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A B S T R A C T   

Prostate cancer is a highly heterogeneous disease; therefore, estimating patient prognosis accurately is challenging due to the lack of biomarkers with sufficient 
specificity and sensitivity. One of the current challenges lies in integrating genomic and transcriptomic data with clinico-pathological features and in incorporating 
their application in everyday clinical practice. Therefore, we aimed to model a risk score and nomogram containing long non-coding RNA (lncRNA) expression and 
clinico-pathological data to better predict the probability of prostate cancer progression. We performed bioinformatics analyses to identify lncRNAs differentially 
expressed across various prostate cancer stages and associated with progression-free survival. This information was further integrated into a prognostic risk score and 
nomogram containing transcriptomic and clinico-pathological features to estimate the risk of disease progression. We used RNA-seq data from 5 datasets from public 
repositories (total n = 178) comprising different stages of prostate cancer: pre-treatment primary prostate adenocarcinomas, post-treatment tumors and metastatic 
castration resistant prostate cancer. We found 30 lncRNAs with consistent differential expression in all comparisons made using two R-based packages. Multivariate 
progression-free survival analysis including the ISUP group as covariate, revealed that 7/30 lncRNAs were significantly associated with time-to-progression. Next, we 
combined the expression of these 7 lncRNAs into a multi-lncRNA score and dichotomized the patients into low- or high-score. Patients with a high-score showed a 4- 
fold risk of disease progression (HR = 4.30, 95 %CI = 2.66–6.97, p = 3.1e-9). Furthermore, we modelled a combined risk-score containing information on the multi- 
lncRNA score and ISUP group. We found that patients with a high-risk score had nearly 8-fold risk of progression (HR = 7.65, 95 %CI = 4.05–14.44, p = 3.4e-10). 
Finally, we created and validated a nomogram to help uro-oncologists to better predict patient’s risk of progression at 3- and 5-years post-diagnosis. In conclusion, 
the integration of lncRNA expression data and clinico-pathological features of prostate tumors into predictive models might aid in tailored disease risk assessment 
and treatment for patients with prostate cancer.   

1. Introduction 

Prostate cancer is the second most incident cancer and the fifth 
leading cause of cancer-related deaths among men worldwide [1]. The 
course of the disease is aggressive and life-threatening for some patients, 
while others have an indolent tumor with a low risk of progression. In 
standard clinical practice, several clinico-pathological characteristics 
are used to predict patient outcomes, which include: Gleason score, 
clinical and pathological tumor stage (TNM), serum PSA (Prostatic 
Specific Antigen) and the groups defined by the International Society of 
Urological Pathology (ISUP), among others [2]. However, estimating 
patient prognosis accurately is challenging due to the high heterogeneity 
of prostate tumors [3] and the lack of biomarkers with sufficient 

specificity and sensitivity [4]. These limitations restrict the effectiveness 
in predicting different outcomes among patients with similar 
clinico-pathological characteristics. Hence, there is an urgent need to 
discover novel markers highly associated with disease progression and 
develop prognostic models to improve the risk stratification of patients 
with prostate cancer. 

One promising field to discover new biomarkers involves studying 
changes in gene expression in the tumoral tissue. While expression an-
alyses of individual genes (mainly protein-coding) have been exten-
sively evaluated, they have not yet demonstrated sufficient specificity 
and sensitivity to be used as reliable biomarkers for prostate cancer 
diagnosis and progression [5]. Therefore, tumor whole transcriptomic 
information has been under consistent investigation in order to discover 

* Corresponding author. CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), 1428, 
CABA, Buenos Aires, Argentina. 

E-mail address: jcotignola@qb.fcen.uba.ar (J. Cotignola).  

Contents lists available at ScienceDirect 

Non-coding RNA Research 

journal homepage: www.keaipublishing.com/en/journals/non-coding-rna-research 

https://doi.org/10.1016/j.ncrna.2024.01.014 
Received 28 August 2023; Received in revised form 11 January 2024; Accepted 23 January 2024   

mailto:jcotignola@qb.fcen.uba.ar
www.sciencedirect.com/science/journal/24680540
http://www.keaipublishing.com/en/journals/non-coding-rna-research
https://doi.org/10.1016/j.ncrna.2024.01.014
https://doi.org/10.1016/j.ncrna.2024.01.014
https://doi.org/10.1016/j.ncrna.2024.01.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ncrna.2024.01.014&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Non-coding RNA Research 9 (2024) 612–623

613

gene-expression profiles that may define tumor subgroups with different 
outcomes, which may constitute a novel tool to improve tumor classi-
fication and to model gene-risk scores to predict disease progression 
[6–13]. To date, there are some RNA-based commercial kits that may 
predict prostate cancer outcomes and help to improve clinical 
decision-making. For example, Oncotype Dx Genomic Prostate Score® 
analyzes the expression of 17 genes and can predict an aggressive tumor 
behavior after radical prostatectomy [8,11]. Decipher® is another com-
mercial kit that evaluates the expression of 22 genes to classify patients 
into risk groups of recurrence and distant metastases development after 
biopsy or radical prostatectomy [6,7,9]. However, there is still con-
flicting data and the predictive values are still uncertain; therefore, 
further validation is required and these tests are not widely used in daily 
clinical settings yet. 

Long non-coding RNAs (lncRNAs) are RNAs longer than 200 nucle-
otides which do not encode for proteins. Historically, they were 
considered as by-products of the transcriptional process, but subsequent 
studies have changed this paradigm emphasizing their central role in 
cell biology. These lncRNAs are distributed throughout the genome and 
perform various cellular functions, including the regulation of gene 
transcription, splicing and post-translational modification, assembly of 
protein complexes acting as scaffold molecules, and sponge (capture) 
miRNAs to modulate their functions, among other activities [14,15]. 
Consequently, they can be considered as molecular hubs for the modu-
lation of biochemical pathways. An increasing body of evidence has 
demonstrated aberrant expression of lncRNAs in various diseases, 
including cancer; and has highlighted the role of these molecules as key 
regulators of signaling pathways involved in tumor development and 
progression [16–19]. Due to their specific expression and biological 
functions, there is growing interest in these molecules as potential bio-
markers. Several reports have investigated the utility of lncRNAs in the 
clinical setting, and proposed that they can serve as biomarkers in liquid 
biopsies for diagnosis, monitoring disease progression and therapeutic 
response [20–24]. 

One of the current challenges in oncology lies in integrating genomic 
and transcriptomic data with clinico-pathological features into mixed 
genetic and clinical models to enhance their individual prognostic 
values and, subsequently, incorporate their application in everyday 
clinical practice. Therefore, in this study, we aimed to model a risk score 
containing lncRNA expression and clinico-pathological data to better 
predict the probability of prostate cancer progression. We developed a 
prognostic score containing information based on a 7-lncRNA expres-
sion profile combined with the tumor ISUP group. In addition, with this 
information, we constructed a nomogram, which is a graphical scoring 
tool used in medicine to aid in predicting the likelihood of an individual 
to develop a specific event or outcome. Nomograms are particularly 
useful when complex statistical models and traits are involved, as they 
simplify the prediction process for healthcare professionals. Conse-
quently, they allow for a more personalized approach to decision- 
making by considering multiple factors simultaneously. 

2. Methods 

2.1. Selection of datasets 

We searched the public repositories Gene Expression Omnibus (GEO, 
https://www.ncbi.nlm.nih.gov/geo/) and European Bioinformatics 
Institute (EBI, https://www.ebi.ac.uk/) to identify transcriptomic 
studies that included tumor tissue samples from patients with different 
stages of prostate cancer. Our search included the following keywords: 
“prostate cancer” AND “RNA assay” OR “sequencing assay”. We selected 
the following datasets:  

- GSE51005 [25]: 4 paired advanced prostate tumor biopsies 
(TRUS-guided) before and after treatment with androgen depriva-
tion therapy (ADT) combined with docetaxel. Post-ADT samples 

were obtained ~22 weeks after treatment initiation and all biopsy 
cores had >60 % of tumoral cells.  

- GSE48403 [26]: 7 paired tumor biopsies (TRUS-guided) from locally 
advanced or metastatic prostate cancer before and after ADT-alone 
treatment. Post-ADT specimens were obtained ~22 weeks after 
treatment initiation and all biopsy cores had >60 % of tumoral cells.  

- GSE54460 [27]: 100 Formalin-Fixed Paraffin-Embedded radical 
prostatectomy samples from patients without hormonal or radiation 
treatment.  

- E-MTAB-6525 [28]: 98 paired RNA-seq of prostate biopsies from 
patients on active surveillance over 12 months on different diets 
(ESCAPE trial). We included only the 49 samples taken at baseline 
prior to the initiation of the special diets.  

- GSE31528 [29]: 8 snap frozen samples from patients with metastatic 
castration-resistant prostate cancer (mCRPC) obtained from the 
posterior iliac crest and with >90 % of tumoral cells.  

- TCGA-PRAD: 498 primary prostate tumor samples. Pre-processed 
RNA-seq data was downloaded from https://portal.gdc.cancer. 
gov/repository using the following filters: project id “TCGA- 
PRAD”, data category “transcriptome profiling”, data type “gene 
expression quantification”, experimental strategy “RNA-seq”, and 
workflow type “STAR – counts”. The clinico-pathological informa-
tion was downloaded from UCSC Xena (last accession: March 2022, 
[30]).  

- GSE46602 (validation dataset) [31]: 36 prostate cancer samples from 
patients undergoing radical prostatectomy. This dataset used a gene 
expression microarray platform. 

All datasets were downloaded from public repositories and, there-
fore, this study did not require ethical approval. 

2.2. Data pre-processing 

We downloaded the raw RNA-seq data (.fastq files) from GSE51005, 
GSE48403, GSE54460, E-MTAB-6525 and GSE31528 datasets. 
Sequencing quality was assessed with the FastQC tool (http://www.bio 
informatics.babraham.ac.uk/projects/fastqc/). We trimmed adapters 
and removed poor quality sequences (quality score <20) with Trim-
momatic [32]. Sequence reads were aligned to the reference genome 
GRCh38 using the STAR aligner [33]. 

2.3. Differential gene expression analysis 

Because our main goal was to investigate lncRNAs as potential bio-
markers for prostate cancer progression, we first filtered the tran-
scriptome data by lncRNA biotype, as reported in Ensembl. We then 
performed pairwise differential gene expression analysis for different 
groups of samples using two R-base packages: DESeq2 (v1.32.0) [34] 
and edgeR (v3.34.0) [35]. We then filtered out the lncRNAs with an 
adjusted p-value (padj) > 0.05 or absolute Log2Fold-Change (|Log2FC|) 
< 1.60 (corresponding to approximately a 3-fold change in gene 
expression). We established this Log2FC value as a cutoff based on the 
differential expression analysis of PCA3 (supplemental Table A1), a very 
well-known lncRNA associated with prostate cancer. Finally, we 
selected the lncRNAs that were consistently identified by both algo-
rithms in all pairwise comparisons as potential candidate genes for 
modeling a lncRNA expression-based risk score. 

2.4. Modeling of a multi-lncRNA expression-based score 

For the modeling of the multi-gene score we used the Cutoff Finder 
tool that fits Cox proportional hazard models to a dichotomized inde-
pendent variable and a survival outcome; defining the optimal cutoff as 
the point with the smallest Log-rank p split [36]. After establishing the 
optimal cutoff, we dichotomized the individual lncRNA expressions 
based on these cut points and classified the patients into low- or 
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high-expression groups. Subsequently, we performed a univariate Pro-
gression–Free Survival analysis (PFS) comparing both groups with the 
Log-rank test; and estimated the Hazard Ratios (HR) and 95 % Confi-
dence Intervals (95 %CI) using univariate Cox proportional hazard 
models. PFS (Progression-Free Interval or PFI, as called by TCGA) was 
defined as the time between the date of diagnosis and the date of the first 
occurrence of a new tumor event, which includes progression of the 
disease, locoregional recurrence, distant metastasis, new primary tumor, 
or death with tumor. 

Then, we combined all significant lncRNAs identified in the uni-
variate analysis in a multivariate Cox proportional hazard model to es-
timate the coefficients and construct a multi-lncRNA score as follows: 

multi lncRNA score=
∑n

i=1
βi × Exp lncRNAi Equation 1  

Where the β coefficients were obtained from the multivariate Cox pro-
portional hazard model, and Exp lncRNA is the dichotomized expression 
of the lncRNA. 

Finally, we stratified the patients into low- or high-multi-lncRNA 
score using the median score as the cutoff value and performed a PFS 
analysis comparing these two groups. PFS was evaluated by Kaplan- 
Meier curves, the Log-rank test and the Cox proportional hazard 
model regression using the R package survival (v3.5-5) [37]. 

2.5. Construction of a combined risk score based on lncRNA and clinico- 
pathological data 

We first performed a multivariate Cox proportional hazard model for 
PFS including the multi-lncRNA score (previously calculated), patho-
logic T stage, pre-operative PSA and ISUP group as covariates, defined 
as: ISUP grading categorized as ISUP1 (Gleason score ≤ 6), ISUP2 
(Gleason score 3 + 4 = 7), ISUP3 (Gleason score 4 + 3 = 7), ISUP4 
(Gleason score = 8), ISUP5 (Gleason scores = 9–10); pathological T- 
stage classified as pT1, pT2, pT3 and pT4; pre-operative PSA considered 
as a numerical continuous variable; and the multi-lncRNA score 
dichotomized into 0 (low-score) or 1 (high-score) by the median value. 

All variables were then combined into a new score as follows: 

combined risk score=
∑n

i=1
βi × covariablei Equation 2 

The β coefficients were obtained from the multivariate Cox propor-
tional hazard model, and covariable is the significant variable selected 
from the multivariate model. 

PFS was evaluated by Kaplan-Meier curves, the Log-rank test and the 
Cox proportional hazard model regression using the R package survival 
(v3.5-5) [37]. 

2.6. Receiver Operating Characteristic (ROC) curves 

We constructed ROC curves to analyze the performance of the 
combined risk score in predicting prostate cancer progression. We 
calculated the AUC (Area Under Curve) for the individual variables and 
the combined risk score. The AUC is a parameter that measures the 
performance of a classification method; the higher the AUC, the better 
the model at classifying the samples into the assigned groups. ROC 
curves and AUCs were calculated using the R package pROC (v1.18.0) 
[38]. 

2.7. Construction of a nomogram 

We constructed a nomogram to estimate the risk of prostate cancer 
progression at 3 and 5 years using the R package rms (v6.5-0) (https: 
//cran.r-project.org/package=rms). 

2.8. R-packages for graphics 

The following R packages were used for the different graphics: 
ggplot2 (v3.4.2) [39], venn (v1.11) (https://CRAN.R-project.org/ 
package=venn), survminer (v0.4.9) (https://CRAN.R-project.org/packa 
ge=survminer), and rms (v6.5-0) (https://cran.r-project.org/package 
=rms). 

3. Results 

We conducted a bioinformatics study using transcriptomic data from 
public repositories. We performed differential gene expression analyses 
to identify candidate lncRNAs associated with different stages of pros-
tate cancer, evaluated their association with disease progression and 
constructed a nomogram integrating lncRNA expression data and 
clinico-pathological features to assist uro-oncologists to better predict 
patients’ risk of progression. The overall study workflow is shown in 
Fig. 1. 

3.1. LncRNAs exhibited differential expression in prostate tumor samples 
across various stages of the disease 

First, we aimed at identifying lncRNAs with differential expression in 
tissues representing different stages of prostate cancer progression 
(untreated primary tumors through mCRPC). To achieve this, we 
downloaded RNA-seq data from 148 primary tumors without treatment 
(100 radical prostatectomies and 48 biopsies), 11 paired pre- and post- 
ADT primary tumors (total = 22 samples) and 8 mCRPC. We then per-
formed the following comparisons: a) paired post- vs pre-ADT samples, 
b) post- vs pre-ADT primary tumors, and c) mCRPC vs post-ADT. To 
increase the robustness and confidence of our findings, we used two R- 
base packages to calculate differential gene expression: DESeq2 and 
edgeR. Subsequently, we filtered out all lncRNAs with a padj > 0.05 or | 
Log2FC| < 1.60. For downstream analysis, we selected lncRNAs that 
were consistently found dysregulated by both packages across all three 
comparisons (Fig. 2A–C). This approach allowed us to identify 30 
lncRNAs that responded to ADT and exhibited further dysregulation 
during progression to mCRPC (Fig. 2C and supplemental Table A1). 
Interestingly, among the 30 identified lncRNAs, we found PCA3 and 
PCGEM1 which have previously been reported to be associated with 
prostate cancer development and progression [40–42]. This finding 
allowed us to validate the workflow used. 

Six lncRNAs were excluded for further analyses because they were 
reported as uncharacterized lncRNAs in different databases: 
CH507–42P11.6, LOC100506474, LOC101929532, LOC101929563, 
LOC105373682, and LOC105375341. 

3.2. The lncRNAs selected were associated with progression-free survival 
(PFS) 

To study the clinical relevance of the 24 lncRNAs identified in the 
previous step, we used samples from TCGA-PRAD (n = 498 primary 
tumors) as a validation dataset. We excluded 16 samples with incom-
plete lncRNA expression, phenotypic or survival data; resulting in the 
analysis of 482 prostate tumor samples. 

We first dichotomized the expression of all 24 individual lncRNAs 
into low- or high-expression. To establish the best cutoff value for each 
lncRNA we used the Cutoff Finder tool. After stratifying the patients 
according to their lncRNA expression, we performed univariate PFS 
analyses using Kaplan-Meier curves and the Log-rank test to determine 
statistical differences between the groups; and estimated the Hazard 
Ratios (HR) using Cox proportional hazard models. We found that 18/24 
lncRNAs were statistically associated with PFS in this cohort (Fig. 3A–G, 
and supplemental Figure A1 and Table A.2). Then, we performed a 
multivariate model including the expression of these 18 lncRNAs; and 
we found that 7 lncRNAs remained significant after adjusting the results 
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Fig. 1. Overall study workflow. 
Abbreviations: ADT: androgen-deprivation therapy; mCRPC: metastatic castration-resistant prostate cancer; PFS: progression-free survival; ROC: receiver operating 
characteristic. 
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for the expression of the other lncRNAs (Fig. 3H). Overall, we observed 
that high expression of PCA3, MIR924HG, PGM5-AS1, RRS1-AS1 (cur-
rent gene symbol RRS1-DT) and LINC00457 was associated with lower 
risk of progression compared to patients with low expression of these 
genes (HR < 0.50 and p ≤ 5.3e-3 for all genes; Fig. 3H). For LINC01087 
and LINC01095, we found that higher expression was associated with 
shorter PFS (HR = 2.17, p = 4.5e-3 and HR = 1.90, p = 1.3e-2; 
respectively; Fig. 3H). 

3.3. Modeling a polygenic risk score for prostate cancer progression 

After confirming that the expression of these 7 lncRNAs were inde-
pendent risk factors for prostate cancer progression, we created a multi- 
lncRNA score that captures the information about the expression of all 7 
lncRNAs (Equation (1)). To do this, we coded the expression of the 
lncRNAs as 0 (reference) or 1 (poor-prognosis expression level) as 
determined by the multivariate Cox proportional hazard model for PFS. 
The multi-lncRNA score equation was: (0.73 x Exp PCA3) + (1.47 x Exp 
MIR924HG) + (1.32 x Exp PGM5-AS1) + (1.32 x Exp RRS1-AS1) + (1.26 

Fig. 2. Differential lncRNA expression in tissues representing different stages of prostate cancer progression. 
The figure depicts the differential lncRNA expression analyses conducted with two R-based packages: DESeq2 (panel A) and edgeR (panel B). In both panels, the 
volcano plots illustrate the results for the three comparisons made, with dashed lines indicating the cutoff values used for the selection of differentially expressed 
lncRNAs (padj = 0.05 and |Log2FC| = 1.60). The 30 lncRNAs selected for further analysis are represented by blue dots for down-regulated genes and red dots for up- 
regulated genes (see supplemental Table A1 for detailed results). The names of the 7 lncRNAs used in the final risk score are provided within the volcano plots. Panel 
C features Venn diagrams displaying the number of dysregulated lncRNAs in each comparison as well as the intersection among them. The Venn diagrams colored in 
pink and yellow correspond to the analyses conducted by DESeq2 and edgeR, respectively. 
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x Exp LINC00457) + (0.77 x Exp LINC01087) + (0.64 x Exp LINC01095). 
Then, we calculated the multi-lncRNA score for each patient and 

categorized them into a low- or high-score using the median as the cutoff 
value (median multi-lncRNA score = 1.27) and performed a PFS analysis 
comparing these two groups. Patients with a high multi-lncRNA score 
were 4 times more likely to progress than patients with a low score (HR 
= 4.30, 95 %CI = 2.66–6.97, p = 3.1e-9; Fig. 4A). 

3.4. The multi-lncRNA score is an independent risk factor for prostate 
cancer progression and enhances the predictive value of the ISUP group 

Current clinico-pathological features used in standard clinical prac-
tice to predict patient outcomes include PSA at diagnosis, pT stage and 
Gleason score/ISUP group. Consequently, we performed a multivariate 
Cox hazard model including clinico-pathological and transcriptomic 
data as covariates. We found that the ISUP group and the multi-lncRNA 
score were the only variables that remained significant after adjusting 
for covariables (HR = 1.53, 95 %CI = 1.24–1.89, p = 7.4e-5 and HR =

Fig. 3. Progression-free survival (PFS) analysis for patients with low- or high-expression of the 7 selected lncRNAs. 
The figure illustrates the PFS analyses for the 7 lncRNAs selected used to construct the final risk score (results for the other 17 lncRNAs are presented in supplemental 
Figure A1 and Table A2). Panels A to G depict the PFS Kaplan-Meier curves for patients with low (blue) or high (red) expression of each individual lncRNA: PCA3 (A), 
MIR924HG (B), PGM5-AS1 (C), RRS1-AS1 (D), LINC00457 (E), LINC01087 (F) and LINC01095 (G). The Log-rank p, univariate Hazard Ratios (HR) and Cox p-values 
are provided within each plot, the numbers below each graph show the number of patients at risk at each time point, and censored patients are denoted with the 
vertical lines. The low-expression group was used as the reference in all comparisons. The table in panel H shows the Hazard Ratios (HR) estimated using a 
multivariate Cox proportional hazard model for the 7 lncRNAs selected (refer to supplemental Table A2 for additional information). 

Fig. 4. Progression-free survival (PFS) analysis using the multi-lncRNA and combined risk scores. 
A) PFS Kaplan-Meier curves for patients with low (blue) or high (red) multi-lncRNA score. Patients with a high multi-lncRNA score exhibited significantly shorter PFS 
and a 4-fold risk of progression when compared to patients with a low score. B) The table shows the Hazard Ratio estimated by a multivariate Cox proportional 
hazard model including PSA, pT, ISUP group and multi-lncRNA score as covariates. After the adjustment for covariates, only the ISUP group and the multi-lncRNA 
score remained as independent risk factors for disease progression. C) PFS Kaplan-Meier curves for patients with low (blue) or high (red) combined risk score. 
Patients with a high combined risk score had significantly poorer PFS and a nearly 8-fold risk of progression compared to patients with a low score. D) Cumulative 
risk curve for patients with low (blue) or high (red) combined risk score. Patients with a high combined risk score had greater cumulative risk at all-time points 
compared to patients with a low combined score. 
The numbers below each Kaplan-Meier graph show the number of patients at risk at each time point, and censored patients are denoted with the vertical lines. 
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2.78, 95 %CI = 1.68–4.59, p = 6.4e-5, respectively; Fig. 4B). 
Next, we combined the gene expression and clinico-pathological 

variables into a new risk score (Equation (2)). We coded the expres-
sion of the multi-lncRNAs as 0 (reference) or 1 (poor-prognostic score) 

as determined by the multivariate Cox proportional hazard model for 
PFS; for the ISUP covariable we used the patient’s ISUP group. The 
combined risk score for each patient was calculated as: (1.06 x multi- 
lncRNA score) + (0.50 x ISUP). Patients were then assigned to a low- 

Fig. 5. Construction and validation of a nomogram for the prediction of prostate cancer progression. 
A) Nomogram for predicting 3- and 5-year PFS in men with prostate cancer. The probability of being progression-free at 3 and 5 years for each patient could be easily 
estimated as follows: i) draw a vertical line upward connecting the value of each variable with the Points on the upper scale (dashed lines), ii) add all points and, 
using the Total Points scale, draw a vertical line downward to estimate patient PFS probability (solid lines). The figure shows two examples: 1) ISUP = 3 and multi- 
lncRNA score = 2 (green lines) and 2) ISUP = 3 and multi-lncRNA score = 4 (red lines). B) Waterfall plot showing the distribution of patients according to their total 
nomogram score. Patients were categorized into low-, medium- or high-risk using the nomogram total score tertiles: (0–27], (27–48] and (48–125]; respectively. The 
dotted lines denote the cutoff values. C) PFS analysis to validate the nomogram. As expected, the worse survival was observed for the high-risk group (red line), 
followed by the medium-risk group (blue line) and finally the low-risk group (green line). The numbers below the Kaplan-Meier curve show the number of patients at 
risk at each time point, and censored patients are denoted with the vertical lines. D) Biochemical relapse-free survival analysis for the validation dataset GSE46602. 
We observed that the higher the risk score (green: low-, blue: medium-, red: high-risk scores), the worse the patient’s survival. The numbers below the Kaplan-Meier 
curve show the number of patients at risk at each time point, and censored patients are denoted with the vertical lines. 
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or high-score group using the median combined risk score (median =
2.07) as a cutoff value; and we performed a PFS analysis using this score. 
We found that patients with a high score had nearly 8-fold higher risk of 
progression (HR = 7.65, 95 %CI = 4.05–14.44, p = 3.4e-10; Fig. 4C). 
The cumulative risk of disease progression is shown in Fig. 4D. 

In order to evaluate the performance of the multi-lncRNAs score, 
ISUP groups and the combined risk score in predicting 3- and 5-year PFS, 
we implemented a ROC curve analysis and compared the AUCs. We did 
not observe significant differences between the AUCs for ISUP-only and 
multi-lncRNAs-only scores. However, there was a significant enhance-
ment in the performance of the classification method when the com-
bined risk score was used: AUC 3-years 0.76 vs 0.72 (p = 0.046) and 
AUC 5-years 0.76 vs 0.72 (p = 0.036) for the combined risk score and 
ISUP-only groups, respectively (supplemental Figure A2). 

3.5. Construction and validation of a nomogram 

We constructed a nomogram to predict the 3- and 5-year PFS based 
on the ISUP group and multi-lncRNA score (Fig. 5A). The nomogram 
shows that the multi-lncRNA contributed the most to the prognosis of 
men with prostate cancer. As an example, a patient with an ISUP = 3 and 
multi-lncRNA score = 2 would have ~80 % probability of surviving 
without progression at 3 years and ~70 % at 5 years (Fig. 5A, green 
lines); while the probability of surviving free of progression would be 
~30 % at 3 years and ~10 % at 5 years for a patient with an ISUP = 3 
and multi-lncRNA score = 4 (Fig. 5A, red lines). 

Finally, in order to validate the prognostic capacity of the nomo-
gram, we stratified the patients from TCGA-PRAD into low-, medium- or 
high-risk groups based on the nomogram total score (Fig. 5B). As ex-
pected, patients in the high-risk scores had significantly shorter PFS with 
a median time to progression of 44 months, while the median was not 
reached for the medium- and low-risk score groups (HR = 12.97, 95 %CI 
= 5.91–28.44, p = 1.6e-10 for high- vs low-risk; and HR = 3.89, 95 %CI 
= 2.27–6.68, p = 7.8e-7 for high- vs medium-risk; Fig. 5C). Moreover, 
the group with a medium score had significantly worse PFS compared to 
patients with a low score (HR = 3.35, 95 %CI = 1.39–8.08, p = 0.007; 
Fig. 5C). The proportion of patients free of progression for the three 
groups were: 96 % (low-risk), 89 % (medium-risk) and 56 % (high-risk) 
at 3 years; and 93 % (low-risk), 79 % (medium-risk) and 38 % (high-risk) 
at 5 years. 

3.6. Validation on an independent dataset 

In order to validate the multi-lncRNA score and nomogram, we 
sought independent public datasets that analyzed transcriptome data 
and assessed prostate cancer progression. Unfortunately, no additional 
datasets using RNA-seq as a platform for transcriptomic analysis were 
found. Consequently, we expanded our search to include platforms 
based on gene expression microarrays. 

While several datasets were identified, we encountered few limita-
tions for the validation of the multi-lncRNA score and nomogram. First, 
the microarrays used in these studies did not include probes for all 7 
lncRNAs integrated into our multi-lncRNA score. This may be attributed 
to the recent emergence of the field of lncRNAs in disease, with the 
majority of this molecules being recently discovered, sequenced and 
validated. Second, these studies primarily focused on single progression 
outcomes (biochemical relapse, metastasis or death); whereas our 
analysis comprised a broader range of progression outcomes, including 
progression of the disease, locoregional recurrence, distant metastasis, 
new primary tumor, and death with tumor. Third, tumor grading was 
commonly reported as Gleason score without discriminating between 7 
(3 + 4) and 7(4 + 3), which correspond to two different ISUP grades 
(ISUP 2 and ISUP 3, respectively). 

Despite these limitations, we used the GSE46602 dataset [31] to 
validate our nomogram. This dataset included probes for 6 out of the 7 
lncRNAs (LINC00457 was not analyzed due to the lack of probes in the 

microarray) and studied only 36 patients. Additionally, because the 
authors used a gene expression microarray as a transcriptome platform, 
we were not able to use the same regression coefficients calculated from 
the RNA-seq data. Therefore, we calculated new regression coefficients 
for the microarray data using the same pipeline described here. Finally, 
since the authors reported Gleason scores of 7, we opted to combine 
ISUP 2 (Gleason score 7(3 + 4)) and ISUP 3 (Gleason score 7(4 + 3)) into 
a single group for constructing the validation nomogram. 

The analysis of this validation dataset is presented in Fig. 5D. After 
stratifying the patients from this dataset into tertiles of nomogram total 
risk score including the 6-lncRNA score and ISUP grades (ISUP 1, ISUP 
2/3, ISUP 4 and ISUP 5), we observed that the higher the total risk score, 
the worse the biochemical relapse-free survival, with an overall Log- 
rank p = 9e-4 (Fig. 5D). 

In summary, despite all the limitations encountered in this valida-
tion, the results support the potential of the multi-lncRNA score and 
nomogram as a valuable tool in assessing prostate cancer progression. 

4. Discussion 

Prostate cancer remains a significant global health concern, needing 
innovative approaches to enhance its diagnosis and prognosis. In this 
context, the present study introduces a pioneering investigation into the 
potential of lncRNAs as crucial markers for guiding clinical decisions in 
prostate cancer management. 

Upon prostate cancer diagnosis, uro-oncologists assess the risk of 
aggressive/life-threatening disease by evaluating various clinico- 
pathological features that include the Gleason score, ISUP grading, 
TNM stage and serum PSA levels, among others [2]. Even though these 
features are able to identify the aggressive potential of prostate tumors 
and disease progression, and despite the advancements in traditional 
diagnostic and prognostic tools, the inherent heterogeneity of prostate 
cancer poses challenges in accurately predicting disease progression [3]. 
Addressing this critical gap, our study aimed to unravel lncRNAs mo-
lecular changes in prostate cancer, shedding light on their differential 
expression patterns across distinct stages of the disease. By integrating 
comprehensive lncRNA profiles with clinico-pathological features, we 
have constructed a predictive nomogram that empowers healthcare 
practitioners to tailor treatment strategies and patient follow-up, ulti-
mately optimizing the precision of prostate cancer care. This work thus 
not only pushes the boundaries of our understanding of prostate cancer 
at the molecular level but also promises tangible clinical benefits by 
ushering in a new era of personalized and effective management 
strategies. 

lncRNAs have a myriad of cellular functions, acting as molecular 
hubs due to their ability to interact and modulate several proteins, 
mRNAs and miRNAs. Over recent years, is has been an exponential in-
crease of evidence indicating that dysregulation of lncRNA contributes 
to the development and progression of disease, including prostate cancer 
[18,19]. In this study, we analyzed RNA-seq data from public re-
positories and evaluated differential lncRNAs expression across different 
stages of prostate cancer, aiming to identify dysregulated lncRNAs with 
potential prognostic significance. After performing differential expres-
sion using two R-base packages, univariate, multivariate models and PFS 
analyses, we identified 7 lncRNAs that displayed the following charac-
teristics: i) they responded to testosterone levels, as they were signifi-
cantly downregulated during ADT; ii) they were dysregulated during the 
transition to mCRPC, as their expression was higher in mCRPC tissues 
compared to post-ADT primary tumors, and even higher to those 
observed in pre-ADT primary tumors; and iii) their expression was 
associated with PFS in univariate and multivariate analysis, considering 
clinico-pathological features as covariates. Of note, PCA3 was among 
them and has been previously implicated in prostate cancer develop-
ment and progression [43]; thus, validating the robustness of the pipe-
line used. Moreover, there are FDA-approved diagnostic tests 
(Progensa™ PCA3 [44] and APTIMA® PCA3 [45]) that were designed to 

S. Ledesma-Bazan et al.                                                                                                                                                                                                                       



Non-coding RNA Research 9 (2024) 612–623

621

quantify PCA3 levels in urine. Interestingly, PCA3 is overexpressed in 
prostate cancer compared with normal prostate tissue [46]; however, it 
falls short in detecting high-grade prostate tumors, potentially leading to 
under-diagnosis of aggressive cancer [47]. Consistent with this, the 
findings presented here and those reported by Alshalalfa et al. [48] 
showed that low levels of tumoral PCA3 were associated with worse 
prognosis. 

The analysis of individual gene expression has been extensively used 
in oncology; however, it has yet to yield sufficient sensitivity and 
specificity for disease diagnosis and prognosis. Herein, we pooled the 
expression of 7 lncRNAs associated with prostate cancer progression and 
survival to create a multi-lncRNA risk score. Notably, we found that this 
score outperformed the risk prediction of the individual genes. Some 
coding gene expression profiles have previously shown predictive 
capability in discriminating aggressive prostate cancer [7,8]. Never-
theless, these scores do not combine clinico-pathological data within 
their predictive models; instead, they use a sequential approach [5]. Our 
study overcame this limitation by combining the multi-lncRNA risk 
score with pathologic features to establish a comprehensive multivari-
able risk score. After multivariate PFS analysis, only the multi-lncRNA 
score and ISUP group remained significant and, therefore, they were 
incorporated in the final molecular and pathological risk model. Our 
combined score outperformed the ISUP-only and multi-lncRNA-only risk 
score, highlighting the importance of integrating all aspects of tumor 
physiopathology as a prognostic tool. 

Existing diagnostic/predictive kits for prostate cancer include 
Oncotype Dx Genomic Prostate Score® and Decipher®. The initial inves-
tigation of the Oncotype Dx Genomic Prostate Score® demonstrated better 
predictive accuracy when adding this genomic score to the CAPRA score 
(Cancer of the Prostate Risk Assessment score, which integrates infor-
mation on age at diagnosis, PSA, Gleason score of the biopsy, clinical T 
stage and percentage of biopsy cores with cancer); resulting in a higher 
AUC (0.67 vs 0.63 for the combined score and CAPRA-only score, 
respectively) [8]. In a more recent study, the Oncotype Dx Genomic 
Prostate Score® (derived from biopsies) was evaluated in relation to 
adverse prostate tumor features after radical prostatectomy. The authors 
reported a significant improvement in AUCs when incorporating the 
Genomic Prostatic Score into predictive models, with values of 0.78 vs. 
0.74 (p = 0.004) for seminal vesicle invasion and 0.70 vs. 0.68 (p <
0.001) for extra-prostatic extension [11]. The Decipher® gene signature 
was developed to predict early metastasis following radical prostatec-
tomy. In the discovery and validation study, the authors reported that 
the combined genomic-clinical classifier had greater ability to identify 
patients at risk of distant metastasis (AUC of 0.74 for the 
genomic-clinical score compared to an AUC of 0.69 for the clinical-alone 
variables in the validation cohort) [6]. Karnes et al. later reported 
comparable results using the same gene signature for predicting 
metastasis in at-risk patients (AUC = 0.82 vs 0.79 for the 
genomic-clinical and clinical-alone classifiers, respectively) [7]. More 
recently, a large multicenter cohort study (total n = 6928) concluded 
that the Decipher® gene signature combined with clinico-pathological 
risk groups is a better predictor of 5-year risk of distant metastasis 
(AUC = 0.66 for the CAPRA-only score, AUC = 0.65 for the NCCN 
(National Comprehensive Cancer Network) 4-risk-group only, and AUC 
= 0.75 for the genomic-clinical classifier) [9]. While the evaluated 
outcomes and technologies (gene expression microarray or TaqMan 
RT-qPCR) varied among these genomic tests, their common goal is to 
identify patients at risk of aggressive/progressive disease. Notably, all 
AUCs were similar to or lower than those reported here, which used 
RNA-seq data. Overall, our results provide valuable insights into the 
potential of the multi-lncRNA score as an innovative predictive tool for 
prostate cancer progression. 

Finally, in view that genetic scores might be challenging in terms of 
interpretation when predicting patient outcome, we constructed a 
nomogram that included the multi-lncRNA risk score and ISUP group. 
The proposed nomogram exhibited significantly superior performance 

compared to the predictive models based on clinico-pathological fea-
tures alone. 

The findings of our study highlight the importance of integrating 
molecular/genomic and clinical data into healthcare practice and sug-
gest that not all men with identical clinico-pathological tumor charac-
teristics may benefit from standardized treatments. The incorporation of 
a multi-lncRNA score could facilitate an empirical assessment of the risk 
of prostate cancer progression for each patient, enabling a tailored 
decision-making and treatment. However, it is important to acknowl-
edge some limitations of this study. First, the datasets used lack detailed 
data on clinico-pathological features and information on treatment that 
could influence survival outcomes. Second, although the discovery of 
differentially expressed lncRNAs was performed on datasets from bi-
opsies and FFPE tissues, the PFS analysis and construction of the 
nomogram was performed using expression data from radical prosta-
tectomies; therefore, the prediction capacity of the nomogram should be 
further validated in biopsy samples. Third, although we were able to 
validate the multi-lncRNA and nomogram in an independent dataset 
with a limited number of samples and incomplete data on the 7 lncRNAs 
and ISUP groups, these results should be further validated in prospective 
multicenter cohorts; hence, large prospective clinical studies are needed 
to confirm the predictive capacity of the nomogram. Additionally, 
considering the potential utility of the multi-lncRNA score as a 
biomarker for prostate cancer progression and the possibility of 
detecting lncRNAs in urine and blood samples (e.g. PCA3 [5,44,45]), 
these results warrant further investigation into the usage of the 
multi-lncRNA score as a liquid biopsy for the diagnosis and prognosis of 
prostate cancer. 

5. Conclusions 

In conclusion, this study bridges the gap between genomic/tran-
scriptomic information and clinical practice, providing a practical 
framework for predicting prostate cancer progression and optimizing 
patient care. By contributing to the growing field of precision medicine, 
our findings pave the way for a more personalized and effective 
approach to prostate cancer management, ultimately improving patient 
outcomes and quality of life. Further research and validation are war-
ranted to fully realize the transformative potential of lncRNA-based 
predictive models in the realm of prostate cancer diagnosis and 
prognosis. 
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