradient descent algorithms. In Equation 8, uc is excluded from the optimization

because it is ‘‘frozen.’’

The processes for building the horizontal federated and PPFLmodels are presented in Algorithms 1 and 2, respectively. In Algorithm 1, the

inputs include common feature vector from the participating clients and target variables. As the output of Algorithm 1, the horizontal feder-

ated model can be learned using common feature information from the participating clients in the FL. The outputs of Algorithm 1 and the

dataset, including common features, vertical features, and target variables from the participating clients, are the inputs of Algorithm 2. Sub-

sequently, the PPFL model, which comprises HorizontalNet and VerticalNet, is generated for each client. The HorizontalNet section of the

PPFL model uc is initialized using the weight parameter uc from the horizontal federated model. The inputs are common feature and

client-specific vertical feature vectors from the individual client and target variables. The weight parameters uc of the HorizontalNet column

are frozen to retain globally learned knowledge related to common features, where uv is the internal weight parameter of VerticalNet for

client-specific vertical features. The lateral weight parameters uc0 and uv 0 transmit knowledge of layer-wise network columns, which are

HorizontalNet and VerticalNet, respectively. The PPFL weight parameter up allows the learning of more complex information from the

PersonalizedNet layer hpl , which receives the values of hcl and hvl . As an output for Algorithm 2, these parameters can be learned using opti-

mization methods such as gradient descent optimization algorithms.33 If no client-specific vertical features exist, the proposedmodel can be

personalized using this process, excluding for the VerticalNet column.
Datasets for PPFL experiment in healthcare

The PPFLmodel was evaluated using a distributed ICU dataset obtained from three types of ICUs located in 208 institutions under the eICU34

and from the HICU in Severance Hospital located in Seoul, South Korea. A total of 5,266 patients admitted to the HICU in Severance Hospital

and 14,550 and 10,664 patients admitted to the MICU and SICU, respectively, in the eICU (208 hospitals) were selected for development and

internal assessment. For external validation, 12,706 patients were selected from the NSICU of the eICU dataset. As shown in Table S3, we
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Algorithm 2. Learning procedure of personalized progressive federated learning model

Input: Dataset Dk := fðcki ; ski ; yki Þgm
ðkÞ

i = 1;where client k˛Kdf1;.;Kg; Bp is the local mini-batch size for personalization, Ep is the number of epochs for

personalization, and hp is the learning rate for personalization

Output: PPFL model f kð$Þ
1: Client execute: // Run on specific client k

2: Receive the uc from central server

3: B) (split Dk into batches of size Bp)

4: if client k has client-specific vertical feature sk then

5: f k)PersonalizedVerticalðck ;skÞ
6: else

7: f k)PersonalizedCommonðckÞ
8: end if

9: def PersonalizedVerticalðck ;skÞ
10: Construct the PPFL model

f k)f ðuc ;uc0 ;uv ;uv0 ;up; ck ;skÞ
11: initialize uc to output of Algorithm 1 and freeze the training of uc

12: initialize uc0 ;uv ;uv 0 ;up

13: for each personalization epoch e from 1 to Ep do

14: for batch bp ˛B do

15: (uc0
e+ 1;u

v
e+ 1;u

v 0
e+ 1;u

p
e+ 1) )SGDððuc0

e ;u
v
e;u

v 0
e ;u

p
e Þ;l;hp;bpÞ

16: end for

17: end for

18: return the PPFL model fk
19: def PersonalizedCommonðckÞ
20: Construct the PPFL model

f k)f ðuc ;uc0 ;up; ck ;skÞ
21: initialize uc to output of Algorithm 1 and freeze the training of uc

22: initialize uc0 ;up

23: for each personalization epoch e from 1 to Ep do

24: for batch bp ˛B do

25: (uc0
e+ 1;u

p
e+ 1) )SGDððuc0

e ;u
p
e Þ;l;hp;bp)

26: end for

27: end for

28: return the PPFL model f k
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identified 12 common features for each ICU; moreover, 23, 13, 7, and 8 different client-specific features of the HICU, MICU, SICU, and NSICU,

respectively, were selected for each client using a feature selection method that utilizes linear models with an L1 penalty (L1-norm) added to

the loss function. By fitting the linear model, the coefficients of certain features became zero, which exhibited a feature selection effect.35

For external validation, we evaluated the proposedmodel using non-small cell lung cancer datasets from two different studies (TCGA and

MSK) in cBioPortal, a data portal for cancer genomics. A total of 2,621 and 11,44 records from the years 2008, 2015, 2013, and 2020 were

included in the TCGA and MSK datasets, respectively. As shown in Table S4, we identified 8 common features and 13 and 8 client-specific

features from TCGA and MSK, respectively.

Comparing the performance with conventional algorithms

To evaluate the performance of the PPFL algorithm, we compared the combinations of input data from eICU34 and Severance Hospital. The

MICU and SICU data from the eICU dataset and HICU data from the Severance Hospital dataset were utilized to develop the PPFL and vali-

date it internally, whereas the NSICU data from the eICU dataset were used for external assessment. Details of the data are provided in the

dataset section. We compared PPFL with the models described below. Here, (c) indicates that the model has learned only the common

feature space, whereas (c, s) indicates that the model has learned both common and client-specific vertical features.

� FedAvg (c): HorizontalNet learned using the FedAvg algorithm with common features.
� FedProx (c):HorizontalNet learned using FedProx with common features by introducing an L2 regularization term to the FedAvg objec-

tive function.

� FedRep (c): HorizontalNet learned using the FedRep algorithm with common features. The algorithm focused on extracting represen-

tations specifically from the personalized layers.
� FedPer (c): HorizontalNet learned using the FedPer algorithm with common features. The algorithm employed shallow base layers for

high-level representation extraction and deep personalization layers for classification.
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� PPFL (c): The PPFL model learned from data of individual clients by leveraging only common features.
� PPFL (c, s): The PPFL model learned from data of individual clients by leveraging both common and client-specific vertical features.
� Local (c): Multi-layer perceptron (MLP) models learned only from the common feature data of a specific client.

� Local (c, s): MLP models learned from both common and vertical feature data of a specific client.

Each client was selected independently. For each client, we compared the performances of FedAvg (c), FedProx (c), FedRep (c), FedPER (c),

PPFL (c), PPFL (c, s), Local (c), and Local (c, s) for internal and external validations.

QUANTIFICATION AND STATISTICAL ANALYSIS

For the descriptive characteristics of the study, mean (SD) for continuous variables and frequency (percentages) for categorical variables were

presented. Comparison tests were performed with analysis of variance for continuous variables and chi-square tests for categorical variables

at 5% significance levels. To demonstrate the performance improvement for individual clients and robustness of the unseen distribution for

the proposedmodel, we determined the accuracy and AUROC score for each ICU client. Other metrics, including sensitivity, specificity, pos-

itive predictive value, and negative predictive value at the Youden index, have also been reported. To evaluate the communication cost, we

measured the AUROC over one epoch for each algorithm.

The AUROC curve (AUC) was computed to evaluate the model performance. DeLong’s test was applied to demonstrate the statistical

difference between the AUC values of our model and those of the comparative algorithms. Python and R programming software were

used to compute the performance evaluation metrics and perform statistical analyses. Several publicly available packages were used in

this study, including scikit-learn, SciPy, Matplotlib, NumPy, and Pandas for Python, and pROC for R.

Contribution of common and specific features of each client

To investigate the conceptual shift after the application of PPFL, we computed the feature importance using the SHAP value computed using

Deep SHAP.36 SHAP is amethod for computing the contribution value of a data instance to explain the outcome. To calculate the contribution

value for a specific feature, we considered all possible permutations of the features and computed the average contribution of the feature

coalitions. Deep SHAP approximates the SHAP value using Deep Learning Important Features.37

ADDITIONAL RESOURCE

All experimental settings were implemented using TensorFlow 2.5.0.38 The models were trained on a machine equipped with two NVIDIA

QUADRO RTX 8000 CUDA 11.0 processors with 128 GB memory and one Intel Xeon Platinum 8253 2.2GHz CPU.
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