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INTRODUCTION 
 

Glioblastoma (GBM) is the most prevalent and a deadly 

primary malignant central nervous system tumor [1]. 

Genomic profiling has identified three major pathways 

that are deregulated in GBM: the RTK/Ras/PI3K/AKT 

signaling, TP53, and RB pathways [2–5]. Many drugs 

that target these three signaling pathways. However, 

only a few patients respond to these drugs [6]. 

Therapeutic failure occurs because of intra-tumor 
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ABSTRACT 
 

Background: Diffuse gliomas are the most common malignant brain tumors, and immune checkpoint inhibitors 
have limited therapeutic effects against this cancer. Three oncogenic pathways are altered in diffuse gliomas: 
the RTK/Ras/PI3K/AKT signaling, TP53, and RB pathways. Although these pathways may affect the tumor 
immune microenvironment, their association with immunotherapy biomarkers remains unclear. 
Methods: We used copy number variation and mutation data to stratify patients with specific oncogenic 
signaling alterations, and evaluated their correlation with predictive immunotherapy biomarkers, including 
tumor mutation burden (TMB), immune cytolytic activity (CYT), tumor purity, and tumor-infiltrating CD8+ T 
cells. Immune checkpoint expression and interferon-γ signaling activity were also compared in these samples. 
Results: We identified differentially expressed genes in three distinct oncogenic pathways. Gene ontology 
analysis of these genes revealed the involvement of RTK/Ras/PI3K/AKT-associated genes in immune and 
inflammatory responses. Moreover, significantly elevated TMB, CYT, and numbers of CD8+ T cells and decreased 
tumor purity were correlated with altered RTK/Ras/PI3K/AKT signaling. Single cell sequencing also confirmed 
that this tumor subgroup had increased immune checkpoint expression and interferon-γ signaling activity. 
Immune phenotyping based on the presence of CD274 and TMB or CD274 and CD8 T+ cells indicated that 
tumors with altered RTK/Ras/PI3K/AKT pathways represent a beneficial subtype and are associated with 
improved survival. 
Conclusion: Altered RTK/Ras/PI3K/AKT signaling and immunotherapy biomarkers are strongly correlated in 
gliomas. Gliomas with altered expression of RTK/Ras/PI3K/AKT pathway components may be sensitive to 
immunotherapy. A combination of small-molecule kinase inhibitors and immunotherapy is proposed for this 
subgroup of tumors. 
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heterogeneity and a lack of effective therapeutic 

strategies, such as combination therapies [6, 7]. 

 

The tumor microenvironment (TME), which involves 

interactions between immune cells and tumor cells, 

play pivotal roles in glioma progression [8]. The TME 

may be shaped by the oncogenic signaling pathways  

of tumor cells [8, 9]. PTEN deficiency and activation 

of phosphatidylinositol-3-OH kinase (PI3K) could 

aggravate CD274 expression and weaken the function 

of tumor-associated T cells in gliomas [10]. Loss of 

PTEN in glioblastoma cells increases macrophage 

infiltration, subsequently supporting glioma-cell 

survival and promoting angiogenesis [9]. TP53 

mutations are associated with increased expression of 

immune checkpoint genes and activation of effector  

T cells in lung adenocarcinoma [11]. These findings 

indicate that combination of oncogenic signaling-

pathway inhibitors and immunotherapy is a promising 

therapeutic strategy for gliomas. One preclinical model 

suggests that a combination therapy targeting TP53 

and PD-1 can kill glioma cells more effectively than 

monotherapy against either of these targets [12]. 

Consequently, improving the understanding of the 

association between oncogenic signaling pathways and 

the TME in gliomas may lead to the development of 

therapeutic strategies for patients with gliomas. 

 

This study was conducted to explore the potential 

changes in the TME caused by alterations in GBM 

oncogenic signaling pathways due to gene mutations, 

fusions, or copy number variations. The TME was 

described based on the expression of immune check 

point genes, immune-cell infiltration, tumor mutation 

burden (TMB), immune cytolytic activity (CYT), tumor 

purity, and tumor infiltrating CD8+ T cells; all of which 

are predictive biomarkers for immunotherapy. 

 

RESULTS 
 

Identification of RTK/Ras/PI3K/AKT signaling-

related biological processes 

 

We analyzed differential gene expression data from 

TCGA database and identified numerous DEGs 

associated with alterations in the RTK/Ras/PI3K/AKT 

signaling, RB, and TP53 pathways. The genes involved 

in these three oncogenic signaling pathways were 

described by cBioPortal and are listed in Supplementary 

Table 1. GO analysis was performed for the identified 

DEGs using DAVID and showed that alterations  

in RTK/Ras/PI3K/AKT signaling were involved in  

the inflammatory and immune responses (Figure 1A). 

Moreover, there were abundant cytokines and 

chemokines that were elevated in tumors with activated 

RTK/Ras/PI3K/AKT signaling (Figure 1B). Notably, 

the gene expression levels of interferon-stimulated 

chemokines (CXCL9/10/CXCL11), which recruit 

activated T and NK cells [13, 14], were significantly 

increased in tumors with altered RTK/Ras/PI3K/AKT 

signaling. 

 

Next, we downloaded the genes that are related to the 

immune response (GO: 0006955) or the inflammatory 

response (GO: 0006954) from the AmiGO 2 website 

(http://amigo.geneontology.org/amigo). We matched 

the downloaded genes with DEGs according to the 

status of the RTK/Ras/PI3K/AKT pathway. We 

identified 228 upregulated and 40 downregulated 

genes involved in the immune response (Supplementary 

Table 2) and 135 upregulated and 12 downregulated 

genes involved in the inflammatory response 

(Supplementary Table 3). All the DEGs from the two 

biological process were selected for heatmap analysis 

(Figure 1C, D). 

 

Relationship between the RTK/Ras/PI3K/AKT 

signaling status and predictive biomarkers 

 

There were data indicating that lower tumor purity is 

associated with an intense local immune response [15]. 

Here, we found that TMB was significantly increased in 

diffuse gliomas and Lower grade gliomas (LGGs), in 

which the RKT signaling pathway was activated (p < 

0.001, Figure 2A). Tumors with altered RTK also 

showed elevated levels in gliomas and LGG (p < 0.001, 

Figure 2B). CYT reflected the immune cytolytic activity 

in gliomas and was tremendously increased in cancer 

patients treated with immune checkpoint inhibitors 

(ICIs) [16, 17]. Our study also showed that CYT was 

significantly upregulated in tumors with altered 

RTK/Ras/PI3K/AKT signaling (p < 0.001, Figure 2C). 

Moreover, we showed that tumors with activated 

RTK/Ras/PI3K/AKT pathway were enriched with 

LGG-infiltrating CD8+ T cells (p <0.001, Figure 2D). 

However, we also found significant differences in 

immunotherapy biomarkers between LGG and GBM, 

the reason for which is unclear and requires further 

analysis. The tumor purity, TMB, CYT, and tumor 

infiltrating CD8+ T cells were all compared by the 

Wilcoxon test. 

 

Correlations between RTK/Ras/PI3K/AKT signaling 

and immune-regulatory gene-transcript signatures 

 

Immune checkpoints involved in the PD-1 signaling 

pathway were found to be strong predictive markers for 

anti-PD-1 treatment and were significantly upregulated in 

the altered RTK/Ras/PI3K/AKT pathway subgroup 
(Student’s t test, Figure 3A). However, the single cell 

RNA sequencing results showed that CD274 and 

PDCD1LG2 were not only expressed in malignant cells, 
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but were also heavily expressed in immune cells in 

gliomas (Supplementary Figure 1A, 1B). So, we analysed 

the immune checkpoints according to cell type. As GSEA 

analysis indicated a prominent enrichment of transcript 

signatures involved in the PI3K-AKT-mTOR and IFN-γ 

pathways for the TCGA bulk sequencing (Figure 3B),  

we quantified the signaling pathway of each single cell 

by ssGSEA [18, 19] using the “INTERFERON_ 

GAMMA_RESPONSE” and “PI3K_AKT_MTOR_ 

SIGNALING” gene sets. There was a significant positive 

correlation between “PI3K_AKT_MTOR_SIGNALING” 

and “INTERFERON_GAMMA_RESPONSE” in the 

malignant cells (Figure 3C). Moreover, malignant  

cells with detectable CD274 expression showed elevated 

levels of “PI3K_AKT_MTOR_SIGNALING” (Figure 

3D). However, the activity of this pathway was 

 

 
 

Figure 1. RTK/Ras/PI3K/AKT pathway was strongly related to immune functions in glioma. (A) GO analysis showed that 
RTK/Ras/PI3K/AKT pathway was involved in immune response and inflammatory response. (B) Volcano plot display differentially expressed 
cytokines and chemokines according to RTK/Ras/PI3K/AKT signaling. Heat maps display the association between RTK/Ras/PI3K/AKT pathway, 
and most correlated gene expression in the immune response (C) and inflammatory response (D). 
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increased in glioma cells with detectable PDCD1LG2 

expression in the study by Neftel et al [7] but not in that 

by Filbin et al [20] (Figure 3E). PD-L2 expression was 

also increased in gliomas with RTK activation in the 

study by Filbin et al., but the increase was not 

significant. It is possible that RTK was activated in 

fewer cells in the study by Filbin et al. compared to that 

in the study by Neftel et al. Finally, “PI3K_AKT_ 

MTOR_SIGNALING” was significantly increased in 

tumor-associated macrophages with detectable PDCD1 

but not in T cells (Figure 3F). 

RTK/Ras/PI3K/AKT signaling predicts the immune 

phenotype and cell survival in diffuse gliomas 

 

CD274, TMB, and CD8+ T cell infiltration were 

selected as markers for identifying the immune 

phenotype [21–23]. The cut-offs of these predictive 

biomarkers were determined based on survival 

outcomes. We observed that the activated RTK/ 

Ras/PI3K/AKT signaling pathway predicted a worse  

OS for diffuse gliomas (Supplementary Figure 2).  

Next, we investigated the prognostic value of the 

 

 
 

Figure 2. The landscape of immunotherapy predictive biomarkers in association with RTK/Ras/PI3K/AKT pathway. It 
displayed that elevated TMB (A), CYT (C), and infiltrating CD8+ T cells (D), and decreased tumor purity (B) in the activated 
RTK/Ras/PI3K/AKT pathway. 
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Figure 3. Correlations between RTK/Ras/PI3K/AKT signaling and immune-regulatory genes mRNA signatures. (A) The immune 
checkpoint genes were significantly upregulated in the activated RTK/Ras/PI3K/AKT signaling. (B) GSEA analysis showed a prominent 
enrichment of IFNγ pathways and PI3K-AKT-mTOR. (C) The single cell RNA seq showed a significant correlation between PI3K-AKT-mTOR and 
IFNγ pathway. The glioma cells with detectable CD274 (D) or PDCD1LG2 (E) showed an elevated activity of “PI3K_AKT_MTOR_SIGNALING”. 
(F) The PI3K_AKT_MTOR_SIGNALING pathway activity was significantly increased in tumor-associated macrophages, instead of T cells. 
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immune phenotype according to the status of the 

RTK/Ras/PI3K/AKT signaling pathway. First, we 

classified the immune phenotypes based on CD274 and 

TMB, which served as a strong predictor for patients 

with cancers treated with ICIs [21]. Here, we saw that a 

higher proportion of high-CD274 and high-TMB 

samples exhibited alterations in the RTK/Ras/ 

PI3K/AKT signaling group than their counterparts  

(p < 0.001, Figure 4A). However, we found that the 

group with both high CD274 and TMB suffered the 

worst OS compared with other groups, regardless of the 

RTK/Ras/PI3K/AKT signaling status (p < 0.001, Figure 

4B). Furthermore, CD274 and CD8+ T cells were used 

for classifying TME according to previous reports [22, 

23]. There was a lower proportion of the group with 

lower CD274 and CD8+ T cells in tumors without 

RTK/Ras/PI3K/AKT signaling alterations (p < 0.001, 

Figure 4C). The immune phenotype based on the 

presence of CD274 and CD8+ T cells also showed 

different survival outcomes based on whether 

RTK/Ras/PI3K/AKT signaling was altered (p < 0.001, 

Figure 4D). 

 

Associations of RTK/Ras/PI3K/AKT signaling with 

clinical characteristics 

 

The predictive immunotherapy biomarkers were divided 

into two groups according to survival outcomes, and the 

cut-off values are presented in Supplementary Table 4. 

We observed that RTK/Ras/PI3K/AKT signaling 

occurred more frequently in the subgroup with lower 

TMB, CYT, and CD274 expression. However, 

alterations in this pathway were consistently high 

regardless of changes in tumor purity, and PDCD1LG2 

and PDCD1 expression (Figure 5). 

 

The association between the RTK/Ras/PI3K/AKT 

signaling status and the clinicopathological factors of 

patients is presented in Table 1. Patients with altered 

RTK/Ras/PI3K/AKT signaling were significantly 

younger. Moreover, alteration in this pathway was more 

likely to occur in the neural and proneural TCGA 

transcript subtype, and in LGG. Additionally, isocitrate 

dehydrogenase mutations and ATRX chromatin 

remodeller loss were significantly correlated with 

activated RTK/Ras/PI3K/AKT signaling (Table 1). 

Analysis of the prognostic value of the clinicopathological 

factors by the log-rank test, showed that age, grade, 

isocitrate dehydrogenase, and RTK/Ras/PI3K/AKT 

pathways were independent variables for overall survival 

(Table 2). A nomogram based on these four independent 

prognostic factors was built, and the C-index for this 

model was 0.81. The nomogram model effectively 

predicted the 1-, 3-, and 5-year overall survival rates 

(Supplementary Figure 3). 

 

DISCUSSION 
 

Pathway-level activities have proven to be more stable 

than single-gene activities for stratifying patients into 

subgroups for predicting survival and guiding special 

therapeutics [24, 25]. In our study, we defined the 

 

 
 

Figure 4. Immune phenotype and survival analysis. The immuno-phenotype showed higher CD274 and TMB (A) in the tumor with 

altered RTK/Ras/PI3K/AKT signaling with different survival outcome (B). CD274 and CD8+ T cells (C) were significantly higher in activated 
RTK/Ras/PI3K/AKT pathway, with difference in OS (D). 
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activation of a pathway by CNV or genetic mutation 

and excluded unknown significant genetic alterations. 

Moreover, we performed a GSEA analysis using 

transcriptomic data to confirm that the two subgroups 

showed different PI3K_AKT_MTOR_SIGNALING 

activities. Next, we showed that tumors with altered 

RTK/Ras/PI3K/AKT signaling are characterized by 

favourable predictive immunotherapy biomarkers, 

including TMB, tumor-infiltrating CD8+ T cells, 

immune checkpoints, and interferon-γ signaling. These 

results indicated a selection of patients for a 

combination of immunotherapy and treatment with 

PI3K inhibitors. 

 

Three distinct immune patterns have been previously 

proposed: immune-inflamed, immune-excluded, and 

immune-desert [26]. Immune-inflamed tumors are 

characterized by increased TMB, checkpoint expression, 

interferon-γ signaling, and CD8+ T cell infiltration and 

are responsive to immunotherapy [26, 27]. Here, we 

found that gliomas with altered RTK/Ras/PI3K/AKT 

signaling mainly participate in the immune and 

inflammatory responses and are classified as immune-

inflamed tumors. Moreover, this subgroup of gliomas 

also exhibited the same patterns as the immune-

inflamed tumors in terms of having higher TMB, 

immune checkpoints, CD8+ T cell infiltration, and 

interferon-γ signaling. The single-cell RNA seq  

data revealed a positive association between the 

activated RTK signaling pathway and PD-1 expression 

in tumor-associated macrophages, and PD-L1 

expression in tumor cells. These results indicate that 

gliomas with active RTK/Ras/PI3K/AKT signaling are 

responsive to ICI immunotherapy via the targeting of 

PD-1/PD-L1 both on tumor cells and tumor-associated 

macrophages. Interestingly, increased RTK/Ras/PI3K/ 

AKT pathway-related gene expression not only 

increased CD274 expression in malignant cells, but 

also increased the expression of PDCD1 in 

macrophages in our study. PDCD1 was shown to 

inhibit phagocytosis by tumor-associated macrophages, 

thus providing anti-tumor immunity [28]. Consequently, 

inhibitors targeting the RTK/Ras/PI3K/AKT pathway in 

gliomas may exert benefits by activating tumor-

associated macrophages. 

 

Numerous inhibitors targeting the RTK/Ras/PI3K/AKT 

pathway have been developed and tested in clinical 

trials, but few have achieved a satisfactory therapeutic 

effect [29, 30]. Immunotherapy based on ICIs for 

 

 
 

Figure 5. Subgroup analysis showed the association between immunotherapy predictive biomarkers and RTK/Ras/PI3K/AKT 
pathway. 
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Table 1. Association of RTK/Ras/PI3K/AKT signaling and 
clinicopathological factors. 

Variables No (%) 
RTK/Ras/PI3K/AKT signaling 

not altered altered p value 

Age  

 885 (100%) 52.66 ± 16.11 49.47 ± 15.57 0.003 

Gender  

Female 363 (41.2%) 152 211 
0.581 

Male 518 (58.7%) 227 291 

Grade  

LGG 507 (57.3%) 201 306 
0.020 

GBM 378 (42.7%) 180 198 

TCGA subtype  

Classical 129 (18.9%) 64 65 

0.003 
Mesenchymal 145 (21.2%) 72 73 

Neural 133 (19.4%) 46 87 

Proneural 277 (40.5%) 101 176 

IDH-1 R132H  

Mutant 439 (50.2%) 157 282 
< 0.001 

Wild-type 436 (49.8%) 218 218 

ATRX  

Loss 206 (25.8%) 69 137 
0.005 

Expression 594 (74.3%) 265 329 

MGMT  

Methylated 563 (68.2%) 225 338 
0.059 

Unmethylated 263 (31.8%) 124 139 

 

Table 2. Univariate and multivariate survival analysis. 

Variables 
Univariate analysis 

 
Multivariate analysis 

HR (95%CI) p-val HR (95%CI) p-val 

Age > 65 2.09 (1.52 ~ 2.86) < 0.001  2.09 (1.52 ~ 2.86) < 0.001 

Grade (GBM) 7.45 (5.95 ~ 9.32) < 0.001  2.26 (1.55 ~ 3.29) < 0.001 

IDH (WILD-TYPE) 9.32 (7.27 ~ 11.96) < 0.001  3.76 (2.26 ~ 6.25) < 0.001 

ATRX (WILD-TYPE) 3.15 (2.34 ~ 4.26) < 0.001  0.98 (0.64 ~ 1.48) 0.907 

MGMT (Methylated) 2.96 (2.39 ~ 3.65) < 0.001  1.27 (0.95 ~ 1.70) 0.113 

TCGA subtype (PN) 0.58 (0.53 ~ 0.63) < 0.001  0.97 (0.83 ~ 1.12) 0.633 

RTK/Ras/PI3K/AKT signaling 4.82 (3.79 ~ 6.13) < 0.001  1.56 (1.08 ~ 2.24) 0.017 

 

gliomas has also not significantly improved survival in 

gliomas [31]. However, our results indicated that a 

combination of these two therapies could exert a better 

therapeutic effect. Moreover, experimental results 

showed that combinatorial therapy with nivolumab and 

inhibitors of tyrosine kinase effectively prolonged the 

survival of mice with GBM [32]. As nivolumab showed 
limited effects in patients with GBMs refractory to 

bevacizumab therapy [31], we suggest that this 

combination therapy may be applied to patients with 

altered RTK/Ras/PI3K/AKT pathway expression, who 

had predictive biomarkers for both treatments. 

 

CONCLUSIONS 
 

The RTK/Ras/PI3K/AKT pathway is frequently altered 

in gliomas, which has important prognostic and 

predictive value for immunotherapy. Moreover, our 

results indicate that a combination of immunotherapy 

and treatment with RTK/Ras/PI3K/AKT pathway 
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inhibitors may benefit the survival of patients with 

gliomas. Clinical studies are necessary to validate the 

analytical accuracy of our study and examine the 

clinical utility of our findings in the personalized 

treatment of gliomas. 

 

MATERIALS AND METHODS 
 

Patients and data 

 

The alterations in oncogenic signaling pathways in 

diffuse gliomas were identified based on copy number 

variation (CNV) and somatic mutation through the 

cBioPortal (http://www.cbioportal.org) [33, 34]. The 

CNV and mutations in genes of unknown significance 

and germline mutations were excluded when identifying 

alterations in pathways. The Cancer Genome Atlas 

(TCGA) PanCancer Atlas database was used, which 

consists of 661 cases with both mutation and CNV data. 

One or more gene alterations in the oncosignaling 

pathways were identified as an “altered pathway” 

patient sample. The corresponding transcriptome and 

whole exome sequencing data were downloaded from 

the GDC Data Portal of TCGA (https://portal. 

gdc.cancer.gov/). We used the somatic mutation as 

determined using TCGA as the mutation count per 

sample. Thirty-five megabases (Mb) was considered as 

the total exome size. We counted the TMB as the 

number of mutations/35 [35]. SingleCellPortal 

(https://portals.broadinstitute.org/single_cell/) was used 

to download single cell mRNA-seq data from the Neftel 

et al. study [7] and the Filbin et al. study [20]. 

Moreover, tumor-infiltrating immune cells were 

accessed from the Timer website (https://cistrome. 

shinyapps.io/timer/) [36]. ESTIMATE was used to 

calculate tumor purity [37]. 

 

Bioinformatic analysis 

 

The package “edgeR” was employed to identify 

differentially expressed genes with a log fold change > 

1 and FDR < 0.05. Gene ontology (GO) was used for 

the analysis of differentially expressed genes (DEGs) 

through the DAVID website (http://david.ncifcrf.gov/) 

[38]. Data were log-transformed before drawing  

heat maps. Gene set enrichment analysis (GSEA)  

was used to investigate the potential association 

between the RTK/Ras/PI3K/AKT pathway status  

and the immune response in the “hallmark gene  

sets (h.all.v7.0.symbols)” using Java 4.0 Desktop 

Application (http://software.broadinstitute.org/gsea/ 

index.jsp) [39]. The threshold for GSEA results was set 

at NES > 1.5 and FDR < 0.25. GSVA was used to 

evaluate the pathways in samples with mRNA data 

using the single-sample gene set enrichment analysis 

(ssGSEA) method. CYT was calculated by the genomic 

means of GZMA (granzyme A) and PRF1 (perforin 1) 

in TPM values [40]. 

 

Statistical analysis 

 

The R (3.5.2) language was used as the main tool for 

analysing data and drawing figures. The discrepancies 

in TMB, tumor purity, CYT, and tumor-infiltrating 

CD8+ T cells were compared by the Wilcoxon test using 

the wilcox.test package. Immune checkpoint expression 

data were log transformed and compared by Student’s t-
test. Correlations between CD274/2 and genes involved 

in the RTK/Ras/PI3K/AKT pathway were analysed by 

Spearman correlation and correlogram analysis. The 

cut-off for continuous variables were determined by 

survival data using X-tile 3.6.1 [41]. Overall survival 

(OS) analysis was performed using the log-rank test. A 

p < 0.05 was considered as statistically significant. 
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CNS: central nervous system; LGG: lower grade 

gliomas; GBM: glioblastomas; GO: gene ontology; 

GSVA: gene set variation analysis; OS: Overall 

survival; PD-L1: programmed death-ligand 1;TME: 

tumor microenvironment; PI3K: phosphatidylinositol-3-

OH kinase; CYT: immune cytolytic activity; GSEA: 

gene set enrichment analysis; ssGSEA: single-sample 

gene set enrichment analysis; GZMA: granzyme A; 

PRF1: perforin 1; ATRX: ATRX chromatin remodeller; 

TCGA: The Cancer Genome Atlas dataset. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The single cell analysis showed the distribution of CD274, PDCD1LG2 and PDCD1 according to cell 
type. (A, B) CD274 and PDDCD1LG2 were highly expressed in both malignant cells and immune cells in gliomas. (C) The expression of PDCD1 

was significantly increased in T cells. 
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Supplementary Figure 2. The survival analysis of RTK/Ras/PI3K/AKT signaling in gliomas. 

 

 
 

Supplementary Figure 3. Prognostic nomogram for OS and calibration curve for predicting OS. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2, 3. 

 

Supplementary Table 1. Genes involved in oncogenic signaling pathways. 

Oncogenic signaling pathways Genes 

RTK/Ras/PI3K/AKT Signaling 
GFR ERBB2 PDGFRA MET KRAS NRAS HRAS NF1 SPRY2 FOXO1 FOXO3 AKT1 

AKT2 AKT3 PIK3R1 PIK3CA PTEN 

RB pathway CDKN2A CDKN2B CDKN2C CDK4 CDK6 CCND2 RB1 

TP53 pathway CDKN2A MDM2 MDM4 TP53 

 

Supplementary Table 2. Significant regulated immune response gene. 

 

Supplementary Table 3. Significant regulated inflammatory response gene. 

 

Supplementary Table 4. Cutoff values for 
predictive immunotherapy biomarkers. 

Biomarker cutoff 

TMB 1 

Tumor purity 0.9 

CD8 0.3 

logCTY  3.3 

logCD274 1.2 

logPDCD1LG2 1.4 

logPDCD1 0.4 

 


