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The immune system has evolved to become highly specialized in recognizing and responding to pathogens and foreign molecules.
Specifically, the function of HLA class II is to ensure that a sufficient sample of peptides derived from foreignmolecules is presented
to T cells. This leads to an important concern in human drug development as the possible immunogenicity of biopharmaceuticals,
especially those intended for chronic administration, can lead to reduced efficacy and an undesired safety profile for biological
therapeutics. As part of this review, we will highlight the molecular basis of antigen presentation as a key step in the induction of
T cell responses, emphasizing the events associated with peptide binding to polymorphic and polygenic HLA class II molecules.
We will further review methodologies that predict HLA class II binding peptides and candidate epitopes. We will focus on tools
provided by the Immune Epitope Database and Analysis Resource, discussing the basic features of different prediction methods,
the objective evaluation of prediction quality, and general guidelines for practical use of these tools. Finally the use, advantages,
and limitations of the methodology will be demonstrated in a review of two previous studies investigating the immunogenicity of
erythropoietin and timothy grass pollen.

1. Introduction

Immunogenicity of drug candidates is a significant concern
that requires exhaustive evaluation during drug development
to ensure maximum efficacy and optimal safety of adminis-
tered therapeutics [1–4]. Accordingly, to control or abrogate
undesired immune responses it is necessary to have a detailed
understanding of drug-specific T cell responses. For example,
knowledge of the immunogenicity of specific compounds can
identify avenues for inhibiting T cells targeting the drug,
thereby impairing B cell activation and the development of
drug-specific antibody responses.

The T cell receptor recognizes a complex formed by a
peptide fragment and an MHCmolecule (also called Human
Leukocyte Antigen, or HLAmolecules, in humans) (Figure 1)
[5]. This recognition is a necessary event for T cell activation
and development of T cell responses. The peptide fragment
bound by an HLA molecule, typically generated by prote-
olytic processing of an antigenic protein, binds in a peptide

binding groove within the HLA molecule by engaging the
specific side chains of the peptide amino acids. A peptide
bound within an HLAmolecule and is recognized by a T cell
receptor is referred to as an epitope.

There are two main types of HLA molecules, class I and
class II (reviewed in [6]). HLA class I molecules are generally
involved in the recognition of proteins synthesized within
cells and represent a crucial component in the recognition
of viruses and intracellular bacteria. By contrast, HLA class
II molecules are involved in the presentation of exogenously
derived proteins, including biologic therapeutics, and there-
fore will be the primary focus of the discussions below.

HLA class II molecules are alpha/beta heterodimers
encoded by three separate loci: HLA-DR, DP, and DQ.
Importantly, the HLA genes encoding for class II (and class
I) MHC molecules represent some of the most polymorphic
loci in mammals. Indeed, several thousand different allelic
variants have been described to date (http://www.imgt.org/).

http://dx.doi.org/10.1155/2013/467852
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Figure 1: T cells recognize a complex of a peptide fragment and
MHC (HLA in humans).

It was recognized early on that the allelic variations cluster
in very discrete (hypervariable) regions [7]. When the three-
dimensional structure of MHC molecules was described [8],
it was demonstrated that these hypervariable regions corre-
spond to specific pockets within the molecule that engage
peptide side chains, and that each pocket was associated with
a relatively narrow chemical specificity.This feature results in
the different allelic variants having somewhat unique binding
repertoires.

The definition of a set of HLA molecules that is most
representative of the most common allelic variants in the
general population is an important issue to be considered in
any study addressingHLA class II restricted immunogenicity.
This issue was addressed by a series of previous studies from
our laboratory [9, 10] that identified a panel of 25 to 40
different HLA molecules that provide global coverage.

In general, a given HLA class II molecule will bind only
about 10% of all possible peptide sequences with high affinity
(IC
50
≤ 100 nM) [9]. As HLA binding is a prerequisite

for T cell immunogenicity, it was recognized almost a
quarter century ago that tools that would allow efficient
prediction of immunogenic peptides (epitopes) would be
of enormous value in understanding and modulating the
immune response [11–14]. At present, computational tools for
HLA binding predictions are readily available online [15].

As discussed briefly above, when protein and antibody
therapeutics are processed as protein antigens, an inappropri-
ate immune response against the respective therapeutics may
be induced, thereby reducing efficacy and/or causing safety or
toxicology concerns for an affected patient. Examples for such
adverse immune responses include the development of anti-
bodies against factor VIII in hemophiliacs [16, 17], calcitonin
in patients treated for osteoporosis [18, 19], erythropoietin in
patients undergoing therapy for chronic renal failure [20, 21],
and IFN-𝛽 in individuals undergoing treatment for multiple
sclerosis [22].

In summary, the polygenic and polymorphic nature of
HLA binding and T cell recognition leads to a broad and
low threshold of selectivity for activation of the immune

response. These features reflect the biological function of
HLA molecules in host immunity that ensures that for
each pathogen protein, at least some peptides are bound
and presented to T cells. The immune system has evolved
to minimize the likelihood that any given pathogen might
mutate and escape detection at both an individual and popu-
lation level. These biological facts lay the foundations for the
challenge of reducing and/or abolishing the immunogenicity
of protein drugs which are, unbeknownst to the immune
system, friends and not foe.

In this review, we will discuss different HLA class II
epitope prediction methodologies provided by the Immune
EpitopeDatabase andAnalysis Resource (IEDB—http://tools
.iedb.org/main/) and how they can be utilized to modify the
immunogenicity of protein therapeutics to mitigate possible
safety risks while maximizing efficacy.

2. Different Methodologies Used to Predict
HLA Class II Binding

An important feature of MHC class II molecules—distinct
from class I molecules—is that the ends of their binding
groove are open [23]. As a result, MHC class II molecules
can bind peptides of somewhat variable length, typically of
13–25 amino acids [24–26]. At the same time, the bulk of
the energy of interaction with theMHCmolecule is provided
by a peptide core of only about 9 amino acids in length [27,
28]. Thus, unlike MHC class I molecules, an epitope bound
to an MHC class II molecule can have multiple potential
binding registers within it. Algorithms designed to identify
MHC class II epitopes must have the capacity to estimate the
predictive score for all potential binding registers and select
the best one.

Several different methods have been developed to pre-
dict peptides binding to HLA molecules. These approaches
include simple binding motifs that identify a few key posi-
tions and residues associated with high binding capacity, or
more sophisticated computational approaches that develop
quantitative matrices and/or utilize hidden Markov models
and artificial neural networks. The definition of particu-
lar “binding motifs” for MHC molecules (similar peptide
sequence and structural features in binders compared to
nonbinders) led to the development of the first algorithms for
MHC binding predictions [12, 29]. These methods relied on
identifying whether a particular peptide matched the specific
binding motif for that MHC molecule. However, significant
variability in the length of the peptides binding toMHC class
II molecules makes alignment of the peptides to the binding
groove challenging.

The availability of large peptide:MHC binding data sets
has enabled the use of statistical approaches and the develop-
ment of matrix-based methods. The position specific scoring
matrices (PSSM) quantify, for each position of the peptide,
the positive or negative contribution of the 20 different amino
acid types to the overall binding affinity in the form of
specific matrix scores. The individual scores at each position
are then totaled to yield the overall binding score for each

http://tools.iedb.org/main/
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Figure 2: An example of matrices used to generate class II HLA prediction methods. Common prediction methods rely on the derivation
of specific matrices that quantify the positive or negative contribution of the 20 different amino acid types to the overall binding affinity for
each position.

peptide, as illustrated in Figure 2. Examples for such matrix-
based methods include stabilization scoring matrix align
(SMM-align) [11] and average relative bindingmethod (ARB)
[30]. Such position-specific quantitative matrices, derived
from experimental measurements, have proven over the
years to perform reasonably well overall. However, recent
applications ofmore computationally sophisticatedmachine-
learning methods, such as artificial neural networks (ANN),
have resulted in appreciable improvements in performance
[31, 32].

SMM-align, a stabilization matrix alignment method,
incorporates information on residues flanking the anchoring
amino acids and has improved prediction accuracy [11, 33,
34]. NN-align, an ANN based method, was developed as an
extension of SMM-align and also incorporated information
on the peptide flanking residues (amino acid composition
and length). It also had a new scheme for neural network
training that allows for correction of bias in the training data
(due to redundant binding core representation) [35].

An important development in the field of HLA class
II predictions has been the development of a pan-specific
method (NetMHCIIpan) that allows for predicting binding
even in the case of HLA class II alleles, for which little or
no binding data are available. The NetMHCIIpan method
is an ANN based method that is trained on quantitative
peptide HLA-DR binding data and factors specific informa-
tion pertaining to the peptide-binding core, peptide flanking
residues, and the HLA-DR residues estimated to be within
interaction distance of the bound peptide [36]. It is capable
of providing quantitative predictions of peptides binding to
all HLA-DR molecules with known protein sequence. An

updated and faster version of the pan-specific method will be
made publicly available in summer 2013.

2.1. IEDB as a Resource for MHC Class II Binding Prediction.
Themost comprehensive collection of epitope prediction and
analysis tools is hosted by the Immune Epitope Database
and Analysis Resource (IEDB—http://www.iedb.org/) [15,
37]. The IEDB is a free online resource hosting experi-
mentally derived epitope information related to allergens,
viruses, microbes, autoimmune diseases, and transplantation
epitopes. Overall, it hosts over 15,000 curated articles and
direct submissions, 100,000 unique epitopes, and specific data
derived from over 600,000 different assays, encompassing
class I and class II MHC binding, T cell recognition, and
antibody responses. Hosts include humans, nonhuman pri-
mates, rodents, and other vertebrates. The IEDB analysis
resource additionally contains a variety of different predictive
tools, including those for prediction of HLA class II binding,
and represents the “best in class” of different prediction
methodologies that have been developed over the years and
described in peer-reviewed literature.

The MHC class II binding prediction tool in the IEDB
makes available a variety ofmethods, includingNN-align and
NetMHCIIpan (both neural network based) [35, 36], SMM-
align (based on stabilization matrix alignment) [11], matrices
based on positional scanning combinatorial libraries [38],
Sturniolo et al. [39] and ARB methods [30] (both based on
scoring matrix methods), and finally a consensus method
[33, 38] based on a combination of NN-align, SMM-align,
and CombLib methods (Table 1).

The availability of so many different methods raises
the issue of how to perform a rigorous, quantitative, and

http://www.iedb.org/
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Table 1: The MHC class II prediction tools available at IEDB. A user may choose from one of the seven prediction methods provided. The
consensus method is used as the default method and is composed of three of the most successful individual prediction methods.

Methods Prediction based on Reference
Consensus Combination of NN-align, SMM-align and CombLib Wang et al., 2010 [38]
NetMHCIIpan Artificial neural network Nielsen et al., 2010 [31]

NN-align Artificial neural network Nielsen and Lund, 2009
[35]

SMM-align Stabilization matrix alignment Nielsen et al., 2007 [11]

Combinatorial library Position scanning combinatorial libraries Wang et al., 2008 [33]
Wang et al., 2010 [38]

Sturniolo Scoring matrix based Sturniolo et al., 1999 [39]
ARB Average relative binding Bui et al., 2005 [30]

transparent evaluation of their accuracy and sensitivity. To
address this issue, Wang et al. [38] evaluated quantitative
binding data from the Sette and Buus laboratories relating
to 26 different class II molecules, with each represented by
an average of approximately 1,500 different measurements.
Based on AROC values (area under the receiver operating
characteristic curves), a metric used to measure the perfor-
mance of MHC class II binding prediction tools [38, 40],
the top individual scoring methods were in general ARB,
SMM-align, and NetMHC, with AROC values in the 0.76 to
0.85 range [38]. A consensus method, based on the median
rank of the top 3 methods available for each allele, was
determined to be most effective with AROC values of 0.89.
Accordingly, while any individual method may be selected,
the consensus method has been selected by the IEDB as
the default. The consensus method covers 53 DR alleles,
and the development of NetMHCIIpan extends coverage
to several hundred. Additional recent developments have
greatly expanded coverage to include the DQ and DP loci.

To predict class II HLA binding using the default IEDB
method, (the consensus method) the user must provide the
protein sequence, choose the desired alleles, and select a pre-
diction method. If the specified allele is not available under
the consensus method, the NetMHCIIpan method is chosen
by default. Upon submission, the tool breaks the protein
sequence into all possible 15 mer peptides and then predicts
the binding affinity (typically in terms of IC

50
nM, where

lower predicted IC
50

values are considered better binders)
for each peptide. Finally, a percentile rank is generated by
comparing the peptide’s predicted binding affinity against
that of a large set of 15 mers randomly selected from the
SWISS-PROT database. Percentile scores provide a uniform
scale allowing comparisons across different predictors. A
lower percentile rank indicates higher affinity. In the case
of the consensus method, the median percentile rank of the
three methods is used to generate the consensus percentile
rank.

Selection of predicted binders can be done based on the
percentile rank or MHC binding affinity. The IEDB currently
recommends making selections based on a consensus per-
centile rank of the top 10%. Alternatively, selecting peptides
predicted to bind at 1,000 nM is also supported by experimen-
tal data [41]. In addition to using IEDB generated percentile

rank and MHC binding affinity, other alternate approaches
for selecting binders can also be utilized depending on a
user’s needs. For example, if there are too few or too many
predicted binders based on the recommended threshold and
the user needs more numerous or fewer peptides to study, it
is advisable to vary the cut-off values and select the desired
number of top scoring peptides. Another scenario may be
to set a desired percentage within the user’s peptide set
(irrespective of IEDB percentile rank), if it is desired to study
a fixed number of the best predicted peptides.

As previously mentioned, the tool breaks the sequence
into all possible 15 mers, generating a set of peptides over-
lapping by 14 amino acid residues. This leads to several
peptides sharing the same 9-residue core being predictedwith
the same top scores. To solve this problem, two different
approaches are utilized. In the first scenario, the user can
“preprocess” the sequence to generate 15 mers overlapping
by 10 amino acid residues and then perform the prediction
on this peptide set. Alternatively, following the predictions,
the user can do a “postprocessing” step to remove largely
overlapping peptides.

A stand-alone version of the predictive tool is also
provided by the IEDB which can be downloaded from the
IEDB website. This version has several advantages, including
allowing the user to implement tools onhis/her ownmachine.
This in turn may allow better handling of large volumes of
data (genome scale) and repetitive analyses. This approach
can make predictions faster. The stand-alone version is freely
available for nonprofit and academic institutions and at a
nominal license fee to industry.

2.2. Test Case Scenario 1: Immunogenicity of EPO. Tangri et al.
[14] described an analysis of the dominant HLA class II
restricted epitopes containedwithin the EPO sequencewhose
immunogenicitywas linked to rather severe reactions [20, 21].
In this section we will briefly review the main findings of the
Tangri study in the context of the discussions above.

Tangri et al. [14] synthesized a set of overlapping peptides
spanning the entire EPO sequence and tested them for
binding to common HLA molecules. The results illustrated,
as expected, that nearly all peptides will binds at least some of
the common HLA molecules and each of the common HLA
molecules bind multiple EPO peptides. Thus, generating an
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EPO protein homolog that is not at all immunogenic is likely
an unrealistic goal. Importantly, however, the same results
suggest that overall HLA binding patterns can be used to rank
protein variants to reduce potential immunogenicity.

In fact, a subsequent series of experiments tested the
immunogenicity in vitro of the same set of peptides for
human lymphocytes and identified two broad, immunogenic
regions. Further analysis demonstrated that corresponding
peptides were promiscuous; that is, the peptides had the
capacity to bind multiple HLA molecules.

At the same time, HLA class II binding promiscuity
was utilized to generate EPO variants associated with lower
immunogenicity in vitro. Specifically, variant peptides were
generated containing substitutions predicted to promote
lower promiscuity. It was shown that peptides binding fewer
HLA alleles were less immunogenic and that EPO proteins
carrying those substitutions were also less immunogenic in
vitro. Thus, this data demonstrated that promiscuity can be
used to rank the relative immunogenicity of protein variants.

Extending these observations, in the case of EPO, if a
user desired to use IEDB tools to predict immunogenicity,
a set of 31 peptides (15 mers overlapping by 10 residues)
would have been generated and entered in the prediction
tool. After selection of a set of HLA molecules representative
of the general population, a total of 31 peptides × 24 alleles
results would be used to select the predicted binding peptides
for each allele according to the general guidelines described
above. Finally, the number of alleles predicted to bind each
epitope would be determined and plotted along the EPO
sequence to highlight predicted promiscuous regions. This
same strategy could also be utilized to compare the relative
predicted binding potential of different proteins and related
variants. Taken together, these observations demonstrate
how HLA class II predictions may be useful to compare
the potential immunogenicity of protein variants and guide
the development of biological therapeutics with potentially
reduced immunogenicity.

2.3. Test Case Scenario 2: Pollen Immunogenicity and Promis-
cuous Epitopes. An independent series of investigations
mapped the dominant epitopes recognized in response to
timothy grass pollen allergens. In these studies [42], ten
different Phl p proteins were considered (Phl p 1, 2, 3, 4, 5,
6, 7, 11, 12, and 13) and were chosen based on being the targets
of IgE antibody responses.

A total of 687 overlapping peptides spanning these
allergens were synthesized. Next, peptide pools were tested
for reactivity with T cell lines obtained by in vitro timothy
grass extract restimulation of PBMC from a cohort of allergic
patients. As expected, a large fraction of the peptides tested
were immunogenic and a total of 43 different antigenic
regions were identified. Importantly, it was noted that the 9
most dominant regions accounted for approximately half of
the total T cell reactivity. Further analysis demonstrated that
bioinformatics prediction of the most promiscuous epitopes
also allowed identification of roughly 50% of the total T cell
response.

This data provided the foundation for an approach to
identify dominant responses based on prediction of HLA
promiscuous binding. This approach has since been utilized
to identify epitopes in many other allergen targets and the
performance of a genome-wide mapping of tuberculosis-
associated epitopes [43–46].

3. Conclusions

The biological function of HLA class II molecules is to
bind and present exogenous peptides for T cell scrutiny. As
such, the polygenic and polyallelic nature of HLA molecules
ensures, in general, that each molecule can bind multiple
peptides derived from each protein and that each peptide
will be bound by some of the many locus and allelic HLA
variants. The resulting heterogeneity provides a significant
challenge for a pathogen or a biological therapeutic to escape
recognition by the immune system.

Despite its complexity, this issue can be experimentally
addressed using the notion that HLA binding capacity can be
effectivelymeasured and predicted. A number ofHLA class II
predictors are freely available online. The breadth of experi-
mentally based algorithms includesmostly humanmolecules;
however, some murine predictors are also available. While
the accuracy of class II predictors is still lower than that of
class I predictors (current average AROC=0.87± .005), sub-
stantial improvements have been made over recent years (in
2006, average AROC=0.76± .005); these advances include
the development of PAN predictors, enhanced speed, and
updated predictive tools. Additionally, a new version is
planned for release on the IEDB later in 2013.

While the goal of generating biologic-based therapeutics
that pass undetected byHLAclass IImolecules is challenging,
prediction algorithms can be utilized to identify promiscuous
HLA class II binders that have been demonstrated to repre-
sent dominant T cell epitopes. In addition, HLA class II pre-
dictions are useful to compare the potential immunogenicity
of protein variants and guide the development of efficacious
therapeutics with potentially reduced immunogenicity.
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