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To improve the automatic segmentation accuracy of breast masses in digital breast tomosynthesis (DBT) images, we propose a
DBTmass automatic segmentation algorithm by using a U-Net architecture. Firstly, to suppress the background tissue noise and
enhance the contrast of the mass candidate regions, after the top-hat transform of DBT images, a constraint matrix is constructed
and multiplied with the DBT image. Secondly, an efficient U-Net neural network is built and image patches are extracted before
data augmentation to establish the training dataset to train the U-Net model. And then the presegmentation of the DBT tumors is
implemented, which initially classifies per pixel into two different types of labels. Finally, all regions smaller than 50 voxels
considered as false positives are removed, and the median filter smoothes the mass boundaries to obtain the final segmentation
results. -e proposed method can effectively improve the performance in the automatic segmentation of the masses in DBT
images. Using the detection Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), and area under the curve (AUC) as evaluation
indexes, the Acc, Sen, Spe, and AUC for DBT mass segmentation in the entire experimental dataset is 0.871, 0.869, 0.882, and
0.859, respectively. Our proposed U-Net-based DBT mass automatic segmentation system obtains promising results, which is
superior to some classical architectures, and may be expected to have clinical application prospects.

1. Introduction

Breast cancer is the most common malignant tumor of
breast epithelial tissue in women, which seriously threatens
the physical and mental health of patients [1]. In recent
years, breast cancer has become a significant public health
problem in today’s society with a rising incidence and the
younger incidence groups. Early diagnosis and treatment
can effectively reduce the mortality and improve the quality
of life of patients [2, 3]. Digital breast tomosynthesis (DBT)
is a new 3D tomography method for breast cancer screening.
It can reconstruct a small amount of low-dose mammo-
graphic images from a limited angle into three-dimensional
mammographic images and can better detect some small
hidden lesions [4]. Compared with traditional mammog-
raphy, although DBT has improved the sensitivity of
detecting breast masses, it has also significantly increased the

amount of interpretation data for radiologists, which is time
consuming and poor repeatability [5–7]. If the computer can
automatically detect breast masses in DBT images, it can not
only reduce the review time for radiologists but also ef-
fectively reduce the misjudgment caused by excessive fa-
tigue.-erefore, automatic segmentation of breast masses in
DBT images is of great clinical value in assistant screening,
early diagnosis, and preoperative localization of breast
cancer [8–10].

Automatic segmentation of breast masses in DBT images
is a challenging task because the signal-to-noise ratio of two-
dimensional slice images of DBT is not high and the sig-
nificance of breast masses is not strong [11]. Although it is
difficult to achieve precise automatic segmentation of DBT
tumors, many scientists have made fruitful explorations on
automatic segmentation of DBT tumors in recent years
because of its great significance in assistant diagnosis and
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treatment [12]. -ese studies can be roughly divided into
two categories [13]. One is breast mass detection based on
DBTreconstructed slice images. Reiser et al. [14] proposed
a breast mass detection computer-aided diagnosis (CAD)
system, which uses a radial gradient index to detect and
segment suspicious lesions in DBT reconstructed images.
-e experimental results show that incorporating vertical
direction information does not improve the performance
of gradient-based classifiers, but it can improve the per-
formance of shape-based classifiers. In another early
study, Chan et al. [15] also proposed a method for au-
tomatic detection of breast masses, including DBT re-
construction image interpolation to obtain cubic pixels,
gradient field analysis to determine suspicious regions,
three-dimensional region growth segmentation, and
feature analysis, with the sensitivity of 85%. -en, Chan
et al. [16] studied the relationship between the number of
projected images and the dose used to obtain DBT images
and the performance of the algorithm and used a set of 21
two-dimensional projected images or 11 reconstructed
slice images to test. Another is breast mass detection based
on the two-dimensional projection image of DBT. van
Schie et al. [17] proposed an automatic detection method
for breast masses, using a mammography image library to
train classifiers. To optimize and make the technique
suitable for DBT images, tomographic images were gen-
erated from reconstructed volume images for analysis.
Palma et al. [18] constructed a system of automatic de-
tection of breast masses in DBT reconstruction images by
using fuzzy theory and antagonistic reasoning method.
Kim et al. [19] studied the influence of the saliency of
reconstructed slice images on the detection performance
of breast masses in DBT reconstructed images and pro-
posed an automatic detection method of breast masses
based on the saliency of reconstructed slice images by
DBT. In addition, some researchers fused the information
of projection images and reconstructed images to detect
DBT tumors. A hybrid method of two-dimensional and
three-dimensional images was used to segment DBT
masses with projection image and reconstructed image
information [20].

Over the last few years, convolutional neural network
(CNN) based on deep learning has become a research
hotspot in the field of computer vision because of its strong
ability to express image features [21, 22]. It has achieved
fruitful results in image recognition and classification, target
detection, and other fields. Elboushaki et al. validated that
the CNN model can recognize fine mammographic features
[23]. Vigueras-Guillen et al. first proposed a full-convolution
network for semantic segmentation, replacing the conven-
tional full-connection layer in the CNNwith the convolution
layer to obtain a rough label graph and then using the
deconvolution layer to sample the rough label graph to
achieve the classification results of each pixel [24]. Ciresan
et al. used patches of 101× 101 pixels to train a CNN for
mitosis detection in breast cancer histology images, who
won the ICPR 2012 Mitosis Detection Contest with F1-score
of 0.782 [25]. Zhang et al. proposed a new FCN-like
structure, U-net, for Bio-cell image segmentation [26]. -is

method has attracted considerable attention in the medical
field because the U-net architecture supports a small amount
of the data training model and fast image segmentation with
the trained model can be achieved. At present, this method
has been applied to many different tasks and also achieved
excellent results, such as image segmentation and image
conversion. [27, 28].

In this work, we propose an efficient DBT masses
automatic segmentation algorithm by using a U-Net ar-
chitecture, which works with only weakly human-anno-
tated mass masks. To suppress the background tissue noise
and enhance the contrast of the mass candidate regions,
we construct a constraint matrix, which is multiplied with
the DBT image after the top-hat transform. A U-Net
architecture is built, and image patches are extracted
before data augmentation. -en, the presegmentation of
the breast tumors in DBT images is implemented. All
regions smaller than 50 voxels considered as false positives
are removed and the final segmentation results are ob-
tained after the median filter smoothes the mass
boundaries. -e proposed method can effectively improve
the performance in the automatic segmentation of the
masses in DBT images. -e architecture is developed and
evaluated with the DBT images database prepared by a
neuroradiologist in our research team. Experimental re-
sults tested on the DBT database indicate that the pre-
sented DBTmass CAD architecture achieves the high level
of segmentation. To our knowledge, this is the first DBT
study to employ the U-Net framework to segment the
masses in DBT images automatically.

-e remaining sections are organized as follows. In
Section 2, the proposed method is presented. -e database
used for evaluation is detailed and results are presented and
discussed in Section 3. Finally, the main conclusions are
presented in Section 4.

2. Methods

Our proposed approach consists of six main stages: DBT
image preprocessing, patch extraction, data augmentation,
voting scheme fusion, segmentation via the U-Net archi-
tecture, and postprocessing. An overview of our presented
architecture is illustrated in Figure 1.

2.1. DBT Image Preprocessing. Usually, the random distri-
bution of X-ray photons in mammography or DBT images
will seriously affect the quality of breast images. However, as
the average photon number (X-ray dose) increases, the noise
will gradually decrease. For a typical DBT system, radiation
exposure is an important factor to avoid the risk of radia-
tion-induced cancer. -erefore, the low radiation dose is
often used when creating the tomosynthesis images and the
total radiation dose of DBT is slightly higher than that of
standard mammography. In theory, the typical DBT images
usually contain Poisson distribution noise. To address this
issue, a top-hat transform is applied to enhance the contrast
between candidate tumor location regions and background
tissues, which is defined as
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Itop− hat � I − min I · sc( 􏼁∘so; I( 􏼁, (1)

where I denotes the preprocessed image, · represents the
morphological “closed” operation, ∘ denotes the morpho-
logical “open” operation, and sc and so are the disc structure
elements. Also, to enhance candidate location regions and
suppress the background tissues, a constraint matrix we
constructed is multiplied with the image matrix. -e con-
straint matrix is generated by an isotropic radial basis
function centered on the candidate location region with a
variance σ2 (σ is 5mm). It can be detailed that randomly
selected one mark location xr from all locations x in one
image view, remove xc from x, where

xc � xi xi − xr

����
����

􏼌􏼌􏼌􏼌 ≤ 5, xi ∈ x􏽮 􏽯. (2)

Figure 2 shows the DBT image preprocessing effects,
where Figure 2(a) is the original image and Figure 2(b) is the
preprocessed image.

2.2. Image Patch Generation. Generally, it is straightforward
to train the proposed U-Net directly by using the image
patches extracted from the DBTmass regions because we have
location information of the masses in the training and testing
image sets. However, the available dataset has a small number
of examples as compared to other U-net classification
problems, and the direct use of whole images would most
likely result in overfitting. -is can be addressed by splitting
images into patches which increases dataset complexity and
dimension. In fact, nonmass regions can also provide some
useful information for the breast mass segmentation task. In
our model, the input to the U-Net architecture is a two-di-
mensional array, of shape height×width, since it consists of a
two-dimensional patch of width× height voxels. -e two-
dimensional patches are taken along the x-y axis, also called
the axial plane in anatomy. To avoid overfitting, we can
extract the image patches from mass and nonmass regions to
augment the training data. -at is, we use the image patches
extracted from the nonmass regions as additional negative
samples for the U-Net architecture training, to help the
proposed model to distinguish confounding regions from
DBT masses.

In addition, the training data has to be balanced; that is,
the same number of examples for each class should be in-
cluded in the training data, which is to ensure that the U-Net

model can generalize well. However, the number of pixels in
themass regions is significantly less than that in the nonmass
regions, which leads to a severe class imbalance problem. To
address this issue, we randomly resample at each epoch the
same number of patches for each class from all possible
patches for that class.

2.3. U-Net Architecture. In this part, we will briefly intro-
duce the architecture of the proposed typical U-Net model
and its application to our DBT mass CAD system. We
perform an end-to-end pixel-wise segmentation via a U-Net
model. As shown in Figure 3, we illustrate the framework of
our model. -e proposed U-Net-based DBT mass seg-
mentation architecture is mainly composed of a contracting
path in the left side and an expansive path in the right side.
-e contraction path in the model follows the typical
structure of the convolution network, including two 3× 3
convolutions applied repeatedly, each convolution is fol-
lowed by a rectified linear unit (ReLU) and a 2× 2 max-
pooling operation with stride 2, which is used for down
sampling. In each of the down sampling step, we double the
number of feature channels. Each step in the expansive path
includes the up sampling of the feature map, followed by a
2× 2 convolution (“up convolution”), which halves the
number of feature channels, cascades them with the cor-
responding cropped feature map in the contraction path,
and two 3× 3 convolutions, each of which is followed by a
ReLU. Because every convolution will lose the boundary
pixels of the image, the image must be cropped. In the last
layer of the network, a 1× 1 convolution is used to map the
characteristic vector of each 64 components to the required
class number. In total, there are 23 convolutional layers in
our proposed U-Net architecture.

2.4. Training Procedure. During the training process, we
have balanced the training data by randomly resampling at
each epoch the same number of patches for each class from
all possible patches for that class. However, it is worth noting
that the mass detection task still has a class-imbalance
problem, where the number of positive samples (i.e., pixels
in mass regions) is much less than the number of negative
samples (i.e., pixels in nonmass regions). Hence, in our
study, the proposed U-Net model uses the Fβ-measure as the
cost function, rather than the cross-entropy-based or the
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Figure 1: Overview of the presented method.
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quadratic cost function. Denote S and T as the predicted
heatmap and the ground truth heatmap, respectively. Let M
represent the number of elements (pixels) in S and T, and the
Fβ-measure based loss function is defined as

Fβ(S, T) �
1 + β2􏼐 􏼑􏽐

M
i�1siti

􏽐
M
i�1si + 􏽐

M
i�1ti

, (3)

where si is the ith element of the predicted heatmap and ti is
the ith element of the ground truth heatmap. In our study,
we set β � 1.

In the training procedure, the input images and their
corresponding segmentation heatmaps are used to train the
U-Net model with the stochastic gradient descent. Besides
that, we applied the Adaptive Moment Estimation Method
(Adam) [29] which is a stochastic gradient descent method
that computes adaptive learning rates for each parameter to
minimize the Fβ-measure-based loss function. -e Adam
optimizer parameters in our proposed U-Net architecture
are set as learning rate� 0.0002 and the maximum number
of epochs� 150. We adopted a Xavier normal heuristic [30]

to initialize kernel weights in our study, which allowed us to
maintain the gradients in controlled levels and thus prevent
gradient vanishing during back-propagation. -e biases are
all initialized to 0. Because of the unpadded convolutions,
the size of the output image is smaller than that of the input
image by a constant border width. In order to minimize the
overhead and maximize the use of GPUmemory, we tend to
make large input tiles over a large batch size, and therefore
reduce the batch to a single image.-erefore, we apply a high
momentum to make a large number of the previously seen
training samples to determine the update in the current
optimization step.

2.5. DBT Data Augmentation. To improve the performance
of U-Net, we need to extend the data to generate more
training data from the original data. In typical applications
of the U-Net neural network for image processing and
computer vision tasks, translations and rotations are used. In
this study, the data consists entirely of two-dimensional
patches. -us, translation cannot be used as it would result
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Figure 3: Proposed DBT mass segmentation U-Net architecture.
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Figure 2: Preprocessing effects. (a) Original image and (b) preprocessed image.
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in a different patch, with a possibly different label. However,
using rotations of the patches might give some performance
improvements.-erefore, we perform the rotations by using
angles multiple of 90°.

2.6. Voting Scheme. Every test DBT image is first split into a
set of patches, and for each patch a probabilistic prediction
pi ∈ [0, 1] is made using the U-Net model.-ese predictions
are then fused into the final image label using one of the
following three voting schemes. -e first three (Majority
voting, Maximum probability, and Sum of probabilities) are
also used and compared [31], whereas the other one
(Connectivity) is proposed by us. Our motivation behind
this voting schemes is to reinforce spatial consistency be-
tween votes of patches because in reality the true image label
is likely to be assigned based on the structure of a particular
connected region of the tissue rather than on many dis-
connected bits. In particular, if patches that vote for the same
label are adjacent to each other, then this should be a more
significant vote than if they are separated. -e precise
definitions follow.

2.6.1. Majority Voting. Let us define the number of patches
that vote for the class label k as

vk � 􏽘
i∈P

􏽙 li � k( 􏼁, (4)

where li is the class label of patch i. -e image label 􏽥k is then
selected as the most common patch label by

􏽥k � argmax
k∈K

vk( 􏼁. (5)

2.6.2. Maximum Probability. -e patch with the highest-
class probability decides the image class label as

􏽥k � argmax
k∈K

max
i∈P

pi[k]( 􏼁􏼒 􏼓, (6)

where pi[k] � p (patch i ∈ class k).

2.6.3. Sum of Probabilities. -e patch class probabilities are
summed and the class with the largest sum is chosen as

􏽥k � argmax
k∈K

􏽘
i∈P

pi[k]⎛⎝ ⎞⎠. (7)

2.6.4. Connectivity. -is method is based on counting the
number ck of connections for each class k, where the con-
nection means that two adjacent patches have the same class
label k. -ese counts are calculated as

ck � 􏽘
i∈P

􏽘
j∈Pi

􏽙 li � lj􏼐 􏼑, (8)

where Pi is the set of patches adjacent to patch i, including
the patches along diagonals. -e obtained counts are then
used to weight the class votes vk as

􏽥k � argmax
k∈K

ckvk

􏽐k′∈Kck′
􏼠 􏼡 � argmax

k∈K
ckvk( 􏼁. (9)

2.7. Segmentation Postprocessing. Some small clusters may
be mistakenly classified as the DBTmasses. To deal with this
issue, we impose volumetric constrains by removing clusters
in the segmentation obtained by the U-Net that are less than
50 voxels in volumes.

3. Experimental Details

3.1. Materials. -e benchmarking clinical DBT images used
are collected at Zhejiang Chinese Medical University Af-
filiated Guangxing Hospital and Zhejiang Provincial Hos-
pital of Traditional Chinese Medicine (TCM) with
Institutional Review Board (IRB) approval. Every DBT
image is produced by low dose exposure, where the total shot
dose should be within the range of a regular mammogram
dose. DBTcases are acquired in mediolateral oblique (MLO)
and craniocaudal (CC) views (Siemens Mammomat Inspi-
ration DBTsystem) using a total tomographic angular range
of 60° with a 5° increment of rotation and 12 projection
views. -e DBTs are reconstructed to the images with 1mm
slice spacing by using the simultaneous algebraic recon-
struction technique (SART). We convert the images into
TIFF stack/slices and used data in JPEG format. Depending
on the thickness of the breast, each DBT volume provides
between 50 and 80 2D slices with a resolution of 1200± 901
pixels, which are saved in the JPEG format.

-e database consists of 87 DBT volumes and 3960 2D
X-ray images slices. Among these cases of breast cancer
patients, 29 are malignant and 42 are benign (absolute
healthy).-e noncancerous DBTvolumes are collected from
the left and right breasts of 23 patients without early signs of
breast cancer. -e cohort of cancerous cases is annotated by
two experienced radiologists with a 2D bounding box for
DBT.

3.2. Experiments Design. Our purpose is to evaluate three
scenarios that reflect common practices in research and
evaluation of the DBT mass segmentation with the U-Net
model:

(i) -e data used for model training and for model
testing are from the same hospital

(ii) -e data used for model training and for model
testing are from a different hospital

(iii) -e data used for model training are from the same
institution as the data for model testing are enriched
by additional data coming from a different hospital
resulting in an increased size of the training dataset

We use the following way to simulate three scenarios
with 5-fold crossvalidation. First, we number the DBT slice
images serially for each hospital. Within a fold, the serial
numbers for training and test set are obtained. To auto-
matically segment the DBTmass in the test set, we develop

Computational and Mathematical Methods in Medicine 5



three U-Net models as follows. (i) -e first U-Net model is
trained on the DBT images from the same hospital using the
serial numbers in the training set. (ii) -e second U-Net
model is trained on the DBT images using the training set
serial numbers from the other dataset. In this way, we use the
same number of DBT images used for training the U-Net
model. (iii) -e third U-Net model is built using all the DBT
images used in (i) and (ii) such that DBT images from both
hospitals are used. Hence, we use six types of train-test
combinations: (a) train on hospital 1 (denoted as H1), test on
H1, (b) train on hospital 2 (denoted as H2), test on H2,
(c) train on H1, test on H2, (d) train on H2, test on H1, (e)
train on (H1+H2), test on H1, and (f) train on (H1+H2),
test on H2. Please note that the DBT images segmented by a
U-Net model are never present in the training set for that
U-Net model. For each DBT image under test, we classify
each voxel into one of the two classes (nonmass region and
mass region).

3.3. Evaluation Metrics. To enable comparison with other
state-of-the-art works, we used three metrics commonly
found in the literature: Accuracy (Acc), Sensitivity (Sen),
and Specificity (Spe) as evaluation of classification results.
Acc refers to the ratio of the number of pixels correctly
segmented to the number of total pixels in the image, Sen
refers to the probability of a positive test among the subjects
with the condition, and Spe refers to the probability of a
negative test among the subjects without the condition. -e
DBTmasses segmentation evaluation metrics are defined as
follows:

Sen �
TP

TP + FN
,

Spe �
TN

TN + FP
,

Acc �
TP + TN

TP + TN + FP + FN
,

(10)

where TP, FP, TN, and FN denote true positive, false
positive, true negative, and false negative, respectively.

Additionally, to evaluate the robustness of our proposed
U-Net model, the receiver operating characteristic (ROC)
curve and the average area under the curve (AUC) are
calculated and compared.

-e proposed approach is implemented in Python using
the machine learning library Keras. -e training and test
experiments are performed using the cloud computing
service PAI-DSW provided by Ali. Specifically, we use the
runtime platform processor of Intel (R) Core (TM) i7-6800K
CPU @ 3.40GHz, 32GB RAM, Nvidia GeForce RTX 2080
Ti, 64-bit Windows 10. -e presented figures are produced
using the plotting library matplotlib. All the parameters are
set according to our preexperimental study, and it takes
about 56 minutes to learn the parameters. An example code
is shown below:

import numpy as np
import configparser

import matplotlib as plt
import os
from keras.models import Model
from keras.layers import Input, concatenate,
Conv2D, MaxPooling2D, UpSampling2D, Reshape,
core, Dropout
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint,
LearningRateScheduler
from keras import backend as K
from keras.optimizers import SGD
from lib.help_functions import ∗

3.4. Results and Analysis. To assess the segmentation per-
formance of our proposed method based on U-Net, we
evaluated the overlap between the proposed DBTmass labels
and the ground truth (GT). Figure 4 showcases example
results of the DBT mass automatic segmentation with the
U-Net model trained and tested on the images (patient #1,
patient #2, and patient #3) from the same hospital. -e 1st
row shows DBT original images for patient #1, patient #2,
and patient #3, the 2nd row shows respective images seg-
mented with our proposed U-Net architecture, and the 3rd
row shows the same images segmented manually.-e results
indicate that our proposed U-Net model has high agreement
between the generated results and the provided labels, and it
takes about 132 seconds to label a sample.

Table 1 presents the performance of various voting
schemes to assign final image labels. We can see that when
the U-Net model is trained on the DBT images comes from
the same hospital and tested on the DBT images comes from
the same hospital, the maximum probability achieves best
accuracy, which highlights the importance of a good voting
scheme, namely, maximum probability. Contrary to my
expectations, the method connectivity, whose aim is to
reinforce consensus between spatially close patches, does not
provide better results and scored the same as the majority
voting.-is may imply that having such spatial constraints is
not relevant to this segmentation problem.

Table 2 shows the average Sensitivity (Sen) values of
the DBTmass automatic segmentation by training-testing
within the same hospital, across hospitals, AND with
both hospitals using the maximum probability voting
scheme. It can be found that the performance of the DBT
mass automatic segmentation based on the proposed
U-Net model significantly decreases when the proposed
U-Net model is trained on data comes from a different
hospital (Sen � 0.83 ± 0.015 for H1 and Sen � 0.85 ± 0.013
for H2) as compared with when it is trained with the data
comes from the same hospital (Sen � 0.88 ± 0.009 for H1
and Sen � 0.89 ± 0.021 for H2).

Similar to Sensitivity (Sen), Specificity (Spe) shows that
training the U-Net model on different hospital DBT images
decreases the performance (Spe� 0.86± 0.009 for H1 and
Spe� 0.87± 0.013 for H2) compared with training on the
same hospital dataset (Spe� 0.89± 0.011 for H1 and
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Spe� 0.89± 0.017 for H2). All results using Spe are pre-
sented in Table 3. Accuracy (Acc) has been used as another
metric of evaluation, as shown in Table 4. We find that
when the proposed U-Net model is trained on different
hospital DBT images, the Acc values are less than 0.87.
However, when the proposed U-Net model is trained on
the same or both hospitals DBT images, the Acc values are
always greater than 0.87. Specifically, low Sen and high Acc
can be obtained (Sen � 0.78 ± 0.015 and Acc� 0.86 ± 0.009)
while training on H2 and testing on H1, which indicates
that many FN are present, and high Sen and low Acc are
obtained (Sen� 0.86± 0.013 and Acc � 0.79± 0.015) while
training on H1 and testing onH2, which indicates many FN
are present. For training and testing on the same hospital
DBT images, both Sen and Acc are greater than 0.88
(Sen � 0.88± 0.009 and Acc � 0.88± 0.011 for H1) and
(Sen � 0.89± 0.021 and Acc � 0.89± 0.017 for H2). Similar
to training/testing on the same hospital, high Sen and Acc
are obtained while training on both hospitals DBT images
(Sen � 0.87± 0.011 and Acc � 0.86± 0.021 for H1) and
(Sen � 0.88± 0.015 and Acc � 0.87± 0.019 for H2).

3.5. Discussion. To validate our U-Net CAD framework, we
combine the two DBT image datasets into a bigger dataset,

and the combination is denoted as the entire dataset. We
compare the performance of various methods on automated
DBT mass detection at aspects of the classifier used, DBT
dataset size, Sen, Acc, and AUC in Table 5, our network
achieve quite a competitive result than some of them.
Among these models, we will discuss in detail the research
works by Kim et al. [31], Fotin et al. [32], and Samala et al.
[33], which applied deep learning methods to DBT mass
detection and segmentation. -eir works evaluated the DBT
mass automatic segmentation CAD frameworks, which are
based on both hand-crafted feature and deep convolutional
neural network (DCNN)-based models. Samala et al. [33]
proposed a DCNN architecture consists of four convolu-
tional layers and three fully connected layers. Firstly, the
DCNN model is trained on large-scale 2D mammography
dataset, then the first three convolutional layers weights are
frozen, and the rest of which is trained. -e results of the
DCNNmodel have shown the AUC of over 80% and the 80%
Sen. Fotin et al. [32] have developed a CAD framework of
the DBTmass detection using a DCNN that is trained on the
generated candidate region of interest (ROIs), which con-
tains 1864 breast lesions in the mammography and 339
breast lesions from the DBT images data. It is reported that
their model achieved an Acc of 86.40% and 89% Sen. -e
latent bilateral feature representations of masses in recon-
structed DBTvolumes o are classified with the DCNNmodel
proposed by Kim et al. [31], in which low-level features are

Patient #1

Patient #2

Patient #3

(a) (b) (c)

Figure 4: Illustration of predicted DBT mass of three patients. (a) Original image. (b) Segmented image. (c) Ground truth.

Table 1: Accuracy obtained using various voting schemes.

Voting scheme Train on T1, test on
T1

Train on T2, test on
T2

Majority voting 0.85± 0.021 0.86± 0.018
Maximum
probability 0.87± 0.017 0.89± 0.009

Sum of probability 0.86± 0.013 0.87± 0.012
Connectivity 0.85± 0.011 0.86± 0.017

Table 2: Sensitivity (Sen) of different types of train-test combi-
nations using 5-fold crossvalidation.

Train Test on H1 Test on H2
Same hospital 0.88± 0.009 0.89± 0.021
Different hospitals 0.78± 0.015 0.86± 0.013
Both hospitals 0.87± 0.011 0.88± 0.015

Table 3: Specificity (Spe) of different types of train-test combi-
nations using 5-fold crossvalidation.

Train Test on H1 Test on H2
Same hospital 0.89± 0.011 0.89± 0.017
Different hospitals 0.86± 0.009 0.87± 0.013
Both hospitals 0.88± 0.013 0.88± 0.021

Table 4: Accuracy (Acc) of different types of train-test combi-
nations using 5-fold crossvalidation.

Train Test on H1 Test on H2
Same hospital 0.88± 0.011 0.89± 0.009
Different hospitals 0.85± 0.019 0.79± 0.015
Both hospitals 0.86± 0.021 0.87± 0.019
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extracted from the ROIs and the corresponding ROIs
through the convolutional layers separately. To represent the
high-level bilateral features of the DBTmasses, the low-level
features are combined in the fully connected layer. -e AUC
of 0.847 for the latent bilateral feature representation model
is reported. Concerning our method, we obtained 0.871 Acc,
0.869 Sen, 0.882 Spe, and an AUC of 0.859 for the testing
dataset with 87 DBT volumes.

In other models, not based on DCNN, we select the
works of Chan et al. [15], Palma et al. [18], and Schie et al.
[17]. Chan et al. [15] introduce three methods based on 2D
and 3D, and the hybrid that combines 2D and 3D. For the
hybrid method, they report 80% Sen with 1.23 FPs per
volume for the dataset of 100 DBT images containing 69
malignant patient cases. Palma et al. [18] have developed the
two-channel DBT masses detection CAD framework, in
which every channel classifies one type of DBT lesions. -ey
combine the findings from channels with the disjunctive
fusion method. -eir results show 90% Sen for 101 DBT
volumes containing 53 lesions. van Schie et al. [17] present a
two-stage method. -e ROIs in 2D slice images are detected
in the first step, and then extracted regions from 2D slice
images are combined to localize 3DROIs onDBTvolumes in
the second step. Obtained results on the DBT images data
from 192 patients with 49 patients having one or more
malignancies show 80% Sen with 3 FPs per volume. Reiser
et al. [34] introduce the approach that detects DBTmasses in
2D projection views then using the visibility angular range of

findings combines the detections, and 90% Sen for 36 DBT
volumes is reported.

Figure 5 shows examples of DBT masses segmented by
our U-Net architecture and other classical CAD frameworks.
However, it is not a feasible to make a fair comparison
between our CAD model with other models on DBT images
because other models are trained and tested on different
private datasets that are not public. Although the proposed
DBT mass automatic segmentation CAD model could not
achieve the best overall segmentation performance, our
U-Net architecture achieves the 87.1% Acc and 86.9% Sen
with an AUC of 0.859. -e experimental results show that
our approach achieves promising results given the fact they
are obtained on DBT images data, and the U-Net model is
trained on 2D slice images fromDBTvolumes and not on 2D
mammography dataset. Although the proposed CAD
framework has achieved promising results in the automatic
segmentation of DBT masses, it can be further improved
when more DBT images data are available. -e main lim-
itation of this work is the lack of sufficient DBT image data.
To achieve satisfactory general performance, the proposed
CAD framework requires diverse data and more structural
distortion samples. We intend to identify all early signs of
breast lesions in DBT images based on the method we used
in future; by automatically detecting lesions in the DBT
image, physicians can make diagnosis more accurately and
quickly and surgeons can rely on it to discuss the procedure
with colleagues.

Table 5: Comparisons of selected studies in the detection of masses in the DBT images.

Method Classifier DBT dataset size Sen Acc AUC
Kim et al. [31] LDA 36 0.90 — —
Shamsolmoali et al. [28] SVM 160 — — 0.847
Sajjad et al. [29] DCNN 344 0.89 0.864 —
Glorot and Bengio et al. [30] DCNN 324 0.80 — 0.80
Palma et al. [17] SVM 101 0.90 — —
Chan et al. [16] Neural network 752 0.80 — —
Reiser et al. [14] LDA 100 0.80 — —
Proposed U-net 87 0.869 0.871 0.859

Patient #18

Patient #32

Patient #55

(a) (b) (c) (d) (e)

Figure 5: Examples of DBT masses segmented by our U-Net architecture and other classical CAD frameworks. (a) Proposed U-Net.
(b) Reiser et al. (c) Kim et al. (d) Fotin et al. (e) Samala et al.
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4. Conclusions

Our study presents a novel U-Net architecture-based CAD
model for the automatic detection of masses in DBT slice
images, and we compare this model with other classical CAD
frameworks. -e advantages of the proposed U-Net archi-
tecture are that the U-Net model shortcuts among different
layers can provide both global and local structural infor-
mation of input images for breast mass detection. We
demonstrate that our proposed U-Net CAD framework
achieves promising results in the automatic segmentation of
the DBT masses and exhibits outperformance compared
with other classical CAD frameworks using the metrics of
accuracy, AUC, specificity, and sensitivity. -e future re-
search work will focus on the combination of 3D recon-
struction image information and 2D efficient data
information. -is combination is expected to improve the
accuracy of other early signs of breast cancer detection
procedures, which will be especially valuable when more
clinical cases are available.
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