
sensors

Article

Experimental Analysis in Hadoop MapReduce: A Closer Look
at Fault Detection and Recovery Techniques

Muntadher Saadoon * , Siti Hafizah Ab Hamid * , Hazrina Sofian , Hamza Altarturi , Nur Nasuha,
Zati Hakim Azizul , Asmiza Abdul Sani and Adeleh Asemi

����������
�������

Citation: Saadoon, M.; Hamid,

S.H.A.; Sofian, H.; Altarturi, H.;

Nasuha, N.; Azizul, Z.H.; Sani, A.A.;

Asemi, A. Experimental Analysis in

Hadoop MapReduce: A Closer Look

at Fault Detection and Recovery

Techniques. Sensors 2021, 21, 3799.

https://doi.org/10.3390/s21113799

Academic Editor: Celimuge Wu

Received: 25 April 2021

Accepted: 26 May 2021

Published: 31 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Software Engineering, Faculty of Computer Science and Information Technology,
University Malaya, Kuala Lumpur 50603, Malaysia; hazrina@um.edu.my (H.S.); altarturih@gmail.com (H.A.);
nasuha@um.edu.my (N.N.); zati@um.edu.my (Z.H.A.); asmiza@um.edu.my (A.A.S.); adeleh@um.edu.my (A.A.)
* Correspondence: muntadher.saadoon@gmail.com (M.S.); sitihafizah@um.edu.my (S.H.A.H.)

Abstract: Hadoop MapReduce reactively detects and recovers faults after they occur based on the
static heartbeat detection and the re-execution from scratch techniques. However, these techniques
lead to excessive response time penalties and inefficient resource consumption during detection and
recovery. Existing fault-tolerance solutions intend to mitigate the limitations without considering
critical conditions such as fail-slow faults, the impact of faults at various infrastructure levels and
the relationship between the detection and recovery stages. This paper analyses the response time
under two main conditions: fail-stop and fail-slow, when they manifest with node, service, and
the task at runtime. In addition, we focus on the relationship between the time for detecting and
recovering faults. The experimental analysis is conducted on a real Hadoop cluster comprising
MapReduce, YARN and HDFS frameworks. Our analysis shows that the recovery of a single fault
leads to an average of 67.6% response time penalty. Even though the detection and recovery times are
well-turned, data locality and resource availability must also be considered to obtain the optimum
tolerance time and the lowest penalties.

Keywords: Hadoop MapReduce; experiment analysis; fault-tolerance; fault detection; fault recovery

1. Introduction

MapReduce is the most popular data processing model [1], used for Big Data-related
applications and services over the cloud. Hadoop is the state-of-the-art industry standard
implementation of MapReduce that provides tremendous opportunities to handle data-
intensive applications like IoT, web crawling, data mining and web indexing. Hadoop, in
addition to with MapReduce, offers flexibility for developers to design their applications
in any high-level programming languages. Due to the given flexibility, organisations
like Yahoo, Google and Facebook utilise Hadoop MapReduce to successfully manage
their data-intensive computations in large-scale computing environments. In addition,
Hadoop MapReduce is also used for supporting the implementation of complex algorithms
that require high computation power in a distrusted manner such as anomaly analysis,
network intrusion detection, and calculating the network centrality [2–4]. However, in
such environments, faults from a node, service or task are common, and they significantly
impact the system performance if the fault-tolerance is not properly handled.

Fault-tolerance is the property of a system that allows consistent operation during
faults [5,6]. Hadoop handles fault-tolerance using the master–slave communication through
heartbeat messages. If the master node does not receive a heartbeat message from a
slave node within a configurable timeout value, the slave node will be labelled as failed.
Simultaneously, the successful progress made by the failed node before it fails will be
neglected, which incurs a huge waste of processing time and resource usage. Meanwhile,
Hadoop must wait for the resource scheduler to assign a free slot to restart the faulty
tasks intended to be executed on the failed node for recovery. This problem encourages

Sensors 2021, 21, 3799. https://doi.org/10.3390/s21113799 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1467-3292
https://orcid.org/0000-0001-9598-8813
https://orcid.org/0000-0001-8375-6441
https://orcid.org/0000-0002-5486-9882
https://orcid.org/0000-0002-8314-6464
https://orcid.org/0000-0002-9193-2430
https://www.mdpi.com/1424-8220/21/11/3799?type=check_update&version=1
https://doi.org/10.3390/s21113799
https://doi.org/10.3390/s21113799
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21113799
https://www.mdpi.com/journal/sensors


Sensors 2021, 21, 3799 2 of 18

researchers to optimise the time spent for detecting a fault and recovering from a fault
towards achieving minimal performance penalties under faults.

Thousands of hardware and software faults occurred during the first year of Hadoop
operation [7]. Code bugs, corrupted data, bad sectors, and out-of-memory faults are also
important factors to consider while making the system fault-tolerant. Another study re-
ported that a single tiny hardware fault increases the response time of Hadoop by 39% [8].
Additionally, the non-uniformity or node heterogeneity is also common in today’s envi-
ronments [9], especially when Hadoop is deployed on a cluster of shared resources. Thus,
users are willing to run heavy CPU job requests. The job workload needs virtualised tasks
to be spread among the nodes. If other users are running different tasks on these nodes at
some point in time, the cluster will experience extreme dynamic behaviour. Consequently,
the threats mentioned above must be handled gracefully, otherwise there will be a serious
performance violation.

1.1. Motivation

To date, experimental studies on the fault-tolerance issues of Hadoop MapReduce
have been scarce, as seen in [10–12]. Meanwhile, these studies only used the old version of
Hadoop that which was not incorporated with the YARN framework, making their experi-
mental results not up to date. Furthermore, the studies have not provided insights on the
infrastructure parameters that affect the tolerance conditions under faults and failures. To
the best of our knowledge, this is the first research effort that provides an in-depth analysis
of the impact of node, service, and task faults, including two main conditions: fail-stop and
fail-slow on Hadoop MapReduce response time. This research also investigates the priority
of fault penalties and the relationship between fault detection and recovery techniques un-
der various fault circumstances to be considered when designing a fault-tolerance solution.
The purpose of this analysis is to address the following research questions:

1. How does the current fault-tolerance in Hadoop MapReduce handle faults when they
occur at various infrastructure levels and in different fault conditions?

2. Why do the existing fault detection and recovery techniques in Hadoop MapReduce
lead to significant response time penalties?

1.2. Our Contributions

The main contributions of the paper are the following:

• We conducted a series of experiments on a real-world Hadoop YARN cluster to
examine the impact of fail-stop and fail-slow when they occur at the node, service,
and task;

• We simulated actual production faults: fail-stop and fail-slow to be injected at runtime
and monitor their implications for the response time;

• We highlight the limitations of the current fault-tolerance method, including its fault
detection and recovery techniques.

1.3. Paper Organisation

Section 2 reviews the related literature, including experimental studies and proposed
fault detection and recovery techniques in Hadoop MapReduce. Section 3 provides detailed
information on Hadoop MapReduce and fault-tolerance. Section 4 shows the experiment
setup and the evaluation parameters, followed by the analysis and discussion of the results
in Section 5. Section 6 concludes the paper.

2. Related Works
2.1. Experimenting with Hadoop Fault-Tolerance

Faghri et al. [11] proposed a model called failure scenario as a service (FSaaS) to be
utilised across the cloud to examine the fault-tolerance of cloud applications. The study
focused on Hadoop frameworks to test real-world faults implications on MapReduce
applications. Kadirvel et al. [10] and Dinu and Eugene Ng [12] conducted experimental



Sensors 2021, 21, 3799 3 of 18

studies to examine the performance penalties under faults using an experimental testbed
of Hadoop frameworks. These studies mainly focused on node and task faults, but they
used the early implementation of Hadoop that was not integrated within the YARN
framework, making their experimental results outdated. In the early version of Hadoop,
the responsibility of data processing was carried by two components, namely JobTracker
and TaskTracker. Subsequently, YARN was designed to allow flexibility and scalability by
separating the resource management functions from the programming model [13]. Thus,
YARN becomes the essential resource management framework for Hadoop implementation.
Furthermore, a recent study on the implications of faults on MapReduce applications by
simulating node and task faults proposed by Rahman et al. [14]. Although [14] is quite
similar to our study, it has not provided perception when modifying the fault-tolerance
parameters offered by Hadoop frameworks and has not focused on the correlations between
the fault detection and recovery stages. Unlike the related works, our study uses the
latest implementation of Hadoop to cope with its new architectural changes and provides
detailed analysis on the common types of faults with their implications. We also examined
the tolerance time when modifying the default fault-tolerance parameters to confirm
the problem.

2.2. Improving Fault Detection

LATE [15] and SAMR [16] were first proposed and adopted in the current speculative
execution strategy of Hadoop. These strategies work by comparing the estimated time to
completion between tasks; then, the detected struggler tasks will be duplicated on another
node. The estimated completion time in LATE was static; thus, SAMR provides a dynamic
calculation of the progress rate for each task to achieve more accurate results. In another
study, Memishi et al. [9] also proposed an approach that estimates the completion time
of the workload and calculates the progress rate of each task to adjust the timeout value
dynamically. Other studies by [17–20] provided predictive models based on machine
learning and AI algorithms to estimate and set an optimal heartbeat timeout on the fly or to
predict the failures before they occur. These approaches reduce the task fault occurrences
and improve their overall performance with low latency in fault detection. Furthermore,
works by Yildiz et al. [21] and Kadirvel et al. [22] aimed to decrease resource usage during
failures by adopting a lightweight pre-emption technique and dynamic resource scaling to
reduce the cost of the additional resources when removing failures.

2.3. Improving Fault Recovery

The standard solution to address the problem of re-computing the entire data block
from the beginning during fault recovery is checkpointing. Checkpointing works by trans-
ferring the continuous processing output to external storage to be restored in the event
of failures. In MapReduce, the output of MT tasks is stored locally on the same node,
which will be inaccessible when the node encounters a fail-stop. Therefore, research works
by [23–25] proposed checkpointing algorithms to efficiently transfer the output to external
storage to avoid faulty task re-execution from scratch. Although the proposed checkpoint-
ing algorithms improved the recovery process when the failed tasks are rescheduled on
a different node, the re-computation still occurs because the stored checkpoints are not
accessible by active nodes in the cluster. Zhu et al. [24] designed a novel fault-tolerance
strategy that uses a combination of distributed checkpointing and a proactive push mech-
anism for low latency recovery. When a failure happens, the recovered task continues
computing based on the last checkpoint without the necessity to re-compute the entire
data block. Liu et al. [25] made further improvements by reducing the task recovery delay
and improving the processing efficiency. The proposed approach splits the intermediate
data into small piece groups instead of merging them into one single file. The recovery
task attempt can start with a specific amount of progress according to the valid checkpoint
generated along with spills.



Sensors 2021, 21, 3799 4 of 18

3. Faults in Hadoop MapReduce

In this work, we used Apache Hadoop 2.9.2 (https://hadoop.apache.org/docs/r2.9.2/
(accessed on 3 May 2021)), which is the stable implementation of MapReduce that has
adopted as the latest generation of MapReduce with YARN framework [13]. Hadoop
MapReduce is designed based on the centralised architecture in which one node stands
as the master node and other nodes are workers. The basic components of Hadoop
MapReduce implementation are HDFS, YARN and MapReduce, as presented in Figure 1.
First, HDFS [26] splits the original dataset into data blocks and distributes them amongst
its distributed file system that is managed by DN services. The size, replication and
distribution of the blocks are handled by the master node of HDFS called NN. Then,
YARN is also a centralised framework responsible for workload scheduling and resource
management. YARN operates RM and Scheduler on the master node and NM, AM, and
Containers on the worker nodes. RM along with the Scheduler maintains the resource
scheduling and monitoring of worker nodes. RM launches NM on each worker node to
offer a collection of physical compute resources such as (memory and CPU) in the form of
containers for handling MapReduce applications. NM is also liable for sending heartbeat
messages to RM to report the worker nodes’ liveness.

Figure 1. Interactions between HDFS, YARN and MapReduce frameworks with their components.

Furthermore, AM has the responsibility to negotiate appropriate resources for contain-
ers and monitor MapReduce tasks isolated in containers. On the other hand, MapReduce is
a parallel data processing model that consists of the map phase, shuffle phase and reduce
phase. map and reduce are the central progressing aspects of MapReduce that make the
key/value pairs data structure. All the MTs are distributed and executed in parallel in
YARN containers. During these processes, the intermediate output of every complete task
will be generated in the local storage of each node. Then, the output files are shuffled and
stored to be finally received by the corresponding RTs. The reduce phase stores the desired
output on HDFS.

In parallel systems, three categories of fault models are primarily considered, which
are fail-arbitrary, fail-stop and fail-slow [27]:

• Fail-arbitrary is also called byzantine, which impacts the system’s behaviour by
setting incorrect data values, returning a value of incorrect type, interrupting, or
taking incorrect actions;

• Fail-stop causes unresponsive behaviour that is continuous for a fixed period [28];
• Fail-slow is also known struggler, which makes the system accessible, but with poor

performance [29].

https://hadoop.apache.org/docs/r2.9.2/


Sensors 2021, 21, 3799 5 of 18

Hadoop MapReduce tolerates fail-stop and the fail-slow while fail-arbitrary is beyond
the original design of MapReduce [6]. Fail-stop and fail-slow typically occur in one or more
components at different infrastructure levels. Therefore, fault-tolerance techniques can
be applied to tolerant faults and are fundamentally conducted based on two main stages:
fault detection and fault recovery [30].

3.1. Fault Detection

Fault detection is the first building block of a fault-tolerant framework that desires to
detect faults as soon as they occur [31]. Hadoop MapReduce uses heartbeat monitoring
based on the push model as a default approach. As illustrated in Figure 2a, all the monitored
processes periodically send heartbeat messages at a specific timeout frequency to the
monitor process. The absence of heartbeats from a given process beyond the specified
timeout value indicates that the process is failed, as shown in Figure 2b. The heartbeat
timeouts in Hadoop MapReduce are defined as configurable parameters [32], discussed
in Section 4.

Although push-based monitoring is a scalable approach as it occupies less bandwidth
due to the small size of the heartbeat messages [31], it has major limitations. First, it only
indicates possible fail-stop, whereas a process with fail-slow may still send heartbeats.
Second, achieving an optimum timeout is challenging because the longer the timeout
is, the longer the MTTD and the MTTR. In contrast, the shortest timeout is the shortest
MTTD, however, it may decrease the performance and increase resource consumption (e.g.,
bandwidth and CPU usage) because of the elevated messages exchange between the active
processes when the timeout value is small. Hence, configuring the timeout impacts the
overall response time and availability.

(a) Fault detection based on push model.

(b) Heartbeat messages exchange between the monitor and monitored process.

Figure 2. Fault detection in Hadoop MapReduce.

3.2. Fault Recovery

Upon fault detection, recovery is the second major stage that aims to return a faulty
component to its normal state without service interruptions. From the data storage perspec-
tive, HDFS replicates the original data blocks into multiple copies to be stored on various
nodes. A replica number determines the replication in HDFS. For instance, storing 1TB of
data requires 3TB of actual storage space when the number factor is set to 3. Although data
replication is lacking in terms of storage efficiency [33], it maintains high fault-tolerance
and data availability. Furthermore, a simple fault recovery technique is implemented for



Sensors 2021, 21, 3799 6 of 18

handling task faults, i.e., the re-execution or restart upon failures. This approach effectively
recovers fail-stop tasks by rescheduling them to re-execute their attended functions from
the very beginning. However, the re-execution technique doubles the workload execution
time, especially when the task fails to process the final allocated data record. Then, an
additional fault recovery approach is also employed, which is checkpointing [34]. This ap-
proach aims to efficiently recover from faults with minimal performance overhead. Hadoop
separates MT and RT into two categories: complete and incomplete. In the event of failure,
the complete tasks do not have to start over because their outputs are transmitted to the
next task that could be hosted on another healthy node. However, when the incomplete
tasks are in the latest progress rate and a fault occurs, Hadoop starts them over just like
the incomplete tasks regardless of their progress, which will lead to excessive performance
overhead. Furthermore, Hadoop recognises fail-slow as slow/struggling tasks by compar-
ing their progress rate with other active tasks. When Hadoop realises them, speculative
attempts will be made to process the same input data block of each slow task, hoping that
these attempts are complete sooner than the slow ones.

4. Experiment and Evaluation

The evaluation experiments aimed to analyse the current fault detection and recovery
techniques of Hadoop MapReduce, focusing on the performance violation in terms of
response time when tolerating faults and failures. Based on the analysis, further study was
conducted to examine the detailed impact of the infrastructure parameters, fault types and
fault-tolerance conditions.

4.1. Experiment Setup

Our experimental testbed consisted of 9 servers that ran 1 master node and 8 slave
nodes. The master node had an 8-core CPU, 80 GB of hard disk space and 16 GB of RAM.
Other nodes consisted of a 4-core CPU, 40 GB of hard disk space, and 8 GB of RAM. These
nodes were hosted on a Cavium server with ThunderX 88XX 48CPUs, 128 GB RAM and
3 TB of hard disk space in total. All the nodes operated on CentOS7 and Hadoop with
HDFS, YARN and MapReduce frameworks installed. Figure 3 shows our experiment setup
divided into four parts as discussed in the following subsections.

4.1.1. Workload Application and Dataset

Since MapReduce is a general programming paradigm, a very diverse set of applica-
tions can be constructed using the basic map, shuffle/copy, and reduce phases. To ensure
our analysis was applicable in the experiment environment, we used WordCount bench-
mark application as it includes all the basic phases of typical MapReduce programming
paradigm [35]. WordCount is a count value for every distinct word in the input dataset
where the count function is demonstrated by MTs [10]. WordCount is not only used as a
benchmark application, as observed in [10–12,14], but it is also being used in production
data processing environments. For instance, WordCount represents 70% of production jobs
in the Facebook cluster [36]. Furthermore, most workloads in production clusters >98% had
small to medium execution times (seconds to a few tens of minutes) as noticed in Yahoo!
and Facebook studies [35]. Therefore, we used 1 GB to 8 GB randomly generated datasets
to represent a small to medium-workload size and have execution times of a few minutes.

4.1.2. Benchmark and Fault Injection Frameworks

Our experiments were automated based on frameworks and techniques for perfor-
mance monitoring and fault injection. First, we used HiBench (https://github.com/Intel-
bigdata/HiBench (accessed on 10 April 2021)) as the standard benchmark framework for im-
plementing MapReduce jobs and monitoring the performance of each job. Intel developed
HiBench as an open source project, and it has been used for evaluating Big Data related sys-
tems, including Spark and Hadoop MapReduce. Second, we used manual Linux scripts and
popular cloud-based fault-injection frameworks for fault injection, namely AnarchyApe

https://github.com/Intel-bigdata/HiBench
https://github.com/Intel-bigdata/HiBench


Sensors 2021, 21, 3799 7 of 18

(https://github.com/david78k/anarchyape (accessed on 10 April 2021)) and Stress-ng
(https://github.com/ColinIanKing/stress-ng (accessed on 10 April 2021)). These frame-
works provide various options for simulating faults in the Hadoop environment, as outlined
in Table 1.

Table 1. Samples of fault options used for fault injection.

Framework/Techniques Fault Type Command

AnarchyApe Node fail-stop java -jar ape.jar -L -F
AnarchyApe Service fail-stop java -jar ape.jar -L -k <serviceName>
Manual script Task fail-stop Sudo kill -9 <processID>

Stress-ng Fail-slow stress-ng –cpu 8 –io 8 –vm 1–vm-bytes 16G –timeout 150s

Figure 3. The main parts of the experimental testbed.

In the experiments that involve various fault occurrence points, we group the fault
points according to the primary MapReduce phases; before 20% of the map phase progress
is ’Initial’, after 20–50% as ‘Early’, before 70% as ‘Middle’ and those after 70% as ‘Late’. In
the case of the late point, the fault impacts the active reduce tasks only, while the fault at
the middle point impacts both the map and reduce tasks. Fail-stop and fail-slow for node,
service and task are injected for a fixed period until Hadoop realises them and applies
treatment actions for recovery. Moreover, since the replication factor is set to two where one
data block is at least available on two active nodes, we injected one fault of different types
(node fail-stop, service fail-stop, task fail-stop and fail-slow) at each experimental run.

Furthermore, the monitoring of fault detection and recovery stages was performed via
manual invocation of Hadoop log files after each job completed. The manual exploration
process was necessary for the flexibility of data collection of the history files generated by
the nodes with their active services and tasks. Parsing the generated data indicates the
timestamp when Hadoop detects the fault and the timestamp for initiating the recovery
action. Since the faults are injected at known points, the fault detection and recovery times
can be calculated accordingly.

https://github.com/david78k/anarchyape
https://github.com/ColinIanKing/stress-ng


Sensors 2021, 21, 3799 8 of 18

4.1.3. Fault Scenarios

We classify the faults according to their occurrence into three scenarios: node, service,
and task, as demonstrated in Figure 4, when the entire node fails due to a certain memory,
CPU, or network error, all the running services and tasks hosted by the failed node are
impacted, and the tolerance complexity increases. Likewise, when a service fails, all its
associated tasks fail as well and are subject to re-execution. Moreover, if a single task fails,
Hadoop intends to re-execute it on the same or another active node. With those three
scenarios, we cover all the possible cloud-based fault and failure implications due to either
fail-stop or fail-slow.

4.2. Evaluation Parameters

To measure the performance of Hadoop MapReduce under faults and failures, we use
three main evaluation parameters as explained in the following subsections. Moreover, we
also use nine configurable parameters provided by Hadoop frameworks that impact the job
response time and the tolerance time in the event of failure, as briefly described in Table 2.
Finally, we focus on the timeout value and the slow-task threshold in Section 5.2 to show
the influence of fault recovery when modifying the default fault detection parameters. The
default and tuned values of the fault detection parameters are outlined in Table 3.

Figure 4. Fault scenarios in Hadoop MapReduce.

Table 2. Brief description of the infrastructure parameters used in the experiments.

Infrastructure Parameters Description

Node number The number of the active nodes in the cluster.
Data size The size of input data to be processed by the active nodes.
Block size The size of each chunk of data after distribution across the nodes.

Map task number The total number of map tasks to be executed on the active nodes.
Reduce task number The total number of reduce tasks to write the output on HDFS.
Replication number The number of replicas per each data block.

Timeout value The time difference between each heartbeat message sends to check the instance liveness.
Slow-task threshold The standard deviations number for a task average progress.

Fault occurrence point The actual timestamp of injecting a fault during the job lifetime.



Sensors 2021, 21, 3799 9 of 18

Table 3. Configurable fault detection parameters provided by Hadoop MapReduce.

Fault Detection Parameter Default ValueTuned Value Description

yarn.nm.liveness-monitor.expiry-interval-ms 600 s 10 s Time in seconds to wait until considering
the NM dead.

yarn.nodemanager.health-checker.interval-ms 600 s 10 s Frequency of running node health script.

mapreduce.task.timeout 600 s 10 s
Time in seconds before a task will be

terminated if it neither reads an input,
writes an output, nor updates its status string.

mapreduce.job.speculative.slowtaskthreshold 1.0 0.1
Standard deviations number by which
a task average progress must be lower
than the average of all running tasks.

4.2.1. Response Time

Response time is the time taken by the MapReduce job from submission Js to comple-
tion Jc and it can be calculated according to Equation (1):

Response time = Jc − Js (1)

4.2.2. Fault Detection Time

Fault detection time is the time taken by the Hadoop MapReduce to detect a fault
from the fault occurrence Fo timestamp to the fault detection Fd timestamp, and it can be
calculated according to Equation (2):

Fault detection time = Fd − Fo (2)

4.2.3. Fault Recovery Time

Fault recovery time is the time taken by the Hadoop MapReduce to recover from a
fault from the fault detection Fd timestamp to the fault recovery Fr timestamp, and it can
be calculated according to Equation (3):

Fault recovery time = Fr − Fd (3)

5. Results and Discussions
5.1. Response Time

The first series of experiments investigated the impact of faults and failures on the
response time when modifying the infrastructure parameters; (a) increasing the dataset
size, (b) setting the different distribution of data blocks among the nodes, and (c) injecting
faults at various occurrence points during the execution time. We used the default fault-
tolerance values provided by the framework, which are 600 s expiry interval timeout and
1.0 slow task threshold. Fail-stop are simulated by permanently killing an active node,
service/daemon (e.g., NM, DN or AM), MT or RT. We also used AnarchyApe, and Stress-ng
to inject fail-slow such as CPU hog, Memory hog and network drop packets. Throughout
our experiments, Hadoop recovered from all the injected faults and failures at various
response times.

Figure 5 shows that the service fail-stop has led to the highest response time penalties
all over the experiments. The absence of a service does not impact the parallelism nor the
MT progress among the nodes. However, when the scheduler launched the RT, the entire
job is suspended because there were no data pushed from the impacted node, even though
the hosted MTs were completed successfully. Furthermore, the scheduler has not triggered
a speculative task for recovery because the progress of all the running MTs was identical at
that moment. In addition, the RM waited until the next timeout cycle expired to confirm
the service has failed to restart all the impacted tasks associated with the failed service on



Sensors 2021, 21, 3799 10 of 18

another healthy node from scratch. In brief, the response time of the impacted MTs were
doubled, and the total response time extended per each healthy task workload.

Figure 5. The response times differences when increasing dataset size.

Then, the entire node was forcibly terminated from the cluster, including its active
services and tasks (NM, DN, MT, or RT) at runtime to evaluate node fail-stop. The loss of
a node leads to network disconnection where the input data provided by HDFS became
unreachable. Thus, the progress rate of the running tasks stopped at the exact moment
when the failure occurred. Thereafter, the scheduler detected the impacted tasks and
restarted them on another healthy node. Therefore, the response time penalties for node
fail-stop are slightly lower than the service fail-stop because the RM depends on the
successive heartbeats (by default 600 s) to be received from the failed node to finish the job,
and the scheduler had already re-executed the impacted tasks before the heartbeat timeout
expired. Furthermore, task fail-stop and fail-slow incurred the lowest penalties in all the
cases because Hadoop scheduler speculates the impacted tasks on another node once it
detected they are terminated, or their progress rates are lower than the other active tasks
without relying on the node expiry timeout.

Figure 6 compares the response times when using various distributions of data blocks
among the cluster. By default, HDFS splits the dataset into multiple blocks, and each
block has 128 MB of data to be distributed on the active DNs. For instance, 1 GB of
data is divided into 8 blocks of 128 MBand multiplied by the replication factor. We used
Equations (4) and (5) to obtain accurate results and ensure an equivalent load of tasks
among the active nodes in the cluster, where each task corresponds to a data block:

Number o f blocks =
data size
block size

× replication f actor (4)

where the task parallelism will be set as follows:

Task parallelism =
Number o f blocks
replication f actor

(5)

The result reveals that the service and node fail-stop still have a higher response time
penalties than task fail-stop and fail-slow. The result also shows that task-fail-stop and
fail-slow incurred greater penalties when the block size increases. The penalty confirms



Sensors 2021, 21, 3799 11 of 18

that when the MT processing time increases due to a large block of data, Hadoop spends
longer time recovering from the failure due to the restart. As a result, one task failure
extended the overall job response time by 29.47%, 31.66% for the worst-case of 256 MB,
512 MB block sizes, respectively.

Figure 6. The response times’ difference when setting a different distribution of data.

Figure 7 compares the injected faults at various occurrence points at runtime. Further-
more, it shows the response time differences between WordCount and Terasort applications
when faults accumulated initially, and at the early, middle, and late points of the job lifetime,
as recorded in Figure 7a,b. The tolerance time for the node and service fail-stop slightly de-
creased when they occur late because both depend on the master node to wait for the next
heartbeat cycle to detect them and start the recovery actions. Since the fault-free job for both
WordCount and Terasort had only one timeout cycle, faults at the late point of the timeout
period required a shorter time to complete the cycle. On the other hand, task fail-stop
penalties increased by 18.17%, 34.27% for the late point compared to the initial because the
entire tasks waited for the re-execution of the faulty task from the beginning. However, the
fail-slow response time penalties decreased at the late points by 25.4%, 23.94%, because the
impacted node only suffered slow performance for a few seconds before it was completed
without triggering the speculative task. The results also show no significant difference in
terms of fault-tolerance when using various MapReduce applications because the current
fault-tolerance method does not consider the programming logic of the applications to
detect and recover the faults and failures.

5.2. Fault Detection and Recovery Times

The second series of experiments was conducted to investigate the fault detection
and recovery time when manipulating the default fault-tolerance parameters provided by
the frameworks. The parameters involved the expiry timeout values of the node, service
and task.

Figure 8 shows that the response times for both node and service fail-stop were
remarkably decreased by 60% and 63.71%, respectively, in the case of 10 s timeout compared
to the default value of 600 s. Although the optimal response time results incurred at the
smallest timeout value, Hadoop recovery procedure took 171 s, 183 s to recover from
node and service fail-stop, respectively, which is still very slow, as reported in Figure 9a,b.
Moreover, if Hadoop detects the fault in a very short time, it needs a longer time for
recovery, especially when the cluster runs on full resource capacity because the scheduler
waits until allocating available slots to re-execute all the impacted tasks of the faulty node or



Sensors 2021, 21, 3799 12 of 18

service. Furthermore, reducing the timeout value for obtaining a rapid detection time is not
an ideal option to achieve minimal response time penalties because a short timeout incurs
a higher resource consumption [10], due to the elevated messages’ exchange between the
active processes in the cluster in a short frequency.

(a) WordCount Application. (b) Terasort Application.

Figure 7. The response times’ differences when injecting faults at various occurrence points for WordCount and
Terasort Application.

Figure 8. Comparison between node fail-stop and service fail-stop response times when using
various timeout values.

Figure 10a,b show a comparison of the CPU summary usage between two fault-free
jobs that have two different timeout values: 10 s (small) and 600 s (default), respectively.
The result reveals that the small timeout value incurred higher CPU usage than the default
one. Likewise, network throughput, disk throughput, and the overall system load also
acquired higher usage, as recorded in Figures 11–13, respectively. However, short timeouts
could be an acceptable approach for specific use cases when the application must comply
with response time constraints and sacrifice resource consumption.



Sensors 2021, 21, 3799 13 of 18

(a) Node fail-stop. (b) Service fail-stop.

Figure 9. Comparison between fault detection and recovery times for node and service fail-stop using various
timeout values.

(a) 10 s timeout. (b) 600 s timeout.

Figure 10. Comparison between CPU usage when using small and default timeouts.

(a) 10 s timeout. (b) 600 s timeout.

Figure 11. Comparison between network usage when using small and default timeouts.



Sensors 2021, 21, 3799 14 of 18

(a) 10 s timeout. (b) 600 s timeout.

Figure 12. Comparison between disk usage when using small and default timeouts.

(a) 10 s timeout. (b) 600 s timeout.

Figure 13. Comparison between system loads when using small and default timeouts.

Finally, we intend to observe the minimal recovery time when setting aggressive
slow-task threshold https://hadoop.apache.org/docs/r2.9.2/hadoop-mapreduce-client/
hadoop-mapreduce-client-core/mapred-default.xml (accessed on 10 April 2021) of 0.1
and timeout values https://hadoop.apache.org/docs/r2.9.2/hadoop-yarn/hadoop-yarn-
common/yarn-default.xml (accessed on 10 April 2021) of 10 s and injecting the faults
at various occurrence points of the job lifetime regardless of the resource consumption.
Figure 14 shows that even though the detection time is optimised to approximately 5 s and
the response times are reduced compared to previous scenarios, the average recovery time
for Hadoop is 55.84 s for a workload of 90 s. A comparison between the best, median and
extreme values in terms of fault recovery time, fault point and response time penalty is
recorded in Table 4.

Table 4. Comparison between the best, median and extreme values in terms of fault recovery time, fault point and response
time penalty when setting optimal fault-tolerance parameters.

Group Fault Type Fault Point (%) Recovery Time (sec) Response Time Penalty (%)

Best

Node fail-stop 10 42.73 53.03
Service fail-stop 10 74.911 88.79

Task fail-stop 10 11.414 18.24
Fail-Slow 90 8.46 14.96

Median

Node fail-stop 50 49.927 61.03
Service fail-stop 50 101.241 118.05

Task fail-stop 50 18.632 26.26
Fail-slow 50 27.678 36.31

https://hadoop.apache.org/docs/r2.9.2/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml
https://hadoop.apache.org/docs/r2.9.2/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml
https://hadoop.apache.org/docs/r2.9.2/hadoop-yarn/hadoop-yarn-common/yarn-default.xml
https://hadoop.apache.org/docs/r2.9.2/hadoop-yarn/hadoop-yarn-common/yarn-default.xml


Sensors 2021, 21, 3799 15 of 18

Table 4. Cont.

Group Fault Type Fault Point (%) Recovery Time (sec) Response Time Penalty (%)

Extreme

Node fail-stop 90 93.503 109.45
Service fail-stop 90 178.555 203.95

Task fail-stop 90 30.749 39.72
Fail-slow 20 43.798 54.22

Figure 14. Recovery times when using small timeout and injecting faults at various points.

5.3. Discussion

According to the obtained results, a single faulty task extends the overall job response
time by 30%, and even though the framework was well tuned for fault-tolerance, the
faulty task incurs an 18.24% response time penalty after recovery. We also confirmed
experimentally that this penalty was due to the slow fault detection and the waste of
resources by fault recovery in the typical Hadoop fault-tolerance. We summarise our
findings based on the experiment results as follows:

• Service fail-stop has the highest response time penalties compared to the other faults;
• When the size of a task’s workload increases due to a large data block, the recovery

time also increases because of the re-computation of the entire block;
• Fault occurrence at the late point of the job lifetime incurs higher penalties for node

and service fail-stop and lower penalties for task fail-stop and fail-slow;
• The current fault-tolerance method does not consider the programming logic of the

application to detect and recover faults and failures;
• The response time decreases when setting small timeout values but with higher

resource consumption;
• The recovery of a single fault leads to an average of 67.6% response time penalty.

We answer the research questions 1 and 2 stated in Section 1.1 in the following:

1. The current fault-tolerance method of Hadoop handles fail-stop and fail-slow from
node and service based on the static heartbeat messages and re-execution techniques.
If the entire node fails, all its active services and tasks fail as well regardless of their
progress, and they will be subject to re-execution. The identification of fail-stop only
happens when the node is entirely inactive within a static timeout interval. When a
service fails, Hadoop is not able to realise the failure because the master node still
receives heartbeat messages from the same node that runs the failed service, which
leads to a substantial waiting time. Fail-slow has a direct impact on the task level
only, and Hadoop detects task fail-slow and fail-stop by comparing the slow task



Sensors 2021, 21, 3799 16 of 18

progress with other healthy tasks. Slow tasks are also subject to restart from scratch
on another node and based on the scheduler decision in terms of data locality and
resource availability.

2. The significant response time penalties happen because of the static waiting time
spent by Hadoop to detect a failure. This waiting time is critical because if one node
fails out of thousands, the entire job response time is extended per one node fault
detection and recovery times. Even though the detection time is optimised based
on short monitoring intervals, the recovery time can still be long because it depends
on the cluster behaviour in the recovery stage in terms of resource capacity and the
locations of data blocks.

In summary, the limitations of fault-tolerance capability are due to the centralised
manner in which Hadoop applies fault detection and recovery. In this way, the timeout
is hard to set dynamically to mitigate the fault detection problem because it repeatedly
requires examining the unpredictable behaviour of all the active nodes in the cluster. On the
other hand, we argue that although the generated data by MTs and RTs can be checkpointed
and distributed for faster recovery, this method still leads to network and I/O delays using
the current centralised architecture because of checkpoints transfers from one node to
another [25].

6. Conclusions and Future Works

Hadoop MapReduce has been widely used by business and academia sectors due to
the scalability and the built-in fault-tolerance capability. However, Hadoop experiences
numerous types of faults which must be handled carefully; otherwise, there will be a
severe response time violation. In this study, we provide an in-depth analysis of the
implications of node, service, and task faults, including the two main conditions: fail-stop
and fail-slow on Hadoop MapReduce response time. We simulated actual faults that
happen in any distributed environments based on popular fault injection frameworks.
We also conducted a series of experiments on a real-world Hadoop cluster to examine
the fault-tolerance problem and highlight the limitations, including the fault detection
and recovery techniques. The validity of our experimental results is limited to small to
medium workload execution times where the size of datasets ranges between 1 GB and
8 GB. Although most workloads in production clusters run MapReduce applications for
seconds to a few tens of minutes execution times, more computation resources are necessary
to handle the scale and to extend the validity of the experiments.

In future works, we intend to design and implement a new fault-tolerance method
based on an explicit node-to-node relationship to address the identified limitations. With
this relationship, the timeout values can be set independently for every two pairs of nodes
for faster fault detection, rather than being solely controlled by the master node. This way,
the scalability and resource efficiency can be further improved because the timespan by
which a node checks the status of its pair is not affected by the total number of nodes in the
cluster. On the other hand, since the checkpointing approach has been proven in improving
the efficiency of fault recovery in Hadoop, we intend to apply an in-memory distributed
database to the checkpoint and transfer the output of the active nodes after each heartbeat
message being sent to guarantee a consistent progress rate of two running instances and to
prevent any wasting the processing progress in the case of failures. The network and I/O
delays would be decreased as the pairs will be pre-defined before executing the jobs where
the data locality and resource availability can be considered.

Author Contributions: Conceptualisation, methodology, investigation, software, writing—original
draft, M.S.; supervision, writing—review and editing, funding acquisition, S.H.A.H., H.S., H.A.,
N.N., A.A.S., A.A.; resources, Z.H.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Malaysia Ministry of Education, grant number GPF097C-2020.



Sensors 2021, 21, 3799 17 of 18

Acknowledgments: We gratefully thank the Malaysia Ministry of Education for the Fundamental
Research Grant Scheme provided to us numbered GPF097C-2020. We also gratefully thank Zati
Hakim Azizul for providing access to the Lab and ARM-based servers.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

HDFS Hadoop Distributed File System
YARN Yet Another Resource Negotiator
MT Map Task
RT Reduce Task
RM Resource Manager
NN Name Node
NM Node Manager
DN Data Node
AM Application Master
MTTD Mean Time to Detect
MTTR Mean Time to Repair

References
1. Ean, J.; Ghemawat, S. MapReduce: Simplified data processing on large cluster. In Proceedings of the 6th Symposium on

Operating Systems Design & Implementation, Berkeley, CA, USA, 6–8 December 2008; pp. 6–8.
2. Alkasem, A.; Liu, H.; Shafiq, M. Improving fault diagnosis performance using hadoop mapreduce for efficient classification and

analysis of large data sets. J. Comput. 2018, 29, 185–202.
3. Azeez, N.A.; Ayemobola, T.J.; Misra, S.; Maskeliūnas, R.; Damaševičius, R. Network intrusion detection with a hashing based

apriori algorithm using Hadoop MapReduce. Computers 2019, 8, 86. [CrossRef]
4. Kumar Behera, R.; Kumar Rath, S.; Misra, S.; Damaševičius, R.; Maskeliūnas, R. Distributed centrality analysis of social network

data using MapReduce. Algorithms 2019, 12, 161. [CrossRef]
5. Torres-Huitzil, C.; Girau, B. Fault and error tolerance in neural networks: A review. IEEE Access 2017, 5, 17322–17341. [CrossRef]
6. Nabi, M.; Toeroe, M.; Khendek, F. Availability in the cloud: State of the art. J. Netw. Comput. Appl. 2016, 60, 54–67. [CrossRef]
7. Liu, J.; Shen, H.; Chi, H.; Narman, H.S.; Yang, Y.; Cheng, L.; Chung, W. A Low-Cost Multi-Failure Resilient Replication Scheme

for High-Data Availability in Cloud Storage. IEEE/ACM Trans. Netw. 2020. [CrossRef]
8. Asghar, H.; Nazir, B. Analysis and implementation of reactive fault tolerance techniques in Hadoop: A comparative study. J.

Supercomput. 2021, 1–27. [CrossRef]
9. Memishi, B.; Pérez, M.S.; Antoniu, G. Failure detector abstractions for MapReduce-based systems. Inf. Sci. 2017, 379, 112–127.

[CrossRef]
10. Kadirvel, S.; Fortes, J.A. Towards self-caring MapReduce: A study of performance penalties under faults. Concurr. Comput. Pract.

Exp. 2015, 27, 2310–2328. [CrossRef]
11. Faghri, F.; Bazarbayev, S.; Overholt, M.; Farivar, R.; Campbell, R.H.; Sanders, W.H. Failure scenario as a service (FSaaS) for Hadoop

clusters. In Proceedings of the Workshop on Secure and Dependable Middleware for Cloud Monitoring and Management,
Montreal, QC, USA, 4 December 2012; pp. 1–6.

12. Dinu, F.; Ng, T.E. Understanding the effects and implications of compute node related failures in hadoop. In Proceedings of the
21st International Symposium on High-Performance Parallel and Distributed Computing, Delft, The Netherlands, 18–22 June
2012; pp. 187–198.

13. Vavilapalli, V.; Murthy, A.; Douglas, C.; Agarwal, S.; Konar, M.; Evans, R.; Graves, T.; Lowe, J.; Shah, H.; Seth, S.; et al. Apache
hadoop yarn: Yet another resource negotiator. In Proceedings of the 4th annual Symposium on Cloud Computing, Santa Clara,
CA, USA, 1 October 2013; Volume 704, p. 5.

14. Rahman, M.T.; Gabriel, E.; Subhlok, J. Performance implications of failures on MapReduce applications. In Proceedings of the
2017 IEEE International Conference on Cluster Computing (CLUSTER), Honolulu, HI, USA, 5–8 September 2017; pp. 741–748.

15. Zaharia, M.; Konwinski, A.; Joseph, A.D.; Katz, R.H.; Stoica, I. Improving MapReduce performance in heterogeneous environ-
ments. Osdi 2008, 8, 7.

16. Chen, Q.; Zhang, D.; Guo, M.; Deng, Q.; Guo, S. Samr: A self-adaptive mapreduce scheduling algorithm in heterogeneous
environment. In Proceedings of the 2010 10th IEEE International Conference on Computer and Information Technology, Bradford,
UK, 29 June–1 July 2010; pp. 2736–2743.

17. Gupta, C.; Bansal, M.; Chuang, T.C.; Sinha, R.; Ben-Romdhane, S. Astro: A predictive model for anomaly detection and
feedback-based scheduling on Hadoop. In Proceedings of the 2014 IEEE International Conference on Big Data (Big Data),
Anchorage, AK, USA, 27 June–2 July 2014; pp. 854–862.

http://doi.org/10.3390/computers8040086
http://dx.doi.org/10.3390/a12080161
http://dx.doi.org/10.1109/ACCESS.2017.2742698
http://dx.doi.org/10.1016/j.jnca.2015.11.014
http://dx.doi.org/10.1109/TNET.2020.3027814
http://dx.doi.org/10.1007/s11227-021-03651-5
http://dx.doi.org/10.1016/j.ins.2016.08.013
http://dx.doi.org/10.1002/cpe.3044


Sensors 2021, 21, 3799 18 of 18

18. Rosa, A.; Chen, L.Y.; Binder, W. Catching failures of failures at big-data clusters: A two-level neural network approach. In
Proceedings of the 2015 IEEE 23rd International Symposium on Quality of Service (IWQoS), Portland, OR, USA, 15–16 June 2015;
pp. 231–236.

19. Soualhia, M.; Khomh, F.; Tahar, S. ATLAS: An adaptive failure-aware scheduler for hadoop. In Proceedings of the 2015 IEEE 34th
International Performance Computing and Communications Conference (IPCCC), Nanjing, China, 14–16 December 2015; pp. 1–8.

20. Soualhia, M.; Khomh, F.; Tahar, S. A dynamic and failure-aware task scheduling framework for hadoop. IEEE Trans. Cloud
Comput. 2018, 8, 553–569. [CrossRef]

21. Yildiz, O.; Ibrahim, S.; Antoniu, G. Enabling fast failure recovery in shared Hadoop clusters: Towards failure-aware scheduling.
Future Gener. Comput. Syst. 2017, 74, 208–219. [CrossRef]

22. Kadirvel, S.; Ho, J.; Fortes, J.A. Fault management in Map-Reduce through early detection of anomalous nodes. In Proceedings
of the 10th International Conference on Autonomic Computing (ICAC 13), San Jose, CA, USA, 26–28 June 2013; pp. 235–245.

23. Quiané-Ruiz, J.A.; Pinkel, C.; Schad, J.; Dittrich, J. RAFTing MapReduce: Fast recovery on the RAFT. In Proceedings of the 2011
IEEE 27th International Conference on Data Engineering, Hannover, Germany, 11–16 April 2011; pp. 589–600.

24. Zhu, Y.; Samsudin, J.; Kanagavelu, R.; Zhang, W.; Wang, L.; Aye, T.T.; Goh, R.S.M. Fast Recovery MapReduce (FAR-MR) to
accelerate failure recovery in big data applications. J. Supercomput. 2020, 76, 3572–3588. [CrossRef]

25. Liu, J.; Wang, P.; Zhou, J.; Li, K. McTAR: A multi-trigger checkpointing tactic for fast task recovery in MapReduce. IEEE Trans.
Serv. Comput. 2019. [CrossRef]

26. Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R. The hadoop distributed file system. In Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST), Lake Tahoe, NV, USA, 3–7 May 2010; pp. 1–10.

27. Li, R.; Hu, H.; Li, H.; Wu, Y.; Yang, J. MapReduce parallel programming model: A state-of-the-art survey. Int. J. Parallel Program.
2016, 44, 832–866. [CrossRef]

28. Elnozahy, E.N.; Alvisi, L.; Wang, Y.M.; Johnson, D.B. A survey of rollback-recovery protocols in message-passing systems. ACM
Comput. Surv. 2002, 34, 375–408. [CrossRef]

29. Xie, J.; Yin, S.; Ruan, X.; Ding, Z.; Tian, Y.; Majors, J.; Manzanares, A.; Qin, X. Improving mapreduce performance through data
placement in heterogeneous hadoop clusters. In Proceedings of the 2010 IEEE International Symposium on Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW), Atlanta, GA, USA, 19–23 April 2010; pp. 1–9.

30. Avizienis, A.; Laprie, J.C.; Randell, B.; Landwehr, C. Basic concepts and taxonomy of dependable and secure computing. IEEE
Trans. Dependable Secur. Comput. 2004, 1, 11–33. [CrossRef]

31. Ayari, N.; Barbaron, D.; Lefevre, L.; Primet, P. Fault tolerance for highly available internet services: Concepts, approaches, and
issues. IEEE Commun. Surv. Tutor. 2008, 10, 34–46. [CrossRef]

32. Liu, J.; Tang, S.; Xu, G.; Ma, C.; Lin, M. A Novel Configuration Tuning Method Based on Feature Selection for Hadoop MapReduce.
IEEE Access 2020, 8, 63862–63871. [CrossRef]

33. Nachiappan, R.; Javadi, B.; Calheiros, R.N.; Matawie, K.M. Cloud storage reliability for big data applications: A state of the art
survey. J. Netw. Comput. Appl. 2017, 97, 35–47. [CrossRef]

34. Zhu, H.; Chen, H. Adaptive failure detection via heartbeat under Hadoop. In Proceedings of the 2011 IEEE Asia-Pacific Services
Computing Conference, Jeju, Korea, 12–15 December 2011; pp. 231–238.

35. Chen, Y.; Ganapathi, A.S.; Griffith, R.; Katz, R.H. A methodology for understanding mapreduce performance under diverse
workloads. In EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2010-135; University of California: Berkeley,
CA, USA, 2010.

36. Chen, Y.; Alspaugh, S.; Katz, R. Interactive analytical processing in big data systems: A cross-industry study of mapreduce
workloads. arXiv 2012, arXiv:1208.4174.

http://dx.doi.org/10.1109/TCC.2018.2805812
http://dx.doi.org/10.1016/j.future.2016.02.015
http://dx.doi.org/10.1007/s11227-018-2716-8
http://dx.doi.org/10.1109/TSC.2019.2904270
http://dx.doi.org/10.1007/s10766-015-0395-0
http://dx.doi.org/10.1145/568522.568525
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/COMST.2008.4564478
http://dx.doi.org/10.1109/ACCESS.2020.2984778
http://dx.doi.org/10.1016/j.jnca.2017.08.011

	Introduction
	Motivation
	Our Contributions
	Paper Organisation

	Related Works
	Experimenting with Hadoop Fault-Tolerance
	Improving Fault Detection
	Improving Fault Recovery

	Faults in Hadoop MapReduce
	Fault Detection
	Fault Recovery

	Experiment and Evaluation
	Experiment Setup
	Workload Application and Dataset
	Benchmark and Fault Injection Frameworks
	Fault Scenarios

	Evaluation Parameters
	Response Time
	Fault Detection Time
	Fault Recovery Time


	Results and Discussions
	Response Time
	Fault Detection and Recovery Times
	Discussion

	Conclusions and Future Works
	References

