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Metabolic preference assay for rapid diagnosis
of bloodstream infections
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Bloodstream infections (BSIs) cause >500,000 infections and >80,000 deaths per year in

North America. The length of time between the onset of symptoms and administration of

appropriate antimicrobials is directly linked to mortality rates. It currently takes 2–5 days to

identify BSI pathogens and measure their susceptibility to antimicrobials – a timeline that

directly contributes to preventable deaths. To address this, we demonstrate a rapid metabolic

preference assay (MPA) that uses the pattern of metabolic fluxes observed in ex-vivo

microbial cultures to identify common pathogens and determine their antimicrobial sus-

ceptibility profiles. In a head-to-head race with a leading platform (VITEK 2, BioMérieux)

used in diagnostic laboratories, MPA decreases testing timelines from 40 hours to under 20.

If put into practice, this assay could reduce septic shock mortality and reduce the use of

broad spectrum antibiotics.
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The diagnostic tools used to identify pathogens and measure
antimicrobial susceptibility play a critical role in control-
ling infectious diseases. In the case of bloodstream infec-

tions (BSIs), rapid diagnostic timelines are critical because a
patient’s odds of surviving an infection are inversely proportional
to the length of time that elapses between the onset of symptoms
and the administration of appropriate antimicrobials1,2. A single
day of receiving an ineffective antimicrobial increases average BSI
mortality by up to 5%3,4. When BSIs progress into septic shock,
these treatment delays can increase mortality by over 7% per hour
(Fig. 1)2. Unfortunately, most diagnostic laboratories require
2–5 days to complete microbial identification (ID) and anti-
microbial susceptibility testing (AST; Fig. 1). Currently, 20–30%
of patients are prescribed the wrong antimicrobial treatment5,6, a
percentage that is expected to rise with the increasing prevalence of
antimicrobial-resistant organisms. Given that 1.3 million people
suffer fromBSIs inNorthAmericaandEuropeeachyear, androughly
182,000 of these people die7, amore efficientmethod for completing
ID andAST could save tens of thousands of lives each year, decrease
in-patient hospital stays, and decrease average treatment costs8,9. In
addition, long diagnostic times contribute to the selection of
antimicrobial-resistant organisms10 because the time-sensitive nat-
ure of treating BSIs forces clinicians to make therapeutic decisions
with little or no laboratory data. This situation encourages the
widespread use of broad-spectrum antimicrobials and selection for
resistant organisms11. In summary, any technology that shortens the
diagnostic timeline will have a significant impact on global
health1,12,13.

The current clinical microbiology testing timeline is dominated
by three microbial culturing steps that are necessary for identi-
fying and characterizing bloodstream pathogens (Fig. 1). These
microbial amplification steps are the rate-limiting factors in the
analysis pipeline and are the primary technical roadblocks to
faster diagnostics. In the first culturing step (i) patient blood

samples are incubated for 7–43 h14 to allow microbes present in
the samples to grow to detectable densities (from 0.01–100 CFU/
mL to >1 × 109 CFU/mL15,16). Although the median time to
positivity is 12.7 h, this step can require as much as 125 h for
some slow-growing organisms17,18. Once blood cultures have
flagged positive, (ii) aliquots of cultures are streaked onto agar
plates and incubated for another 12–24 h19 to obtain single
colonies. These subcultured isolates are then identified via matrix-
assisted laser desorption/ionization time-of-flight (MALDI-TOF)
mass spectrometry (MS)20. Antimicrobial susceptibility testing is
then performed by (iii) incubating a fixed number of microbes
(5 × 105 CFU/mL) for 12–24 h in a medium containing anti-
microbials using an automated testing system (e.g., VITEK 2,
BioMérieux; MicroScan, Beckman Coulter; Sensititre, Thermo
Fisher Scientific; Phoenix, BD)21. Additional antimicrobial testing
procedures may also be necessary for isolates with an unusual
resistance profile22. In summary, current clinical diagnostic
timelines are limited by microbial growth rates.

Both cost constraints and health concerns have created con-
siderable pressure to develop a faster clinical diagnostic
pipeline23. Some time savings have been achieved by streamlining
the existing workflow. Direct MALDI-TOF-MS analysis of blood
cultures, for example, allows microbes to be identified faster by
circumventing one microbial culture step (Fig. 1ii)24. Unfortu-
nately, direct MALDI-TOF-MS cannot replace the existing AST
workflow. An alternative emerging strategy has been to use DNA-
based technologies to both identify organisms and detect com-
mon resistance genes in a single multiplexed assay (e.g., Biofire®
FilmArray® and Verigene®25). Although promising, these assays
have limitations: they require culture-based isolation of the
pathogen, are susceptible to false-negative results due to primer
specificity or PCR inhibition, and can give false-positive results
due to cell-free DNA26,27. Moreover, both proteomic and DNA-
based assays detect the genetic potential for drug resistance,
not the empirically determined antimicrobial susceptibility
phenotype28. Any genetic modulators of resistance, or novel
resistance mechanisms, cannot be detected via these assays.
Consequently, direct phenotypic assessment of susceptibility via
microbial culturing is required by the current clinical laboratory
guidelines22.

Although faster molecular-based diagnostic tools are emerging,
the need to both identify organisms and empirically determine
their antimicrobial resistance profiles has prevented many of
these tools from being integrated into working diagnostic
laboratories. Metabolomics offers a unique opportunity to accel-
erate diagnostics while conforming to the established workflow
used in clinical practices. Secreted metabolites can be thousands
of times more abundant than individual proteins29, are
sensitive reporters of microbial physiology30, and are compatible
with established high-throughput clinical mass spectrometry
platforms31. As a result, sensitive metabolite-based assays have
the potential to minimize the rate-limiting steps in the existing
clinical workflow. Although the applicability of metabolomics to
microbial diagnostics has been recognized for over a decade32–37,
previous applications have largely sought to identify native bio-
markers present in the blood of people with infections. This
approach is challenging due to the intrinsic variability of human
metabolism. Moreover, it does not provide a mechanism for
assessing antimicrobial susceptibility.

Herein, we introduce a diagnostic strategy, the metabolic pre-
ference assay (MPA), that uses the patterns of consumed versus
excreted metabolites of ex vivo microbial cultures to both identify
pathogens and measure their antimicrobial susceptibility. We
identify biomarkers capable of differentiating seven of the most
prevalent organisms responsible for BSIs [Candida albicans (CA),
Klebsiella pneumoniae (KP), Escherichia coli (EC), Pseudomonas
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Fig. 1 Bloodstream infection (BSI) testing timelines versus mortality
rates. Mortality risk (expressed as adjusted odds ratio of death) adapted
with permission from Kumar et al., 20062 shown between the onset of
symptoms and administration of antimicrobials (top) relative to current
clinical testing times (bottom). Error bars represent the 95% confidence
interval of the odds ratio. ID, microbial identification by MALDI-TOF-MS
(matrix-assisted laser desorption ionization time of flight mass
spectrometry); SCP single colony purification on agar plates, AST
antimicrobial susceptibility testing, AST+ additional antimicrobial
susceptibility testing for isolates with an unusual resistance profile. Roman
numerals represent the rate-limiting microbial culturing steps. Dashed lines
show the median culture timelines observed in high-volume diagnostic
laboratories whereas the solid lines show the range of analysis times for
each step. *While ID can be performed either after SCP or directly from
blood culture bottles, the need for SCP for current AST methods means that
overall timelines are unaffected. Error bars indicate a 95% confidence
interval.
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aeruginosa (PA), Staphylococcus aureus (SA), Enterococcus fae-
calis (EF), and Streptococcus pneumoniae (SP)]38, show that
changes in metabolite levels using the metabolic inhibition assay
(MIA) can empirically measure the activity of antimicrobials, and
demonstrate that the MPA/MIA can produce results in a fraction
of the time as current testing methods.

Results
Seven metabolites can differentiate between prevalent species
responsible for of BSIs. Although the core architecture of central
carbon metabolism is shared among almost all organisms, the
activities of these pathways differ according to both genetic and
environmental factors. Thus, by tightly controlling environmental
variables, metabolic pathway activities should serve as indicators
of microbial species. This fundamental hypothesis is the root of
the MPA-based diagnostic approach and is testable by quantify-
ing metabolic boundary fluxes (the rates at which nutrients and
waste products are consumed or produced) of clinically relevant
microbes under well-controlled conditions. To test this, the
metabolic boundary fluxes of the seven most common blood-
stream pathogens were measured. For initial biomarker discovery,
three independent experiments were performed (n= 3), where
three clinical isolates (2 for PA) of each target species (n= 7)
were incubated independently in triplicate (n= 3) and analyzed.
Microbial cultures were seeded at a 0.5 McFarland (OD600 ~0.15
or 7.5 × 107 CFU/mL) into Mueller Hinton broth containing 10%
human blood (MHB). Metabolite levels present in the cultures
were analyzed at 0 h and 4 h on a Thermo Q Exactive HF MS in
negative mode. Untargeted analysis using MAVEN software
identified 4362 features (Supplementary Data File 1, Source Data
File S1). These features were filtered using in-house script (Sup-
plementary Software 1, Supplementary Software 2; see Compu-
tational methods identifying biomarkers in untargeted discovery
cohort). The untargeted dataset was filtered to the most probable
set of putative diagnostic signals via a significance filter (defined
as features with a p-value less than 1.15 × 10−5 the Bonferroni
corrected α= 0.05 significance threshold), fold change (defined as
features with a minimum of a 4-fold change in average signal
intensity compared to the MHB medium), and by minimum
absolute intensity (defined as one or more groups showing a
mean signal over 20,000 arbitrary intensity units). A total of 533
putative markers passed this filtering step (Supplementary Data
File 2). These signals were clustered into 210 groups on the basis
of retention times, known adduct/fragment masses, and covar-
iance of signal intensities across replicates. The most likely parent
ion was then identified from each cluster based on signal inten-
sities (Supplementary Data File 3). Data clustering and parent ion
identification were completed using our in-house software tools
(see Supplementary Software 1 and Supplementary Software 2).
Putative metabolite assignments were made via the Madison
Metabolomics Consortium Database (MMCD)39 and Human
Metabolome Database40, and select biomarkers were confirmed
by analyzing the chromatographic retention times and MS/MS
fragmentation patterns of commercial standards in comparison
to the signals observed in the microbial extracts. Metabolite
assignments were further validated by demonstrating a
concentration-dependent increase in signal intensities when these
standards were added to the corresponding microbial extract
(Supplementary Data Fig. 1; Supplementary Data File 4).

Species-dependent consumption or production of 210 putative
makers identified in our discovery dataset robustly differentiate
between the seven target species (Fig. 2a). Although the overall
pattern of markers was similar between closely related microbes
(i.e., K. pneumoniae and E. coli), the metabolic patterns we
observed were species-specific. Remarkably, just seven production

biomarkers were sufficient to distinguish between the target
pathogens and acted as binary predictors of each species in our
discovery datasets (Fig. 2b). Specifically, arabitol, xanthine, and
N1,N12-diacetylspermine (which ionizes as a formic acid adduct)
were exclusively produced by C. albicans, P. aeruginosa, and E.
faecalis, respectively. Both K. pneumoniae and E. coli produced
succinate, but the latter did not produce urocanate. Mevalonate
was produced by S. aureus, and to a lesser extent E. faecalis, but
unlike E. faecalis, S. aureus did not produce N1,N12-diacetyl-
spermine. Lactate was produced by S. pneumoniae, and to a lesser
extent, E. faecalis. With the exception of arabitol production by
C. albicans41 and fermentative succinate production by E. coli and
K. pneumoniae42,43, secretion of the species-specific biomarkers
mentioned above has not been previously identified.

To assess the diagnostic robustness of our seven candidate
biomarkers, we quantified the levels of each of these metabolites
in an independent validation cohort of 596 clinical isolates
collected from bloodstream infections. The metabolic phenotypes
observed in each of these isolates were analyzed by MPA and each
of the 210 features identified in the discovery dataset were re-
evaluated. The validation dataset showed that 203 of 210 markers
had significant differences by one-way ANOVA even when using
the stringent Bonferroni correction applied to the original
discovery dataset (p-values <1.15 × 10−5; see Statistical analysis
of biomarkers in species ID validation cohort and Supplementary
Data File 5). Moreover, the seven select metabolites we prioritized
for differentiating species followed the same species-specific
profiles we observed in the discovery dataset (Fig. 2c) and these
differences were highly significant (p-values ranging from
1.6 × 10−136 to 1.1 × 10−279 by one-way ANOVA). Significant
biomarker/species associations were identified via pairwise post-
hoc comparisons using Tukey-Kramer HSQ with significant
associations defined as p-values less than 0.01. All of our top
seven biomarkers were significantly linked to one or more species
via this post-hoc test (Supplementary Data File 5). Since microbes
were cultured from frozen stocks ex vivo, no associations between
microbial biomarkers and patent demographics were expected.
However, putative demographic/biomarker associations were
formally tested by collecting patient information from each of
the original BSI samples (age, sex) and any possible associations
with the biomarkers were tested independently via one-way
ANOVA. As expected, among the 203 significant biomarkers we
identified, none were significantly linked to patient age or sex (see
Statistical analysis of biomarkers in species ID validation cohort;
Supplementary Data File 5). In summary, two independent
cohorts of samples demonstrated that metabolic profiles can
robustly differentiate between species and a select set of seven
metabolites is sufficient for identifying common BSI pathogens.

To assess the quantitative reliability of our MPA assay we
prepared mixtures of chemical standards to serve as calibration
reference standards and quality control samples. These standard
mixtures were then analyzed alongside 864 clinical samples
interspersed at an interval of one standard set for each batch of 96
clinical samples (N= 945 total samples). Concentrations of each
metabolite were then computed using the calibration reference
mixtures and the error associated with each quality control
sample was then calculated as the root mean square error
(RMSE). These error rates ranged from 8.9 to 30.3% (RMSE/
[actual] × 100) across metabolites (Supplementary Data File 6). In
comparison, the average fold changes for the same biomarkers
ranged from 64- to 215-fold change relative to our control
samples (uninoculated MHB). Consequently, our quantitative
error is less than ≤0.6% of the species-linked phenotypes and thus
does not appreciably affect the performance of our MPA assay.
Notably, the addition of 10% blood to the medium, irrespective of
the donor (n= 20), had negligible effects on metabolite profiles
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Fig. 2 Metabolic preference assay (MPA) of seven prevalent pathogens responsible for bloodstream infections. a Heatmap of the top 210 putative
biomarkers after a 4 h incubation period. Putative biomarkers were selected from 4362 features observed in LC-MS spectra of the discovery dataset (three
independent experiments (n= 3), where three clinical isolates (2 for PA) of each target species (n= 7) were incubated independently in triplicate (n= 3)
and analyzed; Supplementary Data Files 1–3). Biomarkers were filtered based on variance significance, signal intensity thresholds and fold change
thresholds, clustered into groups based on co-retention, m/z shift relative to known fragments/adducts, and covariance, and parent ions were
assigned. Putative metabolite assignments were then assigned to each via database searching39,40 and these assignments were confirmed by matching the
MS/MS fragmentation patterns and chromatographic retention times to those observed of commercially purchased standards (Supplementary Fig. 1;
Supplementary Data File 4). Putative marker numbers (M) in panel A correspond to the metabolites identified in panels b and c. b Discovery dataset and
c validation dataset consisting of 596 clinical isolates (Supplementary Data File 5) demonstrate that top seven biomarkers that can robustly differentiate
between the seven species studied. MHB Mueller Hinton broth with 10% blood, CA Candida albicans, KP Klebsiella pneumonia, EC Escherichia coli, PA
Pseudomonas aeruginosa, SA Staphylococcus aureus, EF Enterococcus faecalis, SP Streptococcus pneumonia.
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when compared to seeded culture, demonstrating that these
putative biomarkers were pathogen-specific, and did not reflect
blood metabolism or donor-specific metabolite carryover (Sup-
plementary Fig. 2; Supplementary Data File 7). Together, these
data show that the changing patterns of metabolites present in
microbial cultures can be harnessed as a robust diagnostic tool for
identifying bloodstream pathogens.

Rapid antibiotic susceptibility testing via the metabolic inhi-
bition assay. One major advantage of using metabolomics for
microbial diagnostics is that metabolism is a sensitive reporter of
cell physiology. Nutritional precursors are converted into waste
products at rates that are many orders of magnitude faster than
microbial growth. Moreover, these processes are dramatically
altered, or halted completely, when cells are exposed to toxic
substances. Consequently, metabolomics approaches offer a
unique opportunity to empirically assess antibiotic sensitivity in a
fraction of the time that is required by current growth-based AST
approaches. Herein, we evaluate the practicality of using a MPA-
based metabolic inhibition assay (MIA) as a diagnostic platform
for quantifying antimicrobial susceptibilities.

MIA was accomplished by monitoring changes in the
metabolic composition of microbial culture supernatants after a
4 h incubation period with and without antimicrobials. Microbes
were seeded into MHB medium at 10% of a 0.5 McFarland (to a
final OD600 of ~0.015) and metabolomics analyses were
conducted using the same method used for general MPA testing.
The metabolic concept underpinning MIA is illustrated in the top
left panel of Fig. 3: drug-sensitive strains of K. pneumoniae show
an incremental reduction in hypoxanthine production propor-
tional to meropenem concentrations whereas resistant strains
remain unaffected within the clinically relevant antibiotic
concentrations. Similar antibiotic-induced metabolic perturba-
tions were observed in all of the target pathogens when isolates
were exposed to minimum inhibitory concentrations of com-
monly prescribed antimicrobials (Fig. 3; Supplementary Data
File 8).

To assess MIA as a potential clinical tool, three patient isolates
for each target pathogen (two for S. aureus and P. aeruginosa)
were analyzed. Antifungals (azoles, polyenes, and antimetabolites)
were tested for C. albicans. Both bactericidal (penicillins,
cephalosporins, carbapenems, glycopeptides, aminoglycosides,
fluoroquinolones and trimethoprim-sulfamethoxazole) and bac-
teriostatic (macrolides and tetracyclines) antibiotic classes were
evaluated. Antimicrobial sensitivity profiles determined by MIA
were consistent with 98% of the profiles observed in traditional
microbial growth assays. The assays were consistent across all
antimicrobial’s mechanisms of action (Fig. 3; Supplementary Data
File 8). For example, succinate production by ampicillin (AMP)
and trimethoprim/sulfamethoxazole (SXT) resistant E. coli was
comparable when the strain was incubated in the presence of
AMP, SXT, or in the absence of antibiotics. However, succinate
production was significantly lower (p < 0.01 for all pairwise
comparisons) when the strain was grown in the presence of
antibiotics to which it was sensitive. In most cases, the biomarkers
used to identify microbes were also useful for differentiating
drug-sensitive and resistant strains (e.g., arabitol for C. albicans,
succinate for K. pneumoniae and E. coli, N1,N12-diacetylspermine
for E. faecalis, xanthine for P. aeruginosa, and lactate for S.
pneumoniae). One exception to this trend was mevalonate, which
is an excellent marker for S. aureus but an unreliable marker for
drug resistance. Instead, an alternative compound with an m/z of
204.069 was identified as a more stable metric for differentiating
resistant versus susceptible strains of S. aureus. Collectively, these

data indicate that the MIA strategy can be an indicator of
antimicrobial-resistant profiles.

Performance validation of the metabolic inhibition assay using
a rapid LC-MS method. To further assess the performance of the
MIA, we evaluated this workflow using a larger cohort of isolates
(n= 246) with varying antibiotic susceptibility profiles. This
cohort included E. coli (n= 50), S. aureus (n= 63), K. pneumo-
niae (n= 35), S. pneumoniae (n= 49), E. faecalis (n= 23), and E.
faecium (n= 24; Supplementary Data File 9). E. faecium was
included in this cohort to provide Enterococcus isolates with
antibiotic-resistant profiles since the majority of E. faecalis strains
available were susceptible to all antibiotics tested. Isolates were
challenged with commonly prescribed antibiotics at breakpoint
concentrations (See Validation of the metabolic inhibition assay
and metabolic inhibition calculations section for antibiotics tes-
ted). Metabolic profiles of supernatants following the 4 h MIA
were analyzed using a rapid 5-minute HILIC chromatography
method to maximize sample throughput. The cohort dataset was
randomly divided into (i) a training set (n= 80 isolates) used to
identify suitable AST markers and calculate their metabolic
inhibition cutoffs differentiating sensitive and resistant strains
and (ii) a test set (n= 166) used to make MIA calls and cross-
validate these calls with VITEK 2 calls. In order to minimize the
number of metabolites required for AST via MIA, metabolites
were identified that could be used for multiple species. We
identified glucose consumption as the most reliable indicator of
antibiotic susceptibility for S. aureus and Enterococcus species;
succinate production as the most reliable indicator for E. coli, and
K. pneumoniae susceptibility; and nicotinate production as the
most reliable indicator for S. pneumoniae susceptibility.

Antibiotic-induced inhibition of metabolite consumption
(MIAc) and metabolite production (MIAp) was calculated using
metabolite intensities from cultures incubated for 4 h in Mueller
Hinton medium (see Validation of the metabolic inhibition assay
and metabolic inhibition calculations section for calculations and
Supplementary Data File 9). Metabolic inhibition breakpoints
were then computed from receiver operating characteristic (ROC)
curves for sensitive versus resistant isolates as predicted by
metabolism versus predictions made via the commercial VITEK 2
antimicrobial sensitivity testing platform (Fig. 4). Metabolic
breakpoints were set at thresholds that balanced maximal
sensitivity and specificity. Consumption thresholds for glucose
were determined to be 21.3 and 43.9% for S. aureus and
Enterococcus species, respectively, while production thresholds for
succinate were 56.0 and 67.6% for E. coli and K. pneumonia,
respectively, and nicotinate production thresholds were 62.4% for
S. pneumonia. The area under the ROC curve (AUC) for these
metabolism-based predictions of antibiotic susceptibility ranged
from 0.91 to 1 (Fig. 4).

Using the MIAc and MIAp thresholds calculated from our
training set, we predicted the antimicrobial sensitivities of a test
set consisting of 166 clinical isolates challenged with antibiotics.
Our MIA predicted sensitivities were then compared to those
generated via the commercial VITEK 2 AST testing platform
(Table 1, Supplementary Data File 9). Overall, we observed a
95.2% agreement between our MIA assay and results generated by
the VITEK 2 platform with species-specific predictions ranging
from 90.3% for K. pneumoniae to 97.6% for S. aureus.
Importantly, the major error rates (susceptible by VITEK 2 and
resistant by MIA) were 3.1%, whereas the very major error rates
(resistant by VITEK 2 and susceptible by MIA) were only 1.7%.
Collectively, these data indicate that the MIA is a robust indicator
of antimicrobial-resistance profiles.
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Metabolic-based diagnostics decrease pathogen ID and AST
timelines by more than 20 h. One of the primary motivations for
this project is the urgent need for rapid diagnostic tools for
bloodstream infections. To evaluate the potential time savings
available via our MPA/MIA diagnostic workflow, we conducted
three independent (n= 3) head-to-head races between the MPA/
MIA and the bioMéieux VITEK 2 platform. Aerobic BacT/Alert
bottles were seeded with 10 mL of blood and 1 mL of diluted

culture containing 40–60 CFU/mL of exponential phase bacteria
(S. aureus and E. coli, n= 3 each), and were incubated in a BacT/
Alert 3D automated microbial detection system (bioMérieux)
until the bottles flagged positive. One aliquot from each bottle was
taken for testing on the VITEK 2, which involved plating an
aliquot on blood agar plates, incubating for 18 h, picking colonies,
diluting cultures according to the manufacturer’s protocols, and
loading samples onto VITEK ID and AST cards. Notably, ID and
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alongside each panel, and were confirmed independently by growth assays (gray bars). All MIA-determined susceptibility profiles matched those reported
by the VITEK 2 with only two exceptions (highlighted in yellow boxes), resulting in a 2% false discovery rate for the assay (1% very major error and 1%
major error by CLSI guidelines). (MIC in µg/mL): FLC fluconazole (2), AMB amphotericin B (2), 5FC 5-flucytosine (0.5), CRO Ceftriaxone (0.5 and 1 for
S. pneumoniae and K. pneumoniae/E. coli, respectively), CIP ciprofloxacin (1), MEM meropenem (0.25, 1, and 2 for S. pneumoniae, K. pneumoniae/E. coli, and
P. aeruginosa, respectively), GEN gentamicin (4; 500 only for E. faecalis), AMP ampicillin (8), SXT trimethoprim-sulfamethoxazole (2/38), CAZ ceftazidime
(8), PIP piperacillin (16), LVX levofloxacin (2), PEN penicillin (0.06), ERY erythromycin (0.25 and 0.5 for S. pneumoniae and S. aureus, respectively), OXA
oxacillin (2), VAN vancomycin (1, 2, and 4 for S. pneumoniae, S. aureus, and E. faecalis, respectively), CFX cefazolin (4), TET tetracycline (4).
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AST were performed simultaneously on the VITEK. A second
aliquot from each bottle was used for identifying and character-
izing pathogens via the MPA/MIA workflow. For MPA/MIA
analyses, media containing the most commonly tested antibiotics
for each strain (CFZ, OXA, AMP, SXT, and CIP for S. aureus;
AMP, GEN, SXT, and CIP for E. coli) at concentration ranges
consistent with MicroScan Panels were inoculated with 0.5%
of the positive blood-bacterium-BacT/Alert medium mixture.

Samples were processed following the 4 h incubation period and
analyzed via LC-MS using a 5-minute HILIC method. Data were
analyzed in real-time using the MAVEN software package44. A
positive growth control (medium with no antibiotic) was ana-
lyzed first to enable species identification. Subsequently, only
samples incubated in the presence of antibiotics pertinent to the
identified species were analyzed in order to minimize MS analysis
time. Our MIA results agreed with CLSI MIC breakpoints vali-
dating that the process can be performed directly from BacT
bottles. The MPA/MIA workflow reduced total testing time by an
average of 24.3 h for S. aureus and 22.4 h for E. coli, corre-
sponding to a 2.2- and 2.3-fold decrease in total testing time,
respectively (Fig. 5; Supplementary Data File 10). The time
required for strain identification and antibiotic susceptibility
post-blood bottle flagging alone decreased by 4.7- and 5.0-fold for
S. aureus and E. coli, respectively.

Discussion
Rapid diagnostic tools for identifying microbes and measuring
antibiotic susceptibility profiles could have a significant impact on
morbidity and mortality rates from bloodstream infections.
Moreover, these tools could help promote antibiotic stewardship
by allowing clinicians to more efficiently transition patients off of
broad-spectrum antibiotics and onto more precise therapies.
These significant benefits are widely recognized and have driven
research into a diverse collection of molecular, chemical, and
optical tests that accelerate the diagnostic pipeline45–51. However,
the metabolomics-based strategy we introduce here has several
advantages over many of these emerging technologies and may
represent an exciting platform for diagnosing a wide range of
infectious diseases.

All free-living microbes take up nutrients from their environ-
ment and secrete metabolic waste products to support the basic
requirements of life. These metabolic boundary fluxes differ
considerably across microbial taxa and are the foundation for
many classical microbiology identification methods (ex. carbo-
hydrate fermentation, starch or urea hydrolysis, citrate utilization,
etc.). Though effective, these classical microbiology assays gen-
erally only investigate one metabolic phenotype at a time. The
metabolic preference assay we introduce here is a modern rein-
terpretation of classical microbiology methods that radically
expands the scope of molecules that can be traced in a single
assay. Although all metabolism-based assays will have a limited
ability to differentiate strains or closely related species, our data
show that metabolic boundary fluxes have sufficient resolution to
distinguish the major taxa seen in clinical settings. While, herein,
we demonstrate differentiation of seven BSI-causing organisms,
this strategy could be extended to the full spectrum of BSI
pathogens as well as a wide range of other microbes. We also
show that metabolic boundary fluxes are altered in response to
both bacteriostatic and bactericidal antimicrobial agents.
These antimicrobial-induced perturbations provide a flexible
diagnostic approach that could be applied to potentially any
antimicrobial agent.

The MPA/MIA diagnostic workflow we introduce here has a
number of advantages as a platform for clinical diagnostics. In
addition to being inherently flexible with respect to infection type,
it is attractive because it can integrate ID and AST testing onto a
single instrument. Moreover, the MPA/MIA workflow requires
minimal sample handling, allows samples to be taken directly
from the blood bottle, and does not require the subculturing of
isolates. Furthermore, there are already commercially available
mass spectrometers certified as medical devices (e.g., Thermo
Fisher Altis), which could simplify the transition of MPA/MIA
into clinical practice. In summary, our MPA/MIA workflow
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Fig. 4 Calculated metabolic inhibition thresholds (MIAp, MIAc, %) for
biomarker/species combinations used for differentiating sensitive and
resistant strains using the metabolic inhibition assay. Thresholds were
calculated using data from a training set containing 80 isolates using
receiver operator characteristic (ROC) curves and were set to the point that
co-optimized sensitivity and specificity. Given that changes in biomarkers
are greater in resistant strains unaffected by antibiotics, biomarker percent
inhibition values are below threshold cutoffs for resistant strains and above
threshold cutoffs for sensitive strains. Metabolite levels and resistant and
sensitive calls (all antibiotics combined) by VITEK 2 used to calculate
thresholds are provided in Supplementary Data File 9. SA Staphylococcus
aureus, ENT Enterococcus species (E. faecalis and E. faecium), EC Escherichia
coli, KP Klebsiella pneumonia, SP Streptococcus pneumonia, AUC area under
the ROC curve.
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offers an exciting strategy for identifying and phenotyping
microbial cultures and could offer a path to future clinical
diagnostics.

A wide range of alternative tools is emerging that could
potentially improve clinical diagnostics. Some of the most exciting
tools use multiplexed PCR or other DNA-based assays to accel-
erate diagnostics (e.g., Biofire® FilmArray® and Verigene®25).
These assays are attractive because they can both identify patho-
gens and screen for a limited number of known resistance genes.
Unfortunately, the presence of resistant alleles is not a direct
reporter of susceptibility. Polygenic interactions, changes in

expression, novel antimicrobial efflux pumps, point mutations
altering primer binding, polymorphisms modulating resistance
profiles, and novel resistance mechanisms can have a profound
impact on a microbe’s empirically determined antimicrobial sus-
ceptibility. Furthermore, DNA-based assays cannot determine
antimicrobial breakpoints, which are critical for guiding pre-
scribing practice. In contrast, monitoring changes in metabolite
levels over time when pathogens are challenged with antibiotics
(e.g., via the MIA) can provide empirically determining anti-
microbial susceptibilities. Specific Reveal® (Specific Diagnostics)
has recently capitalized on this principle by monitoring volatile
fatty acid production of cultures (post-blood bottle flagging) using
colorimetric sensor arrays, allowing for AST results in as little as
5 h52–54. However, BSI ID using this technology has not been
validated. Perhaps the most competitive platform capable of both
rapid BSI ID and AST (post-blood bottle flagging) is the Accel-
erate Pheno® system (Accelerate Diagnostics)55–57. The Accelerate
PhenoTest® BC can perform ID using fluorescence in situ
hybridization in as little as 2 h, and AST using morphokinetic
cellular analysis using time-lapse microscopy in as little as 7 h.
The one major drawback of this platform is that it can only
perform one test per unit which limits its utility in high-volume
diagnostic labs.

Another category of emerging technologies is tools for directly
detecting whole cells. For example, the AdvanDx (OpGen) mul-
ticolor qualitative fluorescent in situ hybridization probes can be
used to ID pathogens in as little as 30min from positive blood
culture bottles58,59. This platform is exciting but requires manual
staining and interpretation by skilled personnel. Furthermore, the
stains used in this assay have been limited to four major groups
(Staphylococcus, Enterococcus, Gram-negative species, and Can-
dida) and can exhibit some cross-reactivity between species leading
to false-positive results. The T2Bacteria system (T2Biosystems) is
another emerging technology that employs miniaturized magnetic

Table 1 Agreement of metabolic inhibition assay results compared to VITEK 2 testing methods.

Marker (MIA
threshold)

Species (n) Antibiotic
(ug/ml)

Sensitive called
as sensitive

Resistant called
as resistant

Sensitive called
as resistant

Resistant called
as sensitive

Correct calls
per species

Glucose (>21) SA (46) OXA (2, 4) 29 61 0 2 359/368
(97.6%)CM (0.5, 4) 57 32 3 0

VAN (2, 8) 91 0 1 0
SXT (2/38, 4/76) 69 20 3 0
Total 246 (66.8%) 113 (30.7%) 7 (1.9%) 2 (0.5%)

Glucose (>44) ENT (30) AMP (8, 16) 30 22 8 0 136/150
(90.7%)VAN (4, 12, 32) 58 26 2 4

Total 88 (58.7%) 48 (32.0%) 10 (6.7%) 4 (2.7%)
Succinate (>56) EC (29) CRO (1, 4) 12 43 2 1 225/232

(97.0%)CIP (1, 4) 12 46 0 0
GEN (4, 16) 22 33 0 3
MER (1, 4) 54 3 0 1
Total 100 (43.1%) 125 (53.9%) 2 (0.9%) 5 (2.2%)

Succinate (>68) KP (27) CRO (1, 4) 19 30 5 0 195/216
(90.3%)CIP (1, 4) 21 32 1 0

GEN (4, 16) 34 16 0 4
MER (1, 4) 29 14 11 0
Total 103 (47.7%) 92 (42.6%) 17 (7.9) 4 (1.9%)

Nicotinate (>62) SP (34) PEN (0.06,
0.12, 2)

90 10 1 1 238/245
(97.1%)

CRO (0.5, 2) 66 2 0 0
VAN (1.0, 0.25) 7 0 0 0
CM (0.25, 1.0) 63 0 0 5
Total 226 (92.2%) 12 (4.9%) 1 (0.4%) 6 (2.4%)

Total 166 763 390 37 21 1153/1211
(95.2%)

EC

0 10 20 30 40 50

SA

Hours to amplify, ID, and test pathogen suceptibility

Metabolic Preference Assay

Vitek2 ID and AST 

EC

SA Blood culture time

ID and AST time

Fig. 5 Diagnostic timelines from a head-to-head race between the VITEK
2 testing platform versus our metabolomics-based workflow. Total time
to identify and perform AST using our MPA/MIA metabolomics workflow
was more than 2.2-fold faster than current clinical methods, whereas
identification and testing times alone were more than 4.7-fold faster. The
observed 22 h decrease in testing time allows for administration of correct
antimicrobial therapies, which could reduce mortality rates in septic shock
patients. Three independent (n= 3) head-to-head races were performed
between the MPA/MIA and the bioMéieux VITEK 2 platform for each
organism (Supplementary Data File 10). Data are presented as mean
values ± SD.
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resonance technology and oligonucleotide-conjugated magnetic
nanosensors that hybridize with specific nucleotide sequences. The
T2Biosystems platform can detect ~50% of BSI pathogens at loads
as low as 1 CFU/mL in as little as 3–5 h directly from blood
bottles60–63. The main drawback OpGen, T2Biosytems, and other
cell-based microbial identification systems are that these technol-
ogies generally cannot measure antibiotic susceptibility profiles,
and thus must be paired with time-consuming conventional AST
workflows.

The metabolomics workflow we introduce here delivers both
microbial identities and empirically-determined susceptibility
profiles that align with the requirements of current clinical
practice. Moreover, the high sensitivity of mass spectrometry,
along with the high abundance of metabolites relative to cells or
macromolecules, make the MPA/MIA workflow inherently
amenable to rapid diagnostics. While only the most prevalent BSI
pathogens' ID and AST metrics are reported in this proof-of-
concept study, expanding this workflow to less prevalent BSI
pathogens will likely result in the discovery of additional bio-
markers and improved species coverage. Lastly, reducing/opti-
mizing chromatography time and transitioning the MPA/MIA
workflow from a high-resolution quadrupole orbitrap mass
spectrometer to existing clinical-grade triple quadrupole mass
spectrometers could support the high sample throughputs needed
in real-world clinical laboratories and promote uptake in
laboratories with existing platforms.

In summary, we demonstrate that this ex vivo metabolomic
workflow can (i) accurately identify the most common blood-
stream pathogens, (ii) empirically determine antibiotic suscept-
ibility profiles with high accuracy, and (iii) decrease diagnostic
testing timelines of bloodstream infection by more than 20 h.

Methods
Ethics. This study was approved by the conjoint health research ethics board
(REB16-2457 and REB 17-1524).

Experimental design. All research presented here complies with all relevant ethical
regulations and has been approved by the conjoint health research ethics board
(REB16-2457 and REB 17-1524). The metabolic preference assay (MPA), which
measures supernatant biomarker production and consumption, was used to dif-
ferentiate between seven prevalent species responsible for bloodstream infections
(Candida albicans, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aerugi-
nosa, Staphylococcus aureus, Enterococcus faecalis, and Streptococcus pneumoniae).
Strains were grown in Mueller Hinton medium for 4 h, and supernatants were
analyzed by ultra-high-performance liquid chromatography (UHPLC) MS to
identify potential biomarkers. For initial biomarker discovery, three independent
experiments were performed (n= 3), where three clinical isolates (2 for PA) of
each target species (n= 7) were incubated independently in triplicate (n= 3) and
analyzed. Untargeted MS analysis was used to find biomarkers that were common
to all three isolates of each species, and that could differentiate between the dif-
ferent species. The stability of top biomarkers was subsequently assessed on a large
cohort of clinical isolates (n= 596) representing these seven species. The molecular
identity of select biomarkers was verified by standard additions and MS/MS
fragmentation patterns comparing standards and samples. To test the applicability
of the metabolic inhibition assay (MIA) for antibiotic susceptibility testing (AST),
changes in metabolite concentrations were measured for each of the original strains
used for biomarker discovery (n= 3; n= 2 for S. aureus and P. aeruginosa) grown
in the presence of antibiotics in triplicate. The MIA was further evaluated over a
larger isolate cohort (n= 246) and reliable markers and threshold levels of sus-
ceptible isolates were refined. Lastly, to evaluate time savings of MPA/MIA over
current state-of-the-art clinical methods, a real-time head-to-head identification
(ID) and AST race were performed against the VITEK 2 platform using E. coli and
S. aureus on three separate occasions (see below).

Strains, growth, and sample preparation. Isolates used in this study were
recovered from patient blood culture samples and provided as cryo stocks by
Alberta Precision Laboratories (APL). Patient blood samples were also provided by
APL. The protocol was approved by the Conjoint Regional Ethics Board (REB #
16–2457 and REB#17-1525, UC). All chemicals were obtained from Sigma-Aldrich
(St. Louis, Mo. USA), VWR (Radnor, Pa. USA), or Fisher Scientific (Waltham,
Mass. USA) unless otherwise specified. With the exception of S. pneumoniae, all
strains were routinely grown in Mueller Hinton medium (BD Difco, Mississauga,

ON, Canada). S. pneumoniae isolates were first revived on trypticase soy agar plates
containing sheep blood (BD BBL, Mississauga, ON, Canada) and then subcultured
into Mueller Hinton medium supplemented with catalase (1000 U/mL). For bio-
marker discovery and stability testing of top biomarkers on a large cohort of
clinical isolates using the MPA, exponential phase cultures were used to seed 96-
well culture plates (Corning, New York, N.Y. USA) containing Mueller Hinton
medium with 10% donated human blood to a 0.5 McFarland (OD600 ~ 0.15 or
~7.5 × 107 CFU/mL). Cultures were incubated in a humidified incubator (Heracell
VIOS 250i Tri-Gas Incubator, Thermo Scientific, Waltham, Mass. USA) under a
5% CO2 and 21% O2 atmosphere for 4 h. After incubation, samples were trans-
ferred to a 96-well PCR plate (VWR), and centrifuged for 10 min for 4000 × g at
4 °C to remove cells. The supernatant was removed, mixed 1:1 with 100% LC-MS
grade methanol, and either frozen at −80 °C for further processing or centrifuged
again for 10 min at 4000 × g at 4 °C to remove any protein precipitate. The
supernatant was then diluted 1:10 with 50% LC-MS grade methanol and analyzed
using UHPLC-MS. All MIAs were performed as described above; however, cultures
were seeded at a 0.05 McFarland, and no blood was added to allow for periodic
growth measurements at OD600 (Mutiskan GO, Thermo Fisher Scientific, Wal-
tham, Mass. USA). Antibiotics used for each species were based on the prevalence
of being used for treatment. Published strain-specific minimum inhibitory con-
centrations (MIC) of each antibiotic were used22.

Validation of the metabolic inhibition assay and metabolic inhibition calcu-
lations. MIA performance was validated using a cohort of 246 isolates with varying
antibiotic susceptibility profiles. Isolates were challenged with ceftriaxone (CRO; 1
and 4 ug/mL), ciprofloxacin (CIP; 1 and 4 ug/mL), gentamicin (GEN; 4 and 16 ug/
mL), and meropenem (MER; 1 and 4 ug/mL) for E. coli and K. pneumoniae,
oxacillin (OXA; 2 and 4 ug/mL), chloramphenicol (CM; 0.05 and 4 ug/mL), van-
comycin (VAN; 2, 8 ug/mL), and trimethoprim-sulfamethoxazole (SXT; 2/38 and
4/76 ug/mL) for S. aureus, ampicillin (AMP; 8 and 16 ug/ml) and VAN (4, 12, and
32 ug/mL) for Enterococcus species, and penicillin G (PEN 0.06, 0.12, and 2 ug/
mL), CRO (0.5 and 2 ug/mL, VAN (1 ug/mL), and CM (0.25 and 1 ug/mL) for S.
pneumoniae. During the test set evaluation of the MIA, data for 27 samples treated
with vancomycin (4 plates) was excluded in the final evaluation because the
antibiotic was shown to be ineffective during the production of plates on that day
(data provided in Supplementary Data File 9).

The cohort dataset was randomly divided into (i) a training set (n= 80 isolates)
used to identify suitable AST markers and calculate their metabolic inhibition
cutoffs differentiating sensitive and resistant strains and (ii) a test set (n= 166)
used to make MIA calls and cross-validate these calls with VITEK 2 calls. Metabolic
inhibition for markers (in percent) was calculated as follows:

MIAc ¼ MH� Posð Þ � ðMH� ABÞ
ðMH� PosÞ ´ 100 ð1Þ

MIAp ¼ Pos�MHð Þ � ðAB�MHÞ
ðPos�MHÞ ´ 100 ð2Þ

where MIAc= the antibiotic-induced inhibition of metabolites consumed by
microbes (in percent) MIAp= the antibiotic-induced inhibition of metabolites
produced by microbes (in percent)MH= the intensity of a metabolite observed in
control growth medium with no bacteria Pos= the intensity of a metabolite
observed in a microbial culture growth medium with no antibiotics AB= the
intensity of a metabolite observed in a microbial culture growth medium with
antibiotics

Real-time ID and AST race. E. coli and S. aureus were first grown overnight on
tryptic soy agar plates and diluted in saline solution to ~40–60 CFU/mL. Aerobic
BacT/Alert bottles were seeded with 10 mL of blood and 1 mL of diluted culture
containing 40–60 CFU/mL of exponential phase bacteria (S. aureus and E. coli,
n= 3 each), resulting in a final cell concentration of 1–1.5 CFU/mL bottle. Bottles
were immediately incubated in the BacT/Alert® automated blood culture microbial
detection system. Once bottles flagged, one aliquot was used for the VITEK 2
testing pipeline (see above), and a second aliquot was used for MPA. Medium
containing the most commonly tested antibiotics for each strain (CIP, OXA, SXT,
CFZ, and AMP for S. aureus; CIP, SXT, AMP, and GEN for E. coli) at con-
centration ranges consistent with the VITEK 2 automated system were inoculated
with 0.5% of the positive blood-bacterium-BacT/Alert medium mixture. Samples
were processed following the 4 h incubation period and analyzed via UHPLC-MS
using a 5 min HILIC-MS method. Data were analyzed on the fly using the MAVEN
software packages (El-MAVEN v0.12.0). The positive control (medium with no
antibiotic) was analyzed first to enable species identification. Subsequently, only
samples incubated in the presence of antibiotics pertinent to the identified species
were analyzed in order to minimize MS analysis time.

Chromatography and mass spectrometry. All metabolomics data were acquired
at the Calgary Metabolomics Research Facility (CMRF). Metabolite samples were
resolved via a Thermo Fisher Scientific Vanquish UHPLC platform using hydro-
philic interaction liquid chromatography (HILIC). Chromatographic separation
was attained using a binary solvent mixture of 20 mM ammonium formate at pH
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3.0 in LC-MS grade water (Solvent A) and 0.1% formic acid (% v/v) in LC-MS
grade acetonitrile (Solvent B) in conjunction with a 100 × 2.1 mm SyncronisTM

HILIC LC column (Thermo Fisher Scientific) with a 2.1 µm particle size. For
general metabolic profiling runs (15 min) the following gradient was used: 0–2 min,
100 %B; 2–7 min, 100–80 %B; 7–10 min, 80–5 %B; 10–12 min, 5% B; 12–13 min,
5–100 %B; 13–15 min, 100 %B. For expedited runs (5 min) used for evaluation of
MIA over a large cohort and race experiments, the gradient was as follows:
0–0.5 min, 100 %B; 0.5–1.75 min, 100–80 %B; 1.75–3 min, 80–5 %B; 3–3.5 min, 5%
B; 3.5–4 min, 5–100 %B; 4–5 min, 100%B. The flow rate used in all analyses was
600 uL/min and the sample injection volume was 2 uL. Samples were ionized by
electrospray using the following conditions: spray voltage of −2000 V, sheath gas of
35 (arbitrary units), auxiliary gas of 15 (arbitrary units), sweep gas of 2 (arbitrary
units), the capillary temperature of 275 °C, auxiliary gas temperature of 300 °C.
Positive mode source conditions were the same except for the spray voltage being
+3000 V. Data were acquired on a Thermo Scientific Q ExactiveTM HF (Thermo
Scientific) mass spectrometer using full scan acquisitions (50–750m/z) with a
240,000 resolving power, an automatic gain control target of 3e6, and a maximum
injection time of 200 ms. All data were acquired in negative mode except for MS/
MS fragmentation analysis and confirmation of N1,N12-diacetylspermine, which
ionized more efficiently in positive mode. Select biomarkers were confirmed using
MS/MS analysis across a range of collision energies from 10–50 eV, at 30,000
resolving power, with a 5e4 automatic gain control target, and an isolation window
of 4 m/z, selecting for previously observed parent ions. Biomarkers were matched
to standards using fragmentation spectra and retention times. N1,N12-diacetyl-
spermine was purchased from Cayman Chemical Company (Ann Arbor, Mich.
USA), and all other standards were purchased from Sigma-Aldrich. Fragmentation
data were analyzed using Xcalibur 4.0.27.19 software (Thermo Scientific). All other
MS analyses were conducted in MAVEN (El-MAVEN v0.12.0)44.

Computational methods identifying biomarkers in the untargeted discovery
cohort. Untargeted biomarkers in the preliminary dataset (7 species, 3 isolates, 9
replicates) were identified by peak picking the data in El-MAVEN v0.12.0 with a
10 ppm m/z window and a minimum peak intensity set to 50,000. All sub-
sequent analyses were conducted using the R statistical software platform64

using in-house software tools provided (Supplementary Software 1, Supple-
mentary Software 2, Source Data File S1). The untargeted analysis identified
4,362 signals in the mass spectra (Supplementary Data File 1). Differences in
mean signal intensities between groups of microbes were ranked by p-value
(established through one-way analysis of variance; R function aov)65. To
minimize the computational time, putative markers were screened using an
alpha threshold of p < 1.15 × 10−5 (0.05/4,362; the Bonferroni corrected alpha
threshold). This prioritized set of 1864 putative makers was further reduced to
533 candidate signals using a minimum peak intensity threshold (peak area-top
>20,000) and minimum fold change threshold (defined as one or more microbial
groups showing >4-fold difference between the no-growth control and microbial
metabolite signal). This filtered set of untargeted signals contains many non-
independent signals arising from in-source fragmentation, adducts, isotopomers,
and other mass spectrometry-related phenomena. These clusters of signals were
collapsed using a weighted probability matrix accounting for signal covariance,
co-elution, and mass difference relative known adducts/fragments/isotopes
including: 0.0005 (e−), 1.0072 (H+), 18.0106 (H2O), 34.9689 (Cl), 38.9637 (K),
22.9898 (Na), 44.9976 (Formate), 1.0062 (H neutron), 1.0034 (C neutron),
0.9694 (N neutron), 1.0042, 2.0043 (O neutrons), and 0.9994, 1.9958, 3.9950 (S
neutrons)40,66. These signals were then clustered into 210 groups using a
weighted probability function accounting for retention times, common adduct/
fragment/isotopomer masses, and covariance of signal intensities among all
replicates. The most likely parent ion was selected from each cluster on the basis
of signal intensity and each assignment was verified by inspecting the original
MS data (Supplementary Data File 3). All of the data processing steps and
software are provided (Supplementary Software 1, Supplementary Software 2,
Source Data File S1). These computational methods generated a list of candidate
signals which were then tentatively assigned using a combination of informatics
tools (Madison Metabolomics Consortium Database39, and the Human Meta-
bolome Database40).

Analytical methods for identifying biomarkers. Putative biomarker assignments
were validated by matching MS/MS fragmentation patterns of putative signals with
the fragmentation patterns of commercially available metabolite reference com-
pounds. Assignments were further verified by adding the commercial reference
compound to the microbial extract to demonstrate co-elution and concentration-
dependent increases in the target biomarker signal (Supplementary Fig. 1; Sup-
plementary Data File 4). To ensure uniform quantitative performance, mixtures of
each of our target biomarkers were prepared as both calibration reference stan-
dards for absolute quantification and as quality control monitoring samples. The
quantitative stability of our target biomarkers was then assessed across a cohort of
945 samples divided into nine consecutive 96-well plates. Batch-to-batch variability
of the assay was then assessed as the root mean square error between the calculated
versus the know concentration for metabolites of a particular concentration (most
similar to that of the peak intensity of our positive growth samples) in our quality

control mixture (Supplementary Data File 6).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑ðExp�ObsÞ2
n

s

ð3Þ

Where RMSE= the root mean square error between the calculated and expected
concentration of a particular metabolite at a specified concentration Exp=
expected concentration of a metabolite Obs= calculated concentration of a
metabolite n= total number of values (standard runs performed)

Statistical analysis of biomarkers in species ID validation cohort. The 210
biomarkers identified in our untargeted test cohort were cross-validated using an
independent cohort of 596 microbial isolates recovered from 596 individual
patients. We recovered a minimum of 67 biological replicates for each bacterial
species (E. coli, n= 95; S. aureus, n= 92; K. pneumonia, n= 72; S. pneumonia,
n= 90; E. faecalis, n= 67; P. aeruginosa, n= 91; and C. albicans, n= 89) along
with 16 no-growth control samples. Each isolate was cultured for 4 h (see Strains,
growth, and sample preparation) and our 210 candidate markers were quantified
by LC-MS. No technical replicates were included in this analysis. The significance
of each biomarker was evaluated using one-way ANOVA (R Statistics function
aov) with eight independent treatments (MHB, CA, KP, EC, PA, SA, EF, SP; seven
degrees of freedom). Of the 210 candidate biomarkers identified in our discovery
dataset, 203 were found to be significant after correcting for multiple hypothesis
testing using the stringent p < 1.15 × 10−5 (0.05/4362; the Bonferroni alpha cor-
rection applied to the discovery set). Furthermore using Tukey-Kramer as a post-
hoc analysis test (R statistics function TukeyHSD)67–69, species-specific biomarkers
were classified, with a confidence interval of 95% (Supplementary Data File 5).
Statistical associations between the MPA biomarker signals and the original patient
demographics were tested by using one-way ANOVA (R statistics function aov),
and no statistical significance was found between age group and sex relative to the
203 biomarkers using the R code provided (Supplementary Data File 5). All of the
raw data and R statistics code needed to reproduce these analyses are provided
(Supplementary Software 1, Supplementary Software 2, Source Data File S2).

Statistical analysis of biomarkers in antibiotic susceptibility testing validation
cohort. For our MIA assay, the thresholds used to differentiate sensitive versus
resistant isolates were established using receiver operator characteristic curves and
breakpoints were set to equilibrate sensitivity and specificity (see Fig. 4). Once
thresholds were established in training sets, microbes from independent cohorts of
test samples (that were grown, processed, and analyzed independently from the
training set) were then assigned species identities and resistance patterns according
to the thresholds. Observed error rates were then reported for these independent
test cohorts.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data are available in the main text and provided in the Source Data File and
Supplementary Data Files. Putative metabolite assignments were made using the Human
Metabolome Database; https://hmdb.ca/). Source data are provided with this paper.

Code availability
All of the raw data and R statistics code needed to reproduce these analyses are provided
as attachments (Supplementary Software 1, Supplementary Software 2, Source Data
File S1, Source Data File S2) and are published on Zenodo (https://zenodo.org/record/
6403220#.YkYXoi9730o)
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