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Face detection in untrained deep neural networks
Seungdae Baek 1,4, Min Song 2,4, Jaeson Jang 1, Gwangsu Kim 3 & Se-Bum Paik 1,2✉

Face-selective neurons are observed in the primate visual pathway and are considered as the

basis of face detection in the brain. However, it has been debated as to whether this neuronal

selectivity can arise innately or whether it requires training from visual experience. Here,

using a hierarchical deep neural network model of the ventral visual stream, we suggest a

mechanism in which face-selectivity arises in the complete absence of training. We found

that units selective to faces emerge robustly in randomly initialized networks and that these

units reproduce many characteristics observed in monkeys. This innate selectivity also

enables the untrained network to perform face-detection tasks. Intriguingly, we observed that

units selective to various non-face objects can also arise innately in untrained networks. Our

results imply that the random feedforward connections in early, untrained deep neural net-

works may be sufficient for initializing primitive visual selectivity.
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The ability to identify and recognize faces is a crucial
function for social behavior, and this ability is thought to
originate from neuronal tuning at the single or multi-

neuronal level1–20. Neurons that selectively respond to faces
(face-selective neurons) are observed in various species21–23, and
they have been considered as the building blocks of face
detection18. The observation of this type of intriguing neuronal
tuning in the brain has inspired neuroscientists, raising important
questions about its developmental mechanism—whether face-
selective neurons can arise innately in the brain or require visual
experience, and whether neuronal tuning to faces is a special type
of function distinctive from tunings to other visual objects.

Regarding the emergence of neuronal face-selectivity, previous
studies have suggested a scenario in which visual experience
develops face-selective neurons24–26. The experience-dependent
characteristics of face-selective neurons imply that visual experi-
ence plays a critical role in developing face-selectivity in the brain.
It was observed that the preferred feature images of face-selective
neurons in adult monkeys are those that resemble animals or
familiar people depending on individual experiences25. Another
study of the inferior temporal cortex (IT) in monkeys reported
that robust tuning of face-selective neurons is not observed until 1
year after birth6 and that face-selectivity relies on experience
during the early infant years. It was also reported that monkeys
raised without face exposure did not develop normal face-
selective domains26. However, another view suggests that face-
selectivity can innately arise without visual experience27–34.
Although visual experience is critical for refining the development
of face-selective neurons, several lines of research have demon-
strated that primitive face-selectivity is observed even before
visual experience27–31. Primate infants behaviorally prefer to look
at face-like objects as opposed to non-face objects32–34, implying
that face-encoding units may already exist in infants. Moreover,
category-selective domains, including those for faces, are
observed in the ventral stream of adult humans who have been
blind since birth28,29. Furthermore, a recent study reported that
face-selective neurons are observed in infant animals and that the
spatial organization of such early face-selective regions appeared
similar to that observed in adults6. These results taken together
imply that face-selective neurons can arise before visual experi-
ence, in contradiction to the first scenario.

There has been another important debate as to whether face-
selectivity is a special type of visual function distinguished from
other processes of object recognition, the developmental
mechanism of which needs to be considered and examined dis-
tinctively from other visual neural tunings. After early observa-
tions of the face-selective responses of single neurons in the IT,
face detection has been considered one of the most important
visual functions necessary for the survival of social animals35–38.
Observation of the fusiform face area (FFA), which is specialized
for face recognition, also reinforced the idea that face-selectivity is
a specialized neuronal tuning, which may develop differentially
from cognition of other general visual objects12,39–42. However,
more recent studies have reported that selectivity to objects such
as a car or a bird can also develop in the FFA from visual
experience43,44, implying that faces may not be a special, distinct
type of object class for visual function and that neuronal tuning to
various visual objects can also arise similarly to selectivity to faces.

The argument concerning these issues, which reveals our
incomplete understanding of face-selectivity, likely stems from
limitations regarding the control of the experimental conditions,
as it is impossible to control the amount of visual experience for a
particular category, such as the face, in individual subjects. Even if
the subjects are visually deprived such that they are prevented
from having a visual experience, the portion of category-selective
neurons and their degree of tuning may vary across subjects and

cannot easily be predicted. These various factors make it difficult
to investigate the developmental mechanism of face- and other
object-selective neurons in the brain.

A model study using biologically inspired artificial neural
networks, such as deep neural networks (DNNs)45,46, may offer
an effective approach to the problem in this case47–50. Recently,
DNNs, a stack of biologically inspired feedforward projections
with a linear–nonlinear neural motif, have provided insight into
the underlying mechanisms of brain functions, particularly with
regard to the development of various functions for visual
perception47,48,51. For example, a recent model study reported
that the neural response of the monkey IT cortex could not only
be predicted by the responses of DNNs trained to natural
images47,48 but could also be controlled by the preferred feature
image generated by the DNN model52. Notably, previous studies
using random hierarchical networks provide important clues
about the origin of innate face-selectivity in untrained neural
networks. It was reported that untrained feedforward networks
can initiate various cognitive functions with random weights and
that a random network can perform image classification tasks in
that way as well53–56. It was also reported that a randomly
initialized convolutional neural network could reconstruct cor-
rupted images without any training, which implies that a random
network can provide a priori information about the low-level
statistics in natural images57. Overall, such observations suggest
the possibility of the emergence of innate cognitive functions,
such as primitive face-selectivity in untrained, random hier-
archical networks. However, the details of how this innate
function emerges in untrained neural networks are not yet
understood.

Herein, we show that face-selective units (model neurons) can
arise in completely untrained hierarchical neural networks. Using
AlexNet45, a model that captures properties of the ventral stream
of the visual cortex, we found that face-selectivity can emerge
robustly across different conditions of randomly initialized
DNNs. We found that their face-selectivity indices (FSI) are
comparable to those observed with face-selective neurons in the
brain. The preferred feature images obtained from the reverse-
correlation (RC) method and the generative adversarial network
show that face-selective units are selective for a face-like config-
uration, distinct from units with no selectivity. Furthermore, we
found that face-selective units enable the network to perform face
detection. Intriguingly, we found that units selective to various
non-face objects can also arise innately in untrained neural net-
works, implying that face-selectivity may not be a special type of
visual tuning and that selectivity to various objects classes can
arise innately in untrained DNNs, spontaneously from random
feedforward wirings. Overall, our results imply a possible scenario
in which the random feedforward connections that develop in
early, untrained networks may be sufficient for initializing pri-
mitive face-selectivity as well as selectivity to other visual objects
in general.

Results
The emergence of face-selectivity in untrained DNNs. To
simulate the emergence of face-selective neurons (Fig. 1a), we
measured the responses of a biologically inspired DNN model,
AlexNet45 (Fig. 1b), to a similarity-controlled face stimulus set
(Fig. 1c). A standard AlexNet model is composed of five con-
volutional layers (feature extraction network) and three fully
connected layers (classification network), which together repro-
duce the structure of the ventral stream of the visual pathway
(Supplementary Table 1). To investigate the selective responses of
individual units rather than the performance of a trained system,
we discarded the classification layers and examined activity in the
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final layer (Fig. 1b, top, Conv5) of the feature extraction network.
To examine whether face tuning of units can arise even in
completely untrained DNNs, we devised an untrained AlexNet by
randomly initializing the weights of filters in each convolutional
layer (Fig. 1b, bottom). For this, we used a standardized network
initialization method58, by which the weights of kernels in each
convolutional layer were randomly drawn from a Gaussian

distribution with parameters set to control the strength of the
input signals across the layers. The stimulus set consisted of
grayscale images in six different categories (Fig. 1c), specifically
the face, a scrambled face, and four non-face objects, as pre-
viously done in monkey experiments59. The images in each class
were designed to control the low-level features of the luminance,
contrast, object size, and object location, and they have
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statistically comparable intra- and inter-class image levels of
similarity (Supplementary Fig. 1).

Surprisingly, we observed a group of face-selective units
(n= 250 ± 63 in 100 random networks, mean ± s.d.) that show
significantly higher responses to face images than to non-face
images emerging in the untrained networks (Fig. 1d, P < 0.001,
two-sided rank-sum test). Here, a unit is defined as a unit
component at each position of the channel in an activation
map of the network. For example, there are 43,264 units
(=13 × 13 × 256, Nx-position × Ny-position ×Nchannel) in Conv5. We
considered each unit (of the same filter) at different spatial
locations as different ones, as the selectivity of units at different
locations appears to be distinct despite the fact that they share
the same filter (Supplementary Fig. 2a–f). We also investigated
the layer-specific emergence of face-selective units in untrained
networks. We found that face-selective units are also observed in
earlier layers, Conv3 to 5 but are scarcely found in Conv1 and 2
(Fig. 1e, Conv1: n= 0.008 ± 0.002%, Conv2: n= 0.047 ± 0.009%,
Conv3: n= 0.491 ± 0.089%, Conv4: n= 0.534 ± 0.103%, Conv5:
n= 0.579 ± 0.146%). We found that the number of face-selective
units and the face-selectivity index (FSI) of each unit increased
through the layer hierarchy (Fig. 1e, f). Notably, the number of
face-selective units did not show significant differences across
the convolutional group or filters within each layer (Supple-
mentary Fig. 2g, h). This suggests that face-selective units are
not dominantly generated by a particular filter. The number of
observed face-selective units was highest in the mid- and high-
level layers, similar to observations in the ventral visual pathway
of monkeys5,6. These results suggest that the development of
face-selectivity requires a hierarchical structure of the network
along with random feedforward weights, which enables multiple
linear-nonlinear computations.

We also found that the observed face-selective units in the
untrained networks (Conv5) show a value of the averaged FSI5,7

comparable to the index associated with monkey IT neurons7

(Fig. 1f, nuntrained= 465, nmonkey= 158, NS, two-sided rank-
sum test, P= 7.69 × 10−2, rrbc= 9.25 × 10−2, two-sided
Kolmogorov–Smirnov test, P= 2.49 × 10−4, d= 2.32 × 10−2)
and a significantly higher value than those measured from a
shuffled response (Fig. 1f, nuntrained= 465, nshuffled= 465, two-
sided rank-sum test, P= 1.49 × 10−25, rrbc= 5.09 × 10−1) for
various definitions of the FSI5,17,60 (Supplementary Fig. 3). These
results suggest that face-selective units, highly tuned to the face
as observed in the brain, can emerge in DNNs even in the
complete absence of learning.

One possible scenario for the emergence of such face-
selectivity in random networks is that the observed face-
selective units are simply sensitive for local face parts common
to facial images. To investigate this possibility, we measured the
responses of the face-selective units to a local feature of the face
using two types of control images in which global face features
are disrupted but local face features are preserved. These were
(1) scrambled faces, in which small patches of the local face
components were spatially scrambled, and (2) texform faces61,
in which global face features are disrupted but the statistics of
the local face texture is preserved (Fig. 1g, left). We confirmed
that face-selective units show significantly higher responses to
the original face images compared to the corresponding control
images (Fig. 1g, right; Face vs. Scrambled face, n= 200, one-
sided rank-sum test, P= 1.71 × 10−52, rrbc= 7.69 × 10−1; Face
vs. Texform face, n= 100, one-sided rank-sum test,
P= 4.12 × 10−30, rrbc= 6.56 × 10−1). In addition, the responses
of face units to these control images were not greater than
those to other non-face images, implying that face-selective
units are selective to the global context of faces instead of
the local components (Fig. 1g, right; Scrambled face vs. Non-
face, n= 200, one-sided rank-sum test, NS, P= 1.00,
rrbc=−2.42 × 10−1, one-sided Kolmogorov–Smirnov test,
P= 8.31 × 10−1, d= 3.00 × 10−3; Texform face vs. Non-face,
n= 100, one-sided rank-sum test, NS, P= 9.40 × 10−1,
rrbc=−9.00 × 10−2, one-sided Kolmogorov–Smirnov test,
P= 4.51 × 10−2, d= 1.84 × 10−2). These results suggest that
the observed face units in the untrained network are not
particularly selective to local face parts, but are instead selective
to a whole face.

Next, we investigated the responses of face-selective units to
four different novel stimulus sets that were not used to find face-
selective units. These were (1) 50 face images from our original
data set, not used for finding the face-selective units; (2) 16 face
images used in Tsao et al. (2006, 2010)5,7; (3) 50 face images used
in Cao et al.62; and (4) 50 face images artificially generated by the
FaceGen simulator (singular inversions) in color and grayscale
(Fig. 1h). We found that face-selective units in the untrained
network show significantly higher responses to novel face images
compared to the responses to non-face images under all
conditions (Fig. 1h, Novel face vs. Non-face, one-sided rank-
sum test, P ≤ 1.47 × 10−11, rrbc ≥ 4.54 × 10−1). These results
suggest that the observed face-selectivity in an untrained network
defined by one specific dataset can be generalized to other novel
sets of faces.

Fig. 1 Spontaneous emergence of face-selectivity in untrained networks. a Face-selective neurons and their response observed in monkey experiments.
The response was normalized to the maximum value as 1. The face image shown is not the original stimulus set due to copyright. The image shown is
available at [https://www.shutterstock.com] (see Methods for details). b The architecture of the untrained AlexNet45. The untrained AlexNet was devised
using a random initialization method58, for which the values in each weight kernel were randomly sampled from a Gaussian distribution. c A stimulus set
was designed to control the degree of intra-class image similarity. Stimulus images were selected and modified from a publicly available dataset that has
been used in human fMRI study59. The original images are available at [http://vpnl.stanford.edu/fLoc/]. d Responses of individual face-selective units in
the untrained AlexNet (P < 0.001, two-sided rank-sum test, uncorrected). e The number of face-selective units in each convolutional layer in untrained
networks (n= 100). f Face-selectivity index (FSI) of face-selective neurons in the primate IT7 (n= 158), and face units in each convolutional layer in the
untrained AlexNet. The control FSI was measured according to the shuffled responses of face-selective units in the untrained network. g (Left) Examples of
texform and scrambled face images. (Right) Responses of face-selective units to the original face (n= 200), the scrambled face (n= 200) and texform
face images (n= 100). h Responses of face-selective units to four different sets of novel face images: (1) 50 face images from our original dataset (images
not used for finding face-selective units), (2) 16 images used in Tsao et al.5,7, (3) 50 images used in Cao et al.62 in color and gray scale, and (4) 50 face
images artificially generated by the FaceGen simulator (singular inversions) in color and gray scale. i The number of face-selective units, where the weight
variation was changed from 5 to 200% of the original value using two different initialization methods with a Gaussian (red) and a uniform distribution
(blue). j FSI of face-selective units across changes in the weight. Dashed lines indicate the mean and shaded areas indicate the standard deviation of 30
random networks. All box plots indicate the inter-quartile range (IQR between Q1 and Q3) of the dataset, the horizontal line depicts the median and the
whiskers correspond to the rest of the distribution (Q1 − 1.5*IQR, Q3+ 1.5*IQR).
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To confirm that the emergence of face-selective units is not due
to the specific initial parameter set but is rather generally
observed in an untrained network, we varied the width of the
weight distribution for random network initialization (Gaussian
and uniform) from 5 to 200% of the original standard deviation
of the standardized random initialization58 and examined if face-
selective units consistently emerge (Fig. 1i, j). We found that face-
selective units consistently arise in the untrained networks across
the variation of the parameter. The number (Fig. 1i) and
selectivity index (Fig. 1j) of observed face units were largely
unchanged across a wide range of weight variations and across
the wide variation in the width of the weight distribution. This
implies that the emergence of face-selective units in untrained
networks is highly robust to variations of the wiring strength.

Preferred feature images of face-selective units in an untrained
network. Next, to characterize the feature-selective responses of
these face-selective units qualitatively, we reconstructed pre-
ferred feature images (PFI) of individual units using a reverse-
correlation (RC) method63 and a generative adversarial network
algorithm (X-Dream)25 (see Methods). In the RC analysis, we
presented 2500 images of bright and dark 2D Gaussian filters at
random positions as input stimuli to an untrained network
(Fig. 2a). By adding stimuli weighted according to the corre-
sponding neural response with 100 repeated iterations, we
obtained the preferred feature images of the target units. In the
X-Dream analysis, a deep generative adversarial neural
network64 was trained to ImageNet datasets65 to synthesize
preferred feature images from the image codes scored by a
genetic algorithm using the responses of units from repeated
iterations (Fig. 2b). We found that the response of target units
induced by the PFI was increased, being higher than those
induced by face stimulus images, as the iteration number of the
genetic algorithm exceeds a certain value (Fig. 2a, right, n= 465,
RC PFI vs. face stimulus, two-sided rank-sum test,
P= 1.51 × 10−6, rrbc= 1.58 × 10−1; RC PFI vs. non-face stimu-
lus, two-sided rank-sum test, P= 3.12 × 10−2, rrbc= 7.07 × 10−2,
Fig. 2b, right, n= 465, X-Dream PFI vs. face stimulus, two-sided
rank-sum test, P= 1.92 × 10−119, rrbc= 7.63 × 10−1; X-Dream
PFI vs. non-face stimulus, two-sided rank-sum test,
P= 2.68 × 10−129, rrbc= 7.94 × 10−1). These results indicate that
our PFI generation methods successfully find the most preferred
input feature of face-selective units. As a result, using both
methods, we obtained the PFI of face-selective units, units
selective to non-face classes, and units without selective
responses to any image classes (Fig. 2c, Supplementary Fig. 4).
We found that the PFI of the face-selective units presents dis-
tinguishable features from those of other objects. We observed
that the PFIs of face-selective units represent face-like config-
urations, whereas the PFIs of units selective to non-face classes
show noticeable configurations of each object class (i.e., flowers
in an RC and X-Dream).

To quantify the structural similarity of the PFIs to face images,
we defined the face-configuration index as the averaged pixel-
wise correlation between a PFI and the 200 face images used for
face unit selection (Fig. 2d). We estimated the face-configuration
index of each PFI of face-selective and non-face-selective units
generated by the RC method. We found that the estimated PFIs
of face-selective units (with a visually observable face-like
configuration) have a significantly higher average value of the
index than that from the units selective to non-face objects
(Fig. 2e, Face PFI vs. Non-face PFI, nFace= 465, nHand= 7,
nHorn= 772, nFlower= 107, nChair= 63, one-sided rank-sum test,
P ≤ 5.63 × 10−4, rrbc ≥ 1.56 × 10−1; f, Face PFI vs. Non-face PFI,
nFace= 465, nHand= 7, nHorn= 772, nFlower= 107, nChair= 63,

one-sided rank-sum test, P ≤ 1.93 × 10−5, rrbc ≥ 2.35 × 10−1).
Notably, the average pairwise correlation estimated between
each face stimulus image shows a significantly lower value of
nearly zero, implying that the observed index of face-selective
units reflects structural similarity to the averaged (or a prototype,
abstract) face image rather than similarly to particular face
images accidentally observable.

Next, we hypothesized that the observed face-selective units
may encode invariant representations of the prototype face
images, as some types of intrinsic invariance are a basic property
of CNNs. A number of previous studies suggested that various
types of invariance (e.g., translation, scaling, and rotation) over a
wide range of image transformations can be implemented in a
CNN66–70, mostly due to three key components—the convolu-
tional layer, the pooling layer, and the hierarchical structure—in
CNN models. Thus, to investigate whether the observed face-
selective units show invariant representations of face images
regardless of the corresponding image condition, we measured
the responses of face-selective units to face and non-face object
images with various positions, sizes, and rotation angles. First, we
observed that single face units show constant face tuning under a
fairly wide range of size/position/rotation variations and that
range was comparable with those of face-selective neurons in IT71

(Supplementary Figs. 5 and 6). Notably, we found that our model
units also show the inversion effect observed in monkeys5,27,72.
We found that the responses of face-selective units to inverted
face images are significantly lower than those to upright faces
(Supplementary Fig. 7).

Similarly, we found viewpoint-invariant face-selective units
(Supplementary Figs. 8 and 9) and mirror-symmetric viewpoint-
specific units (Supplementary Fig. 10) in a random network.
Interestingly, the number of viewpoint-invariant face-selective
units increased along the network hierarchy, similar to previous
observations in the brain7. These results show that the observed
invariances can arise from the hierarchical structure with
convolutional filtering without the contribution of structured
spatial filters. Notably, the current result also suggests a possible
scenario through which to understand how viewpoint invariant
selectivity can arise in infant animals. From the similarities
between the CNN and the biological brain models, i.e., that the
fundamentals of both CNNs and sensory cortices are based on the
hierarchical feedforward structure and that the process of
convolution via weight sharing in CNNs can be approximated
by a biological model73–76 of periodic functional maps with
hypercolumns in the visual cortex, our result may inspire insight
into how innate invariance can arise in infant animals.

Detection of face images using the responses of face-selective
units. We tested whether the selective responses of these face units
could provide reliable information with which to detect between
faces and non-face objects. During this task, face (n= 40) or non-
face (n= 40) images were randomly presented to the networks,
and the observed response of the final layer was used to train a
support vector machine (SVM) to classify whether the given image
was a face or not (Fig. 3a). First, we compared the detection
performance of the SVM using a single unit randomly sampled
from face-selective units and using units without selective
responses to any image classes. We confirmed that the SVM
trained with a single face-selective unit shows noticeably higher
performance than those measured from shuffled responses,
whereas the SVM trained with units without selectivity does not
(Fig. 3b, Face unit vs. Response shuffled, nface= 465, two-sided
rank-sum test, P= 2.97 × 10−121, rrbc= 7.68 × 10−1; Response
shuffled vs. Non-selective unit, nnon-selective= 7776, two-sided
rank-sum test, NS, P= 1.10 × 10−1, rrbc= 4.52 × 10−2, two-sided
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obtained as the summation of stimuli weighted by the corresponding responses. The initial preferred feature image was calculated from the local Gaussian
stimulus set by the classical reverse-correlation method63. Then, a new stimulus set was generated as the summation of the obtained PFI and local
Gaussian stimuli, with the second preferred feature image then obtained from a new stimulus set. This procedure was repeated to obtain the preferred
feature image. b Schematics of the process used to achieve a preferred feature image (PFI) using a generative neural network (GAN) and a genetic
algorithm (X-Dream)25. Synthesized images are generated by the GAN with image codes and are fed into an untrained network as input. The genetic
algorithm finds a new image code that maximizes the response of the target unit. The PFI of a target unit is achieved after 100 iterations of this procedure.
c The obtained preferred feature images, using the reverse-correlation method and X-Dream, of the face-selective unit, selective units to non-face class
(flower), and units selective to none of the class. d Illustration of the face-configuration index (FCI) of a face unit’s PFI. The FCI was defined as the pixel-
wise correlation between the original face stimuli and the generated PFIs. e FCI of PFI, using the reverse correlation method, of units selective to each class
(nFace= 465, nHand= 7, nHorn= 772, nFlower= 107, nChair= 63). f FCI of PFI, using X-Dream, of the same units as the units used in (e). All box plots indicate
the inter-quartile range (IQR between Q1 and Q3) of the dataset, the horizontal line depicts the median and the whiskers correspond to the rest of the
distribution (Q1− 1.5*IQR, Q3+ 1.5*IQR). The face images shown in panels (d)–(f) are selected examples from the publicly available dataset59. The
original images are available at [http://vpnl.stanford.edu/fLoc/].
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Kolmogorov–Smirnov test, P= 1.93 × 10−1, d= 2.12 × 10−2).
Then, extending the test to various numbers of units, we com-
pared the detection performance of this SVM using face-selective
units with the performance when using the same number of
randomly sampled non-selective units. We confirmed that the
SVM trained with multiple face-selective units shows noticeably
better performance than that trained with the same number of
non-selective units, as the number of units used in each condition
was varied from n= 1 to 465 (total number of face units in
untrained networks) (Fig. 3c, Face vs. Non-selective units,
ntrial= 100, two-sided rank-sum test, P ≤ 1.45 × 10−33, rrbc ≥
8.74 × 10−1). We also found that the SVM using face units
(n= 465) nearly matches the performance of the SVM using all
units in the final layer (n= 43,264) (Fig. 3d, Face vs. All units,
ntrial= 100, two-sided rank-sum test, NS, P= 1.90 × 10−1,
rrbc= 9.29 × 10−2, two-sided Kolmogorov–Smirnov test, P=
1.90 × 10−1, d= 9.20 × 10−3). Furthermore, we found that face
units enable the networks to detect faces with various sizes,
positions, and rotations even when such image conditions were
held constant when training the SVM classifier (Supplementary
Fig. 11).

Notably, we also found that the SVM can successfully detect faces
when it is trained with the responses of units selective to non-face
classes, similar to the results in a previous experiment in human77,
whereas it failed to detect faces with units not selective to any of the
classes (Supplementary Fig. 12). To compare our results with the
experiment condition of the previous human experiment77, we first
trained the SVM using the responses of four distinct populations:
(1) all of the units selective to each class (All-selective), (2) units
selective to non-face classes (Non-face-selective), (3) face-selective
units only (Face-selective), and (4) units not selective to any of the
classes (Non-selective) (Supplementary Fig. 12a). As a result, we
found that the SVM trained with non-face-selective units showed a
performance comparable with the results of Haxby et al.77

(Supplementary Fig. 12b, c). Interestingly, the performance was
also comparable with those with all-selective units (Supplementary
Fig. 12b) and those with face-selective units only, similar to the
results in a previous experiment in human77. This result is
understandable considering that there are only five image classes;
thus, even non-face-selective units can provide information for
discriminating face and non-face images by generating different
levels of activities for each class. Taken together, these results imply
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final layer was used to train a support vector machine (SVM) to classify whether the given image was a face or not. Among 60 images from each class
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are available at [http://vpnl.stanford.edu/fLoc/]. b Performance on the face detection task using a single unit randomly sampled from face-selective units
(n= 465) and units without selective responses to any image classes (n= 7776). The chance level was measured by the shuffled responses of face-
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that the information provided by selective units that emerge in the
untrained networks is sufficient to detect between faces and non-
face objects.

The emergence of face-selectivity in trained DNNs. We tested a
scenario in which our current model can corroborate the con-
flicting observations regarding the role of visual experience for the
development of face-selectivity. A previous report suggested that
visual experience is necessary for the emergence of face-selectivity
by showing that monkeys raised without exposure to faces lack
face-selective domains26. On the other hand, another recent study
showed that the face-selective area develops robustly in con-
genitally blind humans, suggesting that visual experience is not
necessary for face-selectivity26. Regarding these conflicting
results, we examined how face-selective units in untrained net-
works can be affected by training with visual inputs.

To investigate the effect of training on a face image set, we
prepared the following three different stimulus sets: (1) face-
reduced ImageNet: 500 classes including no recognizable face
images were manually curated from the ILSVRC 2010 dataset
according to a visual inspection by the authors, (2) the original
ImageNet, and (3) the original ImageNet with added face images
used in the current study (Fig. 4a). Then, the network was trained
with each of these image sets. First, we found that the FSI of the
face-selective units was significantly decreased after being trained
to the face-reduced image set (Fig. 4b, Untrained vs. Face-
reduced, nUntrained= 4267, nReduced= 2452, two-sided rank-sum
test, P= 2.99 × 10−28, rrbc= 6.76 × 10−1), whereas it was

increased after being trained to the face-including image sets
(Untrained vs. Face-included, nFace= 3585, two-sided rank-sum
test, P= 1.21 × 10−3, rrbc= 2.60 × 10−1). Notably, the FSI was
significantly decreased after being trained to the original
ImageNet dataset that contains images of faces but has no group
labeled as face (Fig. 4b, Untrained vs. Original, nOriginal= 3561,
two-sided rank-sum test, P= 9.34 × 10−45, rrbc= 8.15 × 10−1).
This suggests that the tuning of face-selective units could either be
sharpened or weakened by training with distinct stimulus sets.

Next, we found that the number of face-selective units
observed was greater in the network trained with face-including
image set compared to that trained to face-reduced images
(Fig. 4c, Untrained vs. Trained, nNet= 10, two-sided rank-sum
test, P ≤ 1.40 × 10−3, rrbc ≥ 5.72 × 10−1). Interestingly, however,
we found that the number of face-selective units, when trained to
face-including images, appeared to be smaller than that of
untrained networks. These results imply that the training process
of the network to face-including images selectively sharpens the
tuning of face units so that the selectivity of strongly tuned units
is sharpened while the weakly tuned units are pruned. In this
condition, the face detection performance of the networks would
improve in face-trained networks even if the number of face units
decreased compared to the initial, untrained condition. To
validate this scenario, we trained the SVM using the response
of face-selective units for a face detection task in an untrained
network and in the three networks trained to each type of data
set. As predicted, we found that the face detection performance
was significantly increased in the networks trained to the face-
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including image set compared to that of the untrained network
(Fig. 4d, Untrained vs. Face included, ntrial= 1000, two-sided
rank-sum test, P= 1.04 × 10−3, rrbc= 2.60 × 10−1), whereas
the face detection performance of the network trained to the
face-reduced image set was significantly decreased compared to
the untrained network (Fig. 4d, Untrained vs. Face-reduced,
ntrial= 1000, two-sided rank-sum test, P= 1.06 × 10−22, rrbc=
6.42 × 10−1). Furthermore, we found that the PFI of the face-
selective unit shows a clear face configuration in the network
trained to face-including natural images, whereas the face

configuration is disrupted in network trained to face-reduced
dataset (Fig. 4e). This result is consistent with the previous
observation of decreased face-selectivity in face-deprived
monkeys26.

The emergence of selectivity to various objects in untrained
DNNs. Lastly, we investigated the possibility that units selective
to various objects other than faces also emerge similarly in
untrained neural networks. For this, we measured the responses
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of units in random networks to a stimulus dataset of ImageNet
containing 1000 classes of objects (Fig. 5a). As a result, we found
that selective units are observed in 39 classes among the 1000
classes (Fig. 5b, c). From the analysis using scrambled and
texform control images, we confirmed that these object-selective
units are not particularly selective to local image parts but are
selective to a whole object, similar with units selective to faces
(Fig. 5b, inset, Gazania vs. Scrambled gazania, n= 100, one-
sided rank-sum test, P= 2.67 × 10−12, rrbc= 4.89 × 10−1;
Gazania vs. Texform gazania, n= 100, one-sided rank-sum test,
P= 2.08 × 10−14, rrbc= 5.36 × 10−1, Scrambled gazania vs.
other-class, n= 100, one-sided rank-sum test, NS, P= 1.00,
rrbc= 3.17 × 10−1, one-sided Kolmogorov–Smirnov test,
P= 1.02 × 10−2, d= 2.97 × 10−2; Texform gazania vs. other-
class, n= 100, one-sided rank-sum test, NS, P= 1.00,
rrbc= 4.20 × 10−1, one-sided Kolmogorov–Smirnov test,
P= 3.45 × 10−2, d= 2.55 × 10−2). This result suggests that units
selective innately to various objects such as faces can emerge in
untrained neural networks.

Next, to investigate the emergent condition of units selective to
each object further, we sorted those 39 classes according to the
number of selective units observed and computed the PFI using
the RC method (Fig. 5c, d). In general, we observed a tendency in
which the PFIs of the large number group showed a relatively
simple configuration of each preferred object class that was
visually observable (Fig. 5d, top), whereas those of the small
number classes represented a more complicated structure of the
PFI (Fig. 5d, bottom). From this result, we hypothesized that
objects with a simple configuration, such as faces, can induce
stronger clustering in the latent space representation than those
of other object classes and therefore may have a greater likelihood
of generating units selective to them. To validate our hypothesis,
we used the dimension-reduction method78 to compare a
clustered representation of each object class in terms of the raw
pixel values and in the responses of Conv5. For quantification of
the representational clustering of each class, we measured the
silhouette index79 to estimate the consistency of data clustering.
We found that there is a strong correlation between the silhouette
index in the Conv5 latent space and the number of selective units
observed (Fig. 5e–g, Pearson correlation coefficient, nNet= 50,
r= 5.85 × 10−1, P= 7.48 × 10−5). This result demonstrates that
objects with a simple profile, readily distinguishable from those of
other objects statistically, lead to a strong clustering of abstracted
responses in the DNN and are more likely to generate units
selective to it. Furthermore, the relationship between the
silhouette index and the number of units observed shows that
the number of units increases as the silhouette index increases,

with no selective units observed when the silhouette index is
below 0.036 (Fig. 5g, black dashed line). This result implies that
there may be a threshold of the clustering level in the response
embedding space, by which a unit selective to that object class can
be defined and observed. In neuroscience, this may provide a
possible explanation of why face-selective neurons are observed in
various experiments while neurons selective to other objects are
not observed as readily. Thus, the observed face-selectivity may
not be a special case of tuning, whereas selectivity to other visual
objects can also arise in random networks simply due to the
relatively simple configuration of the corresponding geometric
components.

Discussion
We showed that a biologically inspired DNN develops face-
selective units without training, solely from statistical variations
of the feedforward projections. These results suggest that the
statistical complexity embedded in the structure of the hier-
archical circuit73,74,80 can initialize primitive cognitive functions
such as face-selectivity in untrained neural networks. Although
the performance of a DNN appears to be similar to that of the
brain on certain visual tasks, there are critical differences between
biological brains and DNN models, such as convolutional filtering
in DNN models, which is not biologically plausible. However,
although DNNs are not an impeccable model of the visual
pathway of the brain, the current results provide a possible sce-
nario for understanding how primitive visual functions such as
face detection can initially arise in early brains before learning
begins with sensory inputs.

State-of-the-art studies using random networks provide
important clues regarding how these selective units can arise
spontaneously in untrained model networks. Recently, it was
reported that a network can classify an untrained image class by
combining pre-trained readout units81, a process known as zero-
shot learning. Our results suggest that such zero-shot learning is
even possible without any pre-trained readout units. It was also
reported that an artificial network that learns visual features with
random, untrained weights can perform image classification
tasks53,54. Jarrett et al. showed that features from a randomly
initialized one-layer convolutional network could classify the
Caltech 101 dataset with a performance level similar to that of a
fine-tuned network, consistent with the mathematical notion that
a combined convolutional and pooling architecture could develop
spatial frequency selectivity and translation invariance82. Overall,
these results suggest that the initial structure of random networks
plays an important role in visual feature extraction before the
training process. They also imply that complex types of feature

Fig. 5 ImageNet category-selective units in untrained networks. a The responses of units in untrained networks to the images of 1000 ImageNet65

classes and to face images (VGGFace2)62. b Average tuning curve of gazania selective units. (Inset) Responses of gazania-selective units to the original
gazania (n= 100), the scrambled gazania (n= 100) and texform gazania images (n= 100). c The number of selective units for 39 classes in which
selective units are observed. The error bar indicates the standard deviation of 50 random networks. d Sample preferred feature images achieved by
reverse-correlation analysis and stimulus images (inset). e Visualization of the PCA (principal component analysis)78 analysis results (only two principal
components (PC) are shown) using the Conv5 unit responses to each class in untrained networks. The analysis was performed using 3999 principal
components, and the top 140 ± 32 components contained 75% of the variance. f The silhouette index79 of the Conv5 unit responses was measured using
all principal components to estimate the consistency of data clustering. Each dot indicates the mean and the error bar indicates the standard deviation of
50 simulations of randomly initialized networks. The error bar indicates the standard deviation of 50 simulations of randomly initialized networks.
g Correlation between the silhouette index and the number of selective units observed (Pearson correlation). Each dot indicates the mean and the error bar
indicates the standard deviation of 50 random networks. All box plots indicate the inter-quartile range (IQR between Q1 and Q3) of the dataset, the
horizontal line depicts the median and the whiskers correspond to the rest of the distribution (Q1− 1.5*IQR, Q3+ 1.5*IQR). For copyright reasons, the
images in panels (a) and (d) are not the actual images used in the experiments. The original images are replaced with images with similar contents for
display purposes. The original images are available at [https://www.image-net.org/download, https://arxiv.org/abs/1710.08092]. Images shown are
available at [https://www.shutterstock.com] (see Methods for details).
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selectivity, such as face-selectivity, may arise innately from the
structure of the random feedforward circuitry.

Furthermore, recent model studies using the lottery ticket
hypothesis55,56 showed that randomly weighted neural networks
contain subnetworks that can perform tasks without modifying
the initial random weight values, implying that functional
architectures can emerge from random initial wirings. This model
and our current model have a common aspect in that functional
structures can emerge without any modification to the initial
random weights. However, the lottery ticket hypothesis showed
that a random subnetwork can perform tasks without learning,
while our model demonstrates that the functional tuning of single
units can arise spontaneously. Indeed, our model not only sug-
gests a possible mechanism of the origin of the functional tuning
of single neurons in the early developmental process in the brain
but also provides insight into the mechanism underlying the
emergence of functional subnetworks, possibly from tuned indi-
vidual units that emerge in random artificial neural networks.

Similarly, the theory of reservoir computing suggests that the
circuits required for higher-order cognitive functions, such as
image classification, may already exist in untrained, random
recurrent neural networks. In this scenario, higher-order cogni-
tive functions can be achieved only by training a read-out net-
work, as suggested by the lottery ticket hypothesis83,84.
Interestingly, our results in the face-detection task performed
with the SVM are comparable to the concept of reservoir com-
puting, as the training of the SVM with the responses of
untrained networks is consistent with the procedure of training a
read-out projection from random networks in reservoir com-
puting. It is notable that recent studies suggest that the random
network can perform this task if the read-out units are selected
via a prior understanding of the system. For example, object
classification can be performed by a random network if read-outs
are chosen by a synaptic rule observed in the brain85,86. While
these models focus on the innate functions of networks in that a
high dimensional space generated by a random network can
perform various tasks without learning, our current results
demonstrate that the functional tuning of single units (compar-
able to neuronal tuning in biological brains) can arise in random
networks without any further training of the read-out process,
which is distinguished from the main idea of the reservoir
computing model.

It is important to note that the current results do not neces-
sarily mean that innate face-selectivity is the tuning observed in
adult animals. There is a wealth of evidence showing that higher
areas of the visual cortex are immature in the early development
stage and that the corresponding functional circuit is modulated
by visual experience87–90. There is also strong evidence that the
IT region, where face-selective neurons are observed, can be
altered by early experience91,92. Considering the anatomical and
physiological changes that occur over the first postnatal year, the
innate template of face-selective neurons in very early develop-
mental stages must be refined by later visual experience, including
both bottom-up and top-down processes93,94. This scenario may
be supported by recent observations of the existence of the proto-
retinotopic organization and rough face-patches in higher regions
of the visual cortex6,92,95. Moreover, observations of the early
development of cortical circuits may provide further support to
our scenario. Retino-thalamic feedforward projections are com-
posed of noisy local samplings that result in unrefined receptive
fields in individual thalamus neurons96. This is comparable to
randomly initialized convolutional kernels before training. Inborn
feature-selectivity generated in this early cortex may provide an
initial basis for various visual functions.

Importantly, our results imply that innate face-selectivity may
arise spontaneously from feedforward wirings, but this requires

further evidence and examinations before one can argue whether
the mechanism can indeed be considered spontaneous. Specifi-
cally, our model suggests that the random weights in CNNs
(comparable with random feedforward projections in biological
networks) can generate selective responses of units to face images.
Then, considering that the development of random weights does
not require any training or experience, this could be considered as
innate face-selectivity. These results imply a possible scenario in
which the random feedforward connections that develop in
young animals may be sufficient for initializing primitive face-
selectivity. Arguably, this face-selectivity can be considered to
arise spontaneously under the assumption that random feedfor-
ward wirings can arise without a complicated process. In this
scenario, the emergence of face-selectivity may not require
genetically programmed innateness but may simply originate
from the statistical complexity of random wirings. However, it
must be noted that an alternative interpretation is also possible:
the observed face-selectivity is innate but may not be considered
spontaneous because the initial development of random feed-
forward wiring requires a certain mechanism programmed in
one’s genes. Particularly, regarding the question of why face-
selective neurons are observed consistently in the same brain
regions, the role of programmed genes may be critical—face-
selective neurons can simply originate from random feedforward
wirings in hierarchical networks, but this neuronal selectivity can
only be refined and reserved in a particular face-patch region in
the brain, most likely controlled by a blueprint of the brain cir-
cuitry programmed in genes. Detailed arguments pertaining to
this issue may become possible when further evidence of the
developmental mechanism of random wirings and the corre-
sponding dependence on gene coding becomes available.

Our findings suggest a scenario in which proto-organization for
cognitive functions may be spontaneously generated, after which
training with data can sharpen and specify the selectivity of net-
works. A recent fMRI study of the inferior temporal cortex in infant
and adult monkeys also shows a biological example of this
scenario6. Livingstone et al. show that neurons broadly tuned to
faces are already observed in infant monkeys (~1 month old) and
that the region where these neurons are observed is identical to
where the face neurons of adult monkeys are observed. This result
implies that the innate template of face-selective neurons in infant
monkeys may develop spontaneously and be later fine-tuned during
the early visual experience. This is consistent with the model sce-
nario of our study, which shows that face-selective neurons emerge
in the early cortex provide a basis for early face detection, with this
neuronal tuning refined further when learning begins with visual
experience with both bottom-up and top-down processes93,94.

In summary, our results suggest that face-selectivity can arise
in a completely untrained neural network with the random initial
wiring of hierarchical feedforward projections. These findings
may provide insight into the origin of innate cognitive functions
in both biological and artificial neural networks.

Methods
Neural network model. We used AlexNet45 as a representative model of the
convolutional neural network. This network consists of feature extraction and
classification networks. The feature extraction network consists of five convolu-
tional layers with rectified linear unit (ReLU) activation and a pooling layer, while
the classification network has three fully connected layers. The detailed parameters
of the architecture were sourced from Krizhevsky et al.45, which provided the
models for V4 and IT48.

To determine the origin of face-selective neurons, the randomly initialized
networks were examined. For the untrained AlexNet, the weights and biases of each
convolutional layer were initialized from a Gaussian distribution or a uniform
distribution with a zero mean and the standard deviation set to the square root of
one over the number of units in the previous layer. This was done to balance the
strength of the input signals across the layers, and this approach follows previous
research on efficient network initialization processes58.
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Stimulus dataset. Seven types of visual stimuli from six datasets were used. (1) A
low-level feature-controlled stimulus set59 was selected and modified from publicly
available images in human fMRI study59 (http://vpnl.stanford.edu/fLoc/) and was
used to find units that responded selectively to face images. Specifically, 260 images
were prepared for each class (face, hand, horn, flower, chair, and scrambled face).
Then, 200 images were randomly sampled from each class and used for face unit
selection. Among the 60 remaining images in each class, 40 images were used for the
training of the SVM, and the other 20 images used for testing. Each item was overlaid
on a group of phase-scrambled background images. This was designed to reduce
inter-class differences across various low-level properties, in this case, luminance,
contrast, size, position (Supplementary Fig. 1b–f), and the degree of intra-/inter-class
image similarity (Supplementary Fig. 1g, h). To validate the face-selective response to
novel face stimulus set, we used (2) 16 face images used in Tsao et al. (2006, 2010)5,7

provided by D. Tsao group from personal communication, (3) 50 face images from
open access VGGFace2 dataset used in Cao et al.62 (https://github.com/ox-vgg/
vgg_face2); (4) 50 face images artificially generated by the FaceGen simulator (sin-
gular inversions; FaceGen Modeller Pro) in color and grayscale (https://facegen.com/).
(5) To investigate the invariance of face-selective units to face images of various sizes,
positions, and rotation angles, the image set was generated after modifying the size,
position, and rotation angle of the faces and other objects in the similarity-controlled
stimulus set59. (6) Viewpoint dataset: This set was used to find units that invariantly
responded to face images of different viewpoints. This dataset consists of five angle-
based viewpoint classes (−90°, −45°, 0°, 45°, 90°) with 10 different faces obtained
from the publicly available Point’ 04 dataset (http://crowley-coutaz.fr/Head%20Pose%
20Image%20Database.html) used in Gourier et al.97. (7) To investigate the possibility
of units selective to various objects, we used a publicly available ImageNet dataset65

(https://www.image-net.org/download). For copyright reasons, the images in Figs. 1a,
4a, and 5a, d are not the actual images used in our experiments. The original images
are replaced with images with similar contents for display purposes. Alternative
images used in this study are purchased from https://www.shutterstock.com with a
standard image license, which includes rights to publish in e-publication and printed
in physical form as part of a copy of magazines, newspapers, and books. For all
datasets, the image size of the input to AlexNet was fixed at 227 × 227 pixels.

Analysis of responses of the network units. In our model, a unit refers to a unit
component at each position of the channel in an activation map of the network.
We defined this unit in a convolutional network as a simplified model of a bio-
logical unit (a single neuron or a group of neurons that generates a tuned activity),
considering that the dynamics of a single neuron in biological brains can be esti-
mated from its receptive field, which behaves as a spatiotemporal filter at a local
cortical position retinotopically matching the external visual space. Based on a
previous study51, face-selective units were defined as units that had significantly
higher mean responses to face images than to images in any non-face class
(P < 0.001, two-sided rank-sum test). To estimate the normalized response, the
response of each unit was z-scored using the average and the standard deviation of
responses to stimulus images. To quantify the degree of tuning, an FSI of a single
unit was defined as in previous experimental research17

FSI ¼
�Rface � �Rnonface

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ2face þ σ2nonfaceÞ=2

p ð1Þ

where �Rface is the average response to face images and �Rnonface is the average
response to all non-face images. An FSI of 0 indicates equal responses to face and
non-face objects.

Among the face-selective units found, a face viewpoint-invariant unit was
defined as a unit for which the response was not significantly different (one-way
ANOVA, P > 0.05, Bonferroni adjustment n= 5) among all viewpoint classes.
Similar to the face-selective units, the viewpoint-specific units were determined by
the mean response of the preferred viewpoint class being significantly higher than
that for any other viewpoint (one-way ANOVA, P < 0.05, Bonferroni adjustment
n= 5). We defined mirror-symmetric tuning as the condition that arises when a
viewpoint-specific face-selective unit has a symmetric shape of the tuning curve
(one-way ANOVA, P < 0.05, Bonferroni adjustment n= 5; i.e., a unit shows peak
responses at −45° and 45° or −90° and 90°). The invariance index of a single unit
was defined as the inverse of the standard deviation of the average responses for
images within each viewpoint class.

Class-clustering index of network response. To visualize the network responses
to the similarity-controlled stimulus set, a principal component analysis78 was used
for dimension reduction. By minimizing the difference between the original and low-
dimensional distributions of neighbor distances, a 2D representation of the responses
of the fifth convolutional layer was obtained. To quantify the level of clustering of
each class, we measured the Silhouette index (SI)79 to estimate the consistency of
data clustering. The silhouette index SI79 for the ith point is defined as

SIi ¼ ðbi � aiÞ=maxðai; biÞ ð2Þ
where ai and bi refer to the intra-class distance and the inter-class distance for the ith
point, respectively. The intra-class distance was defined as the average distance
between the centroid of the class and each data point in the class. The inter-class
distance was defined as the average distance between the centroids of each cluster98.

The same analysis was also performed for the stimulus set that added the face class to
ILSVRC2010.

Face vs. non-face detection task for the network. A face vs. non-face detection
task was established to investigate whether face-selective units could perform basic
face perception. To determine if this was possible, an SVM was trained with
network responses to images and was then made to predict whether a class of
unseen images was or was not a face. To avoid the double-dipping issue99 we
undertook the training and testing of the SVM using distinct sets of images, where
260 images were prepared for each class, and 200 images were then randomly
sampled from those images and used for face unit selection. Among the 60
remaining images in each class, 40 images were used for the training of the SVM,
and the other 20 images were used for testing. The label of the training set was then
changed to a binary class: face or non-face. For each trial, the SVM was trained
with the relationship between the fifth layer’s response to the training set and the
new training label. After a training session, the model predicted the test label using
the network response to the test set. Furthermore, to test whether the responses of
face-selective units could detect faces varied in different ways, we trained an SVM
with network responses for center-view face images (N= 40) and non-face images
(N= 40). The model then predicted test labels using the responses of face-selective
units to new test sets which consisted of a face and non-face images with different
types of variation, in this case, different sizes, positions, and rotation angles.

Preferred input feature (receptive field) analysis. To visualize the preferred
input feature of target units, the receptive field was estimated by the RC method63

with multiple iterations. The initial stimulus set was generated as 2500 random
local 2D Gaussian filters. Such stimuli were weighted by the corresponding
responses and were added as an initial preferred feature image. Then, to detect the
preferred feature more accurately, we calculated the PFI iteratively; the PFI of the
next iteration was calculated by a new stimulus set consisting of the summation of
the current PFI and 2500 random local 2D Gaussian filters (Fig. 2a). We repeated
100 iterations and obtained the final PFI.

To obtain the preferred feature images of target units, we used a generative
adversarial network (X-Dream)64. X-Dream consists of a generative adversarial
network (GAN) with a genetic algorithm as the optimization algorithm of the
responses. We used a GAN64 pre-trained with natural images (ILSVRC 2012). The
response optimization algorithm25 finds the optimal image code that maximizes
the response of the target unit. In this algorithm, a single image code consists of
1000 initial values randomly sampled from a zero-centered Gaussian distribution
with a standard deviation of 0.5. In each iteration, 50 image codes are randomly
generated, and the five image codes with the highest optimization score are
preserved for the next iteration while the other 45 codes are recombined through a
pairwise-randomization step before the next iteration. Then, individual values of an
image code are randomly mutated with a probability of 0.01; i.e., each value is
replaced with a random number drawn from a zero-centered Gaussian with a
standard deviation of 0.5. The preferred feature image of a target unit is achieved
after 100 iterations.

Trained network model. To investigate the effect of training on a face image set,
we prepared the following three different stimulus sets: (1) face-reduced ImageNet:
images with those including a face excluded (ILSVRC 2010; 500 classes), (2) the
original ImageNet (1,000 classes), and (3) the original ImageNet with added face
images used in the current study (1,001 classes). The network was trained with each
of these image sets using a stochastic gradient descent algorithm. Detailed training
parameters were adapted from Krizhevsky et al., 2012: batch size= 128,
momentum= 0.9, weight decay= 0.0005, training epoch= 90, learning
rate= 0.01, learning rate decay= 10 times for every 30 epochs.

Statistics. All sample sizes, exact P values, and statistical methods are indicated in
the corresponding text, figure legends, and Supplementary Tables 2 and 3. A rank-
sum test was used for all analyses, except for the number of face units across
convolutional groups (Kolmogorov–Smirnov test; Supplementary Fig. S2h), the
face detection task (Kolmogorov–Smirnov test; Fig. 3d, Supplementary Fig. S11b,
Supplementary Fig. S12b), the detection of viewpoint-invariant and -specific units
(one-way ANOVA with Bonferroni adjustment, Supplementary Fig. 8a) and a
connectivity analysis (one-way ANOVA with Bonferroni adjustment, Supple-
mentary Fig. 8c, d). The devisor of all Bonferroni adjustments was five viewpoint
groups (n= 5). All statistical tests used to determine statistical significance were
two-sided, except for the chance level of FSI (one-sided, Fig. 1f, Supplementary
Fig. S3), response to controlled face images and novel faces (Fig. 1g, h), chance level
of the face-configuration index (one-sided, Fig. 2e, f), response to controlled
gazania images (Fig. 5b), intra-class image similarity (Supplementary Fig. S1g), the
effective range of image correlation (Supplementary Fig. S5f), average weight
between Conv4 and Conv5 (Supplementary Figs. S8c, d, and S9b) and the number
of viewpoint invariant units (Supplementary Fig. S9h). All error bars and shaded
areas indicate the standard deviation, except for response to PFIs (standard error;
Fig. 2a, b), connectivity analysis (standard error; Supplementary Figs. S8c, d, S9b, d,
f, h), viewpoint invariance index (standard error; Supplementary Fig. S8g). Box
plots in Figs. 1e–h, 2e, f, 4b–d and 5b, and in Supplementary Figs. 1d–h, 2h, 3, 7b,
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c, and 9d, h indicate the inter-quartile range (IQR between Q1 and Q3) of the
dataset, the horizontal line depicts the median and the whiskers correspond to the
rest of the distribution (Q1− 1.5*IQR, Q3+ 1.5*IQR). In Supplementary Tables 2
and 3, we included the effect size alongside all P values for each statistical test: the
rank-biserial correlation value100 for the rank-sum test, and Cohen’s f 2, 101 for
ANOVA test, the dissimilarity value102 for Kolmogorov–Smirnov test, respectively.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The source datasets used in this work are available at https://doi.org/10.5281/
zenodo.5637812.

Code availability
MATLAB (2018b) was used to perform the analysis. The MATLAB codes used in this
work are available at https://github.com/vsnnlab/Face.

Received: 6 October 2020; Accepted: 2 December 2021;

References
1. Desimone, R. Face-selective cells in the temporal cortex of monkeys. J. Cogn.

Neurosci. 3, 1–8 (1991).
2. Tsao, D. Y., Moeller, S. & Freiwald, W. A. Comparing face patch

systems in macaques and humans. Proc. Natl Acad. Sci. USA 105,
19514–19519 (2008).

3. Afraz, A., Boyden, E. S. & DiCarlo, J. J. Optogenetic and pharmacological
suppression of spatial clusters of face neurons reveal their causal role in face
gender discrimination. Proc. Natl Acad. Sci. USA 112, 6730–6735 (2015).

4. Sadagopan, S., Zarco, W. & Freiwald, W. A. A causal relationship between
face-patch activity and face-detection behavior. Elife 6, 1–14 (2017).

5. Tsao, D. Y., Freiwald, W. A., Tootell, R. B. H. & Livingstone, M. S. A
cortical region consisting entirely of face-selective cells. Science 311, 670–674
(2006).

6. Livingstone, M. S. et al. Development of the macaque face-patch system. Nat.
Commun. 8, 14897 (2017).

7. Freiwald, W. A. & Tsao, D. Y. Functional compartmentalization and
viewpoint generalization within the macaque face-processing system. Science
330, 845–851 (2010).

8. Cohen Kadosh, K. & Johnson, M. H. Developing a cortex specialized for face
perception. Trends Cogn. Sci. 11, 367–369 (2007).

9. Rhodes, G., Michie, P. T., Hughes, M. E. & Byatt, G. The fusiform face area
and occipital face area show sensitivity to spatial relations in faces. Eur. J.
Neurosci. 30, 721–733 (2009).

10. Allison, T., Puce, A. & McCarthy, G. Social perception from visual cues: role
of the STS region. Trends Cogn. Sci. 4, 267–278 (2000).

11. Parr, L. A., Hecht, E., Barks, S. K., Preuss, T. M. & Votaw, J. R. Face processing
in the chimpanzee brain. Curr. Biol. 19, 50–53 (2009).

12. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a
module in human extrastriate cortex specialized for face perception. J.
Neurosci. 17, 4302–4311 (1997).

13. Furey, M. L. et al. Dissociation of face-selective cortical responses by attention.
Proc. Natl Acad. Sci. USA 103, 1065–1070 (2006).

14. Kanwisher, N. & Yovel, G. The fusiform face area: a cortical region specialized
for the perception of faces. Philos. Trans. R. Soc. B Biol. Sci. 361, 2109–2128
(2006).

15. Tong, F., Nakayama, K., Moscovitch, M., Weinrib, O. & Kanwisher, N.
Response properites of the human fusiform face area. Cogn. Neuropsychol. 17,
257–280 (2000).

16. Barton, J. J. S., Press, D. Z., Keenan, J. P. & O’Connor, M. Lesions of the
fusiform face area impair perception of facial configuration in prosopagnosia.
Neurology 58, 71–78 (2002).

17. Aparicio, P. L., Issa, E. B. & DiCarlo, J. J. Neurophysiological organization of
the middle face patch in macaque inferior temporal cortex. J. Neurosci. 36,
12729–12745 (2016).

18. Chang, L. & Tsao, D. Y. The code for facial identity in the primate brain. Cell
169, 1013–1028.e14 (2017).

19. Freiwald, W. A., Tsao, D. Y. & Livingstone, M. S. A face feature space in the
macaque temporal lobe. Nat. Neurosci. 12, 1187–1196 (2009).

20. Andrews, T. J., Davies-Thompson, J., Kingstone, A. & Young, A. W. Internal
and external features of the face are represented holistically in face-selective
regions of visual cortex. J. Neurosci. 30, 3544–3552 (2010).

21. Rosa-Salva, O., Regolin, L. & Vallortigara, G. Faces are special for newly
hatched chicks: Evidence for inborn domain-specific mechanisms underlying
spontaneous preferences for face-like stimuli. Dev. Sci. 13, 565–577 (2010).

22. Rosa Salva, O., Farroni, T., Regolin, L., Vallortigara, G. & Johnson, M. H. The
evolution of social orienting: evidence from chicks (gallus gallus) and human
newborns. PLoS ONE 6, e18802 (2011).

23. Versace, E., Damini, S. & Stancher, G. Early preference for face-like stimuli in
solitary species as revealed by tortoise hatchlings. Proc. Natl Acad. Sci. USA
117, 24047–24049 (2020).

24. McGugin, R. W., Gatenby, J. C., Gore, J. C. & Gauthier, I. High-resolution
imaging of expertise reveals reliable object selectivity in the fusiform face area
related to perceptual performance. Proc. Natl Acad. Sci. USA 109,
17063–17068 (2012).

25. Ponce, C. R. et al. Evolving images for visual neurons using a deep generative
network reveals coding principles and neuronal preferences. Cell 177,
999–1009.e10 (2019).

26. Arcaro, M. J., Schade, P. F., Vincent, J. L., Ponce, C. R. & Livingstone, M. S.
Seeing faces is necessary for face-domain formation. Nat. Neurosci. 20,
1404–1412 (2017).

27. Buiatti, M. et al. Cortical route for facelike pattern processing in human
newborns. Proc. Natl Acad. Sci. USA 116, 4625–4630 (2019).

28. van den Hurk, J., Van Baelen, M. & Op de Beeck, H. P. Development of visual
category selectivity in ventral visual cortex does not require visual experience.
Proc. Natl Acad. Sci. USA 114, E4501–E4510 (2017).

29. Murty, N. A. R. et al. Visual experience is not necessary for the development
of face-selectivity in the lateral fusiform gyrus. Proc. Natl Acad. Sci. USA 117,
23011–23020 (2020).

30. Ullman, S., Harari, D. & Dorfman, N. From simple innate biases to complex
visual concepts. Proc. Natl Acad. Sci. USA 109, 18215–18220 (2012).

31. Deen, B. et al. Organization of high-level visual cortex in human infants. Nat.
Commun. 8, 13995 (2017).

32. Johnson, M. H., Dziurawiec, S., Ellis, H. & Morton, J. Newborns’ preferential
tracking of face-like stimuli and its subsequent decline. Cognition 40, 1–19 (1991).

33. Sugita, Y. Face perception in monkeys reared with no exposure to faces. Proc.
Natl Acad. Sci. USA 105, 394–398 (2008).

34. Kenney, M. D., Mason, W. A. & Hill, S. D. Effects of age, objects, and visual
experience on affective responses of rhesus monkeys to strangers. Dev.
Psychol. 15, 176 (1979).

35. Darwin, C. The Expression of Emotions in Animals and Man. London: Murray
11, 1872 (1872).

36. Moscovitch, M., Winocur, G. & Behrmann, M. What is special about
face recognition? Nineteen experiments on a person with visual object agnosia
and dyslexia but normal face recognition. J. Cogn. Neurosci. 9, 555–604
(1997).

37. Yin, R. K. Looking at upside-down faces. J. Exp. Psychol. 81, 141 (1969).
38. Nelson, C. A. The development and neural bases of face recognition. Infant

Child Dev. Int. J. Res. Pract. 10, 3–18 (2001).
39. Kanwisher, N., Tong, F. & Nakayama, K. The effect of face inversion on the

human fusiform face area. Cognition 68, 1–11 (1998).
40. Kanwisher, N. Domain specificity in face perception. Nat. Neurosci. 3,

759–763 (2000).
41. Tsao, D. Y. & Livingstone, M. S. Mechanisms of face perception. Annu. Rev.

Neurosci. 31, 411–437 (2008).
42. Rhodes, G., Byatt, G., Michie, P. T. & Puce, A. Is the fusiform face area

specialized for faces, individuation, or expert individuation? J. Cogn. Neurosci.
16, 189–203 (2004).

43. Tarr, M. J. & Gauthier, I. FFA: a flexible fusiform area for subordinate-level
visual processing automatized by expertise. Nat. Neurosci. 3, 764–769 (2000).

44. Gauthier, I., Skudlarski, P., Gore, J. C. & Anderson, A. W. Expertise for cars
and birds recruits brain areas involved in face recognition. Nat. Neurosci. 3,
191–197 (2000).

45. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep
convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105
(2012).

46. Simonyan, K. & Zisserman, A. Very deep convolutional networks for
large-scale image recognition. In 3rd International Conferencing on
Learning and Representation, ICLR 2015—Conference Track Proceedings, 1–14
(2015).

47. Yamins, D. L. K. et al. Performance-optimized hierarchical models predict
neural responses in higher visual cortex. Proc. Natl Acad. Sci. USA 111,
8619–8624 (2014).

48. Cadieu, C. F. et al. Deep neural networks rival the representation of primate IT
cortex for core visual object recognition. PLoS Comput. Biol. 10, e1003963
(2014).

49. Yamins, D. L. K. & DiCarlo, J. J. Using goal-driven deep learning models to
understand sensory cortex. Nat. Neurosci. 19, 356–365 (2016).

50. Cichy, R. M. et al. The Algonauts Project: A Platform for Communication
between the Sciences of Biological and Artificial Intelligence. In Proc. 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27606-9 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:7328 | https://doi.org/10.1038/s41467-021-27606-9 | www.nature.com/naturecommunications 13

https://doi.org/10.5281/zenodo.5637812
https://doi.org/10.5281/zenodo.5637812
https://github.com/vsnnlab/Face
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Conference on Cognitive Computational Neuroscience 2 (Cognitive
Computational Neuroscience, 2019).

51. Grossman, S. et al. Convergent evolution of face spaces across human face-
selective neuronal groups and deep convolutional networks. Nat. Commun.
10, 4934 (2019).

52. Bashivan, P., Kar, K. & DiCarlo, J. J. Neural population control via deep image
synthesis. Science 364, eaav9436 (2019).

53. Jarrett, K., Kavukcuoglu, K., Ranzato, M. A. & LeCun, Y. What is the
best multi-stage architecture for object recognition? In Proc. 2009 IEEE
12th International Conference on Computer Vision, 2146–2153 (IEEE, 2009).

54. Pinto, N., Doukhan, D., DiCarlo, J. J. & Cox, D. D. A high-throughput
screening approach to discovering good forms of biologically inspired visual
representation. PLoS Comput. Biol. 5, e1000579 (2009).

55. Frankle, J., Dziugaite, G. K., Roy, D. M. & Carbin, M. Stabilizing the Lottery
Ticket Hypothesis. arXiv:1903.01611v3, Preprint at https://arxiv.org/abs/
1903.01611 (2019).

56. Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A. & Rastegari, M.
What’s Hidden in a Randomly Weighted Neural Network? In Proc. IEEE/
CVF Conference on Computer Vision and Pattern Recognition, 11893–11902
(2020).

57. Ulyanov, D., Vedaldi, A. & Lempitsky, V. Deep image prior. Int. J. Comput.
Vis. 128, 1867–1888 (2020).

58. LeCun, Y., Bottou, L., Orr, G. & Muller, K.-R. Efficient backprop. Neural
Networks Tricks Trade (Springer, New York, 1998).

59. Stigliani, A., Weiner, K. S. & Grill-Spector, K. Temporal processing capacity in
high-level visual cortex is domain specific. J. Neurosci. 35, 12412–12424
(2015).

60. Duyck, M. et al. Color tuning of face-selective neurons in macaque inferior
temporal cortex. eNeuro 8, 1–16 (2021).

61. Long, B., Yu, C. P. & Konkle, T. Mid-level visual features underlie the high-
level categorical organization of the ventral stream. Proc. Natl Acad. Sci. USA
115, E9015–E9024 (2018).

62. Cao, Q., Shen, L., Xie, W., Parkhi, O. M. & Zisserman, A. VGGFace2: A
dataset for recognising faces across pose and age. Proc.—13th IEEE Int. Conf.
Autom. Face Gesture Recognition, FG 2018, 67–74 (2018).

63. Bonin, V., Histed, M. H., Yurgenson, S. & Clay Reid, R. Local diversity and
fine-scale organization of receptive fields in mouse visual cortex. J. Neurosci.
31, 18506–18521 (2011).

64. Dosovitskiy, A. & Brox, T. Generating images with perceptual similarity
metrics based on deep networks. Adv. Neural Inf. Process. Syst. 29, 658–666
(2016).

65. Russakovsky, O. et al. Imagenet large scale visual recognition challenge. Int. J.
Comput. Vis. 115, 211–252 (2015).

66. LeCun, Y., Fu Jie Huang & Bottou, L. Learning methods for generic object
recognition with invariance to pose and lighting. In Proc. 2004 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR
2004. 2, 97–104 (IEEE, 2004).

67. Kavukcuoglu, K. et al. Learning convolutional feature hierarchies for visual
recognition. Adv. Neural Inf. Process. Syst. 23 24th Annu. Conf. Neural Inf.
Process. Syst. 2010, NIPS 2010 1–9 (2010).

68. LeCun, Y. Learning invariant feature hierarchies. In European Conference on
Computer Vision, 496–505 (Springer, 2012).

69. Chidester, B., Do, M. N. & Ma, J. Rotation Equivariance and Invariance in
Convolutional Neural Networks. arXiv:1805.12301v1, Preprint at https://
arxiv.org/abs/1805.12301 (2018)

70. Srivastava, M. & Grill-Spector, K. The Effect of Learning Strategy versus
Inherent Architecture Properties on the Ability of Convolutional Neural
Networks to Develop Transformation Invariance. arXiv:1810.13128v1,
Preprint at https://arxiv.org/abs/1810.13128 (2018).

71. Zoccolan, D., Kouh, M., Poggio, T. & DiCarlo, J. J. Trade-off between object
selectivity and tolerance in monkey inferotemporal cortex. J. Neurosci. 27,
12292–12307 (2007).

72. Perrett, D. I. et al. Visual cells in the temporal cortex sensitive to face view and
gaze direction. Proc. R. Soc. Lond. Biol. Sci. 223, 293–317 (1985).

73. Paik, S. B. & Ringach, D. L. Retinal origin of orientation maps in visual cortex.
Nat. Neurosci. 14, 919–925 (2011).

74. Jang, J. & Paik, S. B. Interlayer repulsion of retinal ganglion cell mosaics
regulates spatial organization of functional maps in the visual cortex. J.
Neurosci. 37, 12141–12152 (2017).

75. Jang, J., Song, M. & Paik, S.-B. Retino-cortical mapping ratio predicts
columnar and salt-and-pepper organization in mammalian visual cortex. Cell
Rep. 30, 3270–3279.e3 (2020).

76. Song, M., Jang, J., Kim, G. & Paik, S. B. Projection of orthogonal tiling from
the retina to the visual cortex. Cell Rep. 34, 108581 (2021).

77. Haxby, J. V. et al. Distributed and overlapping representations of faces and
objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

78. Wold, S., Esbensen, K. & Geladi, P. Principal component analysis. Chemom.
Intell. Lab. Syst. 2, 37–52 (1987).

79. Kaufman, L. & Rousseeuw, P. J. Finding Groups in Data: an Introduction to
Cluster Analysis. 344 (John Wiley & Sons, 2009).

80. Sailamul, P., Jang, J. & Paik, S. B. Synaptic convergence regulates
synchronization-dependent spike transfer in feedforward neural networks. J.
Comput. Neurosci. 43, 189–202 (2017).

81. Socher, R. et al. Zero-Shot Learning Through Cross-Modal Transfer. In 1st
International Conference on Learning Representation ICLR 2013—Working
Track Proceedings, 1–7 (2013).

82. Saxe, A. M. et al. On random weights and unsupervised feature learning.
In Icml (2011).

83. Verstraeten, D., Schrauwen, B., D’Haene, M. & Stroobandt, D. An
experimental unification of reservoir computing methods. Neural Netw. 20,
391–403 (2007).

84. Bellec, G. et al. A solution to the learning dilemma for recurrent networks of
spiking neurons. Nat. Commun. 11, 1–15 (2020).

85. Weidel, P., Duarte, R. & Morrison, A. Unsupervised learning and clustered
connectivity enhance reinforcement learning in spiking neural networks.
Front. Comput. Neurosci. 15, 1–17 (2021).

86. Tetzlaff, C., Kolodziejski, C., Timme, M., Tsodyks, M. & Wörgötter, F.
Synaptic scaling enables dynamically distinct short- and long-term memory
formation. PLoS Comput. Biol. 9, 1–12 (2013).

87. Zhang, B. et al. Delayed maturation of receptive field center/surround
mechanisms in V2. Proc. Natl Acad. Sci. USA 102, 5862–5867 (2005).

88. Baldwin, M. K. L., Kaskan, P. M., Zhang, B., Chino, Y. M. & Kaas, J. H.
Cortical and subcortical connections of V1 and V2 in early postnatal macaque
monkeys. J. Comp. Neurol. 520, 544–569 (2012).

89. Bourne, J. A. & Rosa, M. G. P. Hierarchical development of the primate visual
cortex, as revealed by neurofilament immunoreactivity: early maturation of
the middle temporal area (MT). Cereb. Cortex 16, 405–414 (2006).

90. Kiorpes, L. & Movshon, J. A. Neural limitations on visual development in
primates. Vis. Neurosci. 1, 159–173 (2003).

91. Srihasam, K., Mandeville, J. B., Morocz, I. A., Sullivan, K. J. & Livingstone,
M. S. Behavioral and anatomical consequences of early versus late symbol
training in macaques. Neuron 73, 608–619 (2012).

92. Srihasam, K., Vincent, J. L. & Livingstone, M. S. Novel domain formation
reveals proto-architecture in inferotemporal cortex. Nat. Neurosci. 17,
1776–1783 (2014).

93. Yan, Y., Zhaoping, L. & Lia, W. Bottom-up saliency and top-down learning in
the primary visual cortex of monkeys. Proc. Natl Acad. Sci. USA 115,
10499–10504 (2018).

94. Epshtein, B., Lifshitz, I. & Ullman, S. Image interpretation by a single bottom-
up top-down cycle. Proc. Natl Acad. Sci. USA 105, 14298–14303 (2008).

95. Arcaro, M. J. & Livingstone, M. S. A hierarchical, retinotopic proto-
organization of the primate visual system at birth. Elife 6, 1–24 (2017).

96. Tavazoie, S. F. & Reid, R. C. Diverse receptive fields in the lateral geniculate
nucleus during thalamocortical development. Nat. Neurosci. 3, 608–616 (2000).

97. Gourier, N., Hall, D. & Crowley, J. L. Estimating face orientation from robust
detection of salient facial structures. FG Net Work. Vis. Obs. Deictic Gestures
17–25 (2004).

98. Handl, J., Knowles, J. & Kell, D. B. Computational cluster validation in post-
genomic data analysis. Bioinformatics 21, 3201–3212 (2005).

99. Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. & Baker, C. I. Circular
analysis in systems neuroscience: The dangers of double dipping. Nat.
Neurosci. 12, 535–540 (2009).

100. Cureton, E. E. Rank-biserial correlation. Psychometrika 21, 287–290 (1956).
101. Cohen, J. Statistical Power for the Behavioural Sciences (Hilsdale, NY Lawrence

Erlbaum, 1988).
102. Vermeesch, P. Multi-sample comparison of detrital age distributions. Chem.

Geol. 341, 140–146 (2013).

Acknowledgements
We are grateful to Gabriel Kreiman, Daeyeol Lee, and Min Whan Jung for discussing and
providing comments on earlier versions of this manuscript. This work was supported by the
National Research Foundation of Korea (NRF) grants funded by the Korean government
(MSIT) (Nos. NRF-2019R1A2C4069863, NRF-2019M3E5D2A01058328, NRF-
2021M3E5D2A01019544) and the Singularity Professor Research Project of KAIST (to S.P.).

Author contributions
S.P. conceived the project. S.B., M.S., G.K., J.J., and S.P. designed the model. S.B. and M.S.
performed the simulations. S.B., M.S., G.K., J.J., and S.P. analyzed the data. S.B. and M.S.
drafted the paper and designed the figures. S.P. wrote the final version of the paper with
input from all authors. All authors discussed and commented on the paper.

Competing interests
The authors declare no competing interests.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27606-9

14 NATURE COMMUNICATIONS |         (2021) 12:7328 | https://doi.org/10.1038/s41467-021-27606-9 | www.nature.com/naturecommunications

https://arxiv.org/abs/1903.01611
https://arxiv.org/abs/1903.01611
https://arxiv.org/abs/1805.12301
https://arxiv.org/abs/1805.12301
https://arxiv.org/abs/1810.13128
www.nature.com/naturecommunications


Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-27606-9.

Correspondence and requests for materials should be addressed to Se-Bum Paik.

Peer review information Nature Communications thanks James Johnson, Nancy
Kanwisher, Shimon Ullman and the other, anonymous, reviewer(s) for their contribution
to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27606-9 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:7328 | https://doi.org/10.1038/s41467-021-27606-9 | www.nature.com/naturecommunications 15

https://doi.org/10.1038/s41467-021-27606-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Face detection in untrained deep neural networks
	Results
	The emergence of face-selectivity in untrained DNNs
	Preferred feature images of face-selective units in an untrained network
	Detection of face images using the responses of face-selective units
	The emergence of face-selectivity in trained DNNs
	The emergence of selectivity to various objects in untrained DNNs

	Discussion
	Methods
	Neural network model
	Stimulus dataset
	Analysis of responses of the network units
	Class-clustering index of network response
	Face vs. non-face detection task for the network
	Preferred input feature (receptive field) analysis
	Trained network model
	Statistics

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




