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Wireless sensor networks (WSNs) have attracted a lot of interest due to their enormous potential 
for both military and civilian uses. Worm attacks can quickly target WSNs because of the network’s 
weak security. The worm can spread throughout the network by interacting with a single unsafe 
node. Moreover, the analysis of worm spread in WSNs can benefit from the use of mathematical 
epidemic models. We suggest a five-compartment model to characterize the mechanisms of worm 
proliferation with respect to time in WSN. Taking into account the  transform convoluted 
with the Atangana-Baleanu-Caputo (ABC) fractional derivative operator, we employ it to analyze 
the characteristics and applications of the  transformation using the Mittag-Leffler kernel. 
Moreover, we construct a new algorithm for the homotopy perturbation method (HPM) in 
conjunction with the  transform technique to generate analytical solutions for the worm 
transmission model. Also, we address the qualitative aspects such as positivity, boundness, worm-
free state, endemic state, basic reproduction number (0) and worm-free equilibrium stability. 
Furthermore, we prove that the virus rate in sensor nodes is extinct if 0 < 1 and the virus 
persists if 0 > 1. In addition, we develop analytical findings to evaluate the series of solutions. 
Furthermore, a detailed statistical analysis is conducted to verify the nonlinear dynamics of the 
system by verifying the 0 − 1 test to determine whether uncertainty exists using approximation 
entropy and the ℂ0 data. An extensive analysis of the vaccination class with respect to the 
transmitting class as well as the susceptible class is being used to investigate the effects of stepping 
up precautions on WP in WSN. Moreover, the modeling of the WSN revealed that reducing the 
fractional-order from 1 requires that the recommended approach be implemented at the highest 
rate so that there is no long-lasting immunization; instead, nodes remain briefly defensive before 
becoming vulnerable to future worm attacks.

* Corresponding authors.

E-mail addresses: saimarashid@gcuf.edu.pk (S. Rashid), rafiasch2195@gmail.com (R. Shafique), saimaakram@gcwuf.edu.pk (S. Akram), skhalil@tu.edu.sa
Available online 13 August 2024
2405-8440/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license
(http://creativecommons.org/licenses/by-nc/4.0/).

(S.K. Elagan).

https://doi.org/10.1016/j.heliyon.2024.e35955
Received 14 January 2024; Received in revised form 28 July 2024; Accepted 6 August 2024

http://www.ScienceDirect.com/
http://www.cell.com/heliyon
mailto:saimarashid@gcuf.edu.pk
mailto:rafiasch2195@gmail.com
mailto:saimaakram@gcwuf.edu.pk
mailto:skhalil@tu.edu.sa
https://doi.org/10.1016/j.heliyon.2024.e35955
https://doi.org/10.1016/j.heliyon.2024.e35955
http://creativecommons.org/licenses/by-nc/4.0/


Heliyon 10 (2024) e35955S. Rashid, R. Shafique, S. Akram et al.

Fig. 1. Situation in which the propagation of worm in WSN model (3.1) is used.

1. Introduction

Recently, a worms propagation (WP) might have included hundreds or thousands of sensor nodes. Although it first emerged to 
provide support in military operations, its usage has now spread to multiple consumer and business markets, including traffic, health, 
and hence forth. The equipment for the sensor node consisted of an antenna-equipped radio transceiver, a microcontroller, a circuit of 
electricity for the interface, and an energy source, generally a battery, (see Fig. 1). The sensor nodes’ dimensions can also vary in size, 
ranging from that of a shoe box to that of a dust element. Because of this, expenses also differ, ranging from just a few cents to hundreds 
of dollars, according to the technical characteristics of a sensor, such as memory, bandwidth, and processing rate [1]. One type of 
wireless network is a WSN, which involves a large number of moving, autonomous, small, lightweight, low-powered devices known 
as sensor nodes or motes. These networks undoubtedly encompass a vast array of tiny, battery-powered, embedded, geographically 
dispersed devices that are networked to meticulously gather, process, and provide the operators access to data, and they have managed 
the processing and computational capacities. The minor computers, known as nodes, combine to establish networks [2]. The wireless 
node for sensors is a multipurpose, energy-efficient instrument. Motes are used extensively in manufacturing processes. Transceivers 
can be used to facilitate conversation across motels. Ad-hoc networks, in comparison to sensors, will consist of fewer nodes and 
therefore no structure.

A novel class of worms that attack portable computers, including laptops and smartphones, has emerged in recent years. One 
unique aspect of these worms is that they may spread without the need for internet access. Through the use of wireless communication 
technologies like Wi-Fi and Bluetooth, they can spread straight from device to device [3,4]. Malicious software that specifically targets 
wireless devices has indeed begun to surface. With its ability to spread over air interactions, the recently identified virus Cabir poses a 
fatal threat to WSNs. Malware that attacks WSNs will inevitably materialize. Similar detection techniques are employed by the Mabir 
virus to initiate accessibility attacks. The WSN population is consequently very interested in protection techniques that could protect 
monitoring networks against malware intrusions. Epidemic modeling for infection propagation can be used to study the behaviors 
of hazardous substances via a web [5]. On the basis of Kermark and McKendrick’s SIR classical epidemic model, dynamic models 
for the spreading of dangerous materials are being suggested [6]. According to network features that account for the structural 
components of the system, these frameworks offer an evaluation of the time-varying modifications of contaminated networks [5,7]. 
This method was used to email propagation methods [8] and, by modifying SIR models, produced infection prevention guidelines 
using the epidemiological threshold idea [5,9]. The research team’s suggested model, SEIR [10], makes the unrealistic assumption 
that recovered hosts have a fixed chance of a lifelong immunization phase. To get over this restriction, Mishra and Saini [7] provide 
an SEIRS model including latent and immunological phases that can show how common worms spread. In order to investigate the 
prevalence of viruses, additional research has recently focused on the integration of virus propagation models with antiviral defensive 
measures, such as virus vaccination and quarantine [11]. The epidemiological models that are widely utilized by social scientists 
[12] may be used in studying the spreading of viruses in wireless networks because there are fundamental similarities between the 
propagation of software viruses among wireless devices and the development of epidemic illnesses in a population. Recent work has 
examined a few relevant uses of epidemic models in wireless circumstances [13].

However, the application of fractional calculus (FC) brought revolutionary changes in real-world phenomena, such as by intro-
ducing new notions of derivative and integral operators with singular/non-singular and local/non-local kernels [14]. The unique 
element put forth makes use of the generalized Mittag-Leffler function (GMLF), which constitutes the cornerstone [15,16]. Abdel-
2

jawad and Baleanu [17] introduced the discrete fractional operators with nonsingular discrete Mittag-Leffler kernels. Therefore, 
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the properties of this mechanism exacerbate the novel formulations to achieve numerous intriguing characteristics, like the mean 
square deformation interphase and expanding variations, that have been discovered in serious unforeseen circumstances. It has been 
frequently utilized in many fields of science and technology since Atangana and Baleanu [18] presented the innovative fractional 
derivative operator in 2016. It has been demonstrated that using the ABC-fractional derivative in simulation generates a chaotic sys-
tem for a relatively short period of time. The ABC-fractional derivative, in the context of Caputo, is an effective mathematical method 
for modeling progressively more critical difficulties than the power and exponential kernels. Due to their vast repercussions, these 
formulations are generally known for their intrinsic non-orientation, which results in fractional differential equations (DEs) without 
artificial anomalies, as in the context of the Riemann-Liouville and Caputo derivatives [19]. We have also observed a growing interest 
in mathematical techniques among these operators. However, as can be seen in [20], estimating these derivatives numerically leads 
to a number of computational problems. Since they have piqued the attention of several researchers who investigate their behavior 
in terms of solvability, uniqueness, and the stability of their solutions, particularly nonlinearity, these complicated issues have been 
researched in the literature [21]. Nonlinear processes do not always have realistic analytical solutions since it might be challenging 
to find the appropriate solutions by putting them into ordinary or fractional DEs.

According to the criteria of solvability, distinctiveness, and stabilization of the solutions of mathematical models, particularly 
nonlinear DEs, this has piqued the curiosity of numerous scholars who have investigated them in literature and classified them as 
nonlinear or linear [22,23]. Nonlinear processes do not necessarily have precise approximate solutions because it is difficult to find 
results by putting them in the context of ordinary or fractional DEs [24–26]. Due to this challenge, scientists have concentrated on 
creating a number of numerical techniques to discover an approximation of the outcome. Numerous methods are used to find the 
analytical solutions for integral equations and nonlinear coupled fractional DEs [27–29]. Analytical solutions of the coupled fractional 
DEs have been derived by taking into account the Homotopy perturbation method (HPM) [30], Adomian decomposition method [31], 
new iterative transform method [32], Lie symmetry analysis [33], reproducing kernel Hilbert space method [34], spectral collocation 
method [35], wavelet transform method [36], Chebyshev spectral collocation method [37] and henceforth.

In addition to J. B. Fourier’s (1768–1830) dissertation “La Théorie Analytique de La chaleur” (1822), documented in [38], P. S. 
Laplace’s (1749–1827) research on mathematical statistics in the 1780s is credited with helping to establish the integral transform 
applied in academia to find conclusions. The complex dynamical issues could not be solved by integral transformations such as 
Laplace, Sumudu, and so forth. For this reason, several mathematicians have explored new techniques to solve nonlinear fractional 
DEs. To make the technique of addressing partial and ordinary DEs in the context of spatial-temporal analysis easier. In 2016, Zafar 
[39,40] proposed a novel transform. This new transformation is a refinement of the Laplace and Aboodh transforms that are already 
in practice and can be used in a similar manner to identify the analytical solutions to the fractional SIR epidemic model [41].

However, the HPM’s capacity to manage problems involving singularities, including those prevalent in science and technology, 
constitutes one of its main strengths. Scientists have started investigating the application of the HPM in conjunction with other trans-
forms. A mathematical method called the homotopy perturbation- transform method (HP-TM) can be utilized for transforming 
a dynamical problem into a linear equation, which will increase the system’s solvability, precision and supremacy. Scientists have 
improved the effectiveness and precision of solving a variety of nonlinear challenges by employing the HPM and the  transform. 
In general, it seems to have been demonstrated that the HPM with the  transform is a robust and productive method for handling 
nonlinear challenges, with a wide range of feasible implementations in different domains [42–45].

Adopting the aforesaid propensity, we aim to investigate the attacking behavior of worms in WSN by employing the ABC fractional 
derivative operator in the frame of the GMLF. Several characterizations of the  transform in terms of the ABC fractional derivative 
operator are provided, which is the main motivation of this work. To the best of our knowledge, the worms propagation in WSNs in 
the context of fractional operators is less of a consideration due to heavy virus attacks. In order to cope with this issue, we presented 
a new scheme for merging the worms propagation in WSNs in a fractional sense to get a better understanding. Also, a detailed 
description of worm propagation in WSNs can be accessed by employing statistical analysis such as the 0–1 test, the approximate 
entropy assessment, and the complexity of the system.

Taking into consideration the well-noted  transform, we constructed a new algorithm by using HPM, which is known as 
homotopy perturbation  transform method (HP-TM). According to the five-cohort epidemic model and with the aid of HP-T, 
we proposed analytical solutions for the process of worm dissemination in relation to time in WSNs. We presuppose that additional 
node sensors will be added and that cells will stop functioning as a result of malware attacks and software or hardware defects 
in the monitoring domain. It is assumed that every sensor node inside the sensor region is vulnerable to potential worm attacks. 
Because worms proliferate easily, they may invade a single detector component, which then eventually spreads to adjoining sensors 
by creating a contagious type of access points and fusion centers. The sensor nodes exhibit attack signs, such as a slowdown in 
the typical information communication rapidity, prior to ultimately becoming infected. These node classifications are placed in 
an accessible compartment in the form of an ABC fractional operator. Our proposed model can enhance the system’s anti-virus 
performance and allow it to modify itself more easily for various types of viruses by adding an operational procedure to the WSN’s 
sleep networks when reducing the fractional-order. Due to the lack of permanent immunization in the cyber world, nodes emerge 
briefly protective before becoming vulnerable to potential worm attacks when fractional-order reduces to 1. Several properties of the 
worms propagation in WSN are discussed, such as worm-free equilibrium, endemic state, basic reproduction number, and stability 
analysis. Further, modeling depictions indicate the system’s behavior for various fractional-orders. A comprehensive review related 
to our outcomes explains the existence and uniqueness of the model. System parameters enhance the variability and trustworthiness 
of the sensor nodes for detecting malware. In a nutshell, this analytical technique will open new venues in the research of applied 
3
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2. Preliminaries

Firstly, several key lemmas and an explanation of the ABC fractional-order derivative are given. Illustrations of time-dependent 
fractional-order WP in the WSNs model are then presented.

Definition 2.1. ([46]) Assuming that 𝑝1 ∈ (1, ∞) and ℧1 correspond to open subsets of ℝ, the Sobolev space Ω𝑝1 (℧1) is given as 
follows:

Ω𝑝1 (℧1) =
{ ∈ 2(℧1) ∶℘ ∈2(℧1), ∀ |℘| ≤ 𝑝1}. (2.1)

Definition 2.2. ([18]) Suppose that  ∈ 𝐻1(0, 1) and 0 <℘ ≤ 1. The ABC fractional derivative of a mapping  can be defined as:

𝐴𝐵𝐶℘
𝜁
 (𝜁) =

Λ(℘)
1 −℘

𝜁

∫
0

𝐸℘

[
−

℘
(1 −℘)

(𝜁 − 𝜏)℘
]
′(𝜏) 𝑑𝜏, (2.2)

where ℘ is the well-known Mittag-Leffler function of one parameter and Λ(℘) = 1 −℘ + ℘
Γ(℘) is a normalization function satisfying 

Λ(0) = Λ(1) = 1.

Definition 2.3. ([47]) The corresponding fractional integral operator of (2.2) can be addressed as:

𝐴𝐵0
𝜁
(𝜁) = 1 −℘

Λ(℘)
(𝜁) + ℘

Λ(℘)Γ(℘)

𝜁

∫
0

(𝜏)(𝜁 − 𝜏)℘−1𝑑𝜏, (2.3)

where Γ symbolizes well-known Gamma function is defined as Γ(𝜎)= ∫ ∞
0 𝜁𝜎−1𝑒−𝜁 𝑑𝜁 .

For more details on the characterization of the ABC fractional derivative, we refer the readers to [48].

Lemma 2.1. ([[49]]) (Generalized mean value theorem) Let  (𝜘) ∈ [𝐜1, 𝐜2] and assume that 𝐴𝐵𝐶℘
𝜁
 (𝜘) ∈ [𝐜1, 𝐜2], where, 0 <

℘ ≤ 1. Then we have

 (𝜘) =  (𝐜1) +
1

Γ(℘)
𝐴𝐵𝐶℘

𝜁
 ()(𝜘 − 𝐜1)℘,

when 0 ≤ 𝜑 ≤ 𝜘, ∀ 𝜘 ∈ [𝐜1, 𝐜2].

Theorem 2.1. ([50]) For a function  ∈𝐻1[𝜏, 𝜚], the following results hold:

‖𝐴𝐵𝐶℘
𝜁
(𝜁)‖ < Λ(℘)

1 −℘
‖𝑐1(𝜁)‖, 𝑤ℎ𝑒𝑟𝑒 ‖𝑐1(𝜁)‖ = 𝑚𝑎𝑥𝜏≤𝜁≤𝜚|𝑐1(𝜁)|.

Additionally, the derivatives of ABC satisfy the Lipschitz criterion [51]:

‖𝐴𝐵𝐶℘
𝜁
𝑐1(𝜁) − 𝐴𝐵𝐶℘

𝜁
𝑐2(𝜁)‖ < 𝜔‖𝑐1(𝜁) − 𝑐2(𝜁)‖. (2.4)

2.1. New features of the  transform

We present some fundamental ideas and characteristics of the  transform, which is mainly due to [52].
Define the set

1 =
{(𝜁) ∶ ∃  > 0, 𝜍 > 0, |(𝜁)| ≤𝑒𝜍𝜁 , 𝑖𝑓 𝜁 ≥ 0

}
. (2.5)

In the same way, we will assume that (𝜁) is an integrated function defined on set .

Definition 2.4. ([52]) Assume that there is a function (𝜁) defined for all values of 𝜁 ≥ 0. The  transform of (𝜁) is the function 
 [𝜛, 𝜑] defined by

[(𝜁)] =  (𝜛,𝜑) = 𝜑

∞

∫
0

(𝜛𝜁) 𝑒−𝜑𝜁𝑑𝜁. (2.6)
4

The integral transform (2.6) exists for all 𝜑
𝜛
> 𝜍.
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Table 1

Description of transform.

(𝜁 ) [(𝜁 )]
1 1

𝜁 𝜛

𝜑

𝜁n 𝑛! 𝜛n

𝜑n
, n = 0,1,2, ...

𝜁℘ Γ(℘+ 1) 𝜛℘

𝜑℘ , ℘ ≥ 0

Theorem 2.2. The ℘𝑡ℎ derivative of (𝜁) and  transform can be obtained by

[℘(𝜁)](𝜑,𝜛)
=
(
𝜑

𝜛

)℘

[(𝜁)]− n−1∑
𝓁=0

(
𝜑

𝜛

)℘−𝓁
(𝓁)(0), 𝜑

𝜛
> 0,∀ ℘ ∈ ℕ. (2.7)

Theorem 2.3. The  transformation in the combination of functions (𝜁) and (𝜁) can be presented as

[.]
= [] ∗[].

Therefore, we have

−1[.]
= −1[] ∗−1[].

Proof. It suffices to note that

[.]
=

∞

∫
0

(𝜘)(
𝜁 − 𝜘) 𝑑𝜘.

Using the Leibnitz theorem and the  transformation, we have

[ ∗] =
[ ∞

∫
0

(𝜘)(𝜁 − 𝜘) 𝑑𝜘
]
= 𝜑

∞

∫
0

[ ∞

∫
0

(𝜘)(𝜁 − 𝜘)𝑑𝜘
]
𝑒
−𝜑𝜁
1 𝑑𝜘.

By putting = 𝜁 − 𝜘 , then we have

[ ∗]
= 𝜑

∞

∫
0

(𝜘)𝑒−𝜑𝜘1

{ ∞

∫
0

(𝜏)𝑑𝜏
}
𝑑𝜘

= 𝜑

∞

∫
0

(𝜘)𝑒−𝜑𝜘1 𝑑𝜘.[]

=[].[].
Also, the reverse transformation’s combination is

[−1() ∗−1()] = ..
It follows that

−1[.] =−1() ∗−1(). □

2.2. Multiple elementary function by  transformed

Now, we will show how some basic functions are transformed using the  transform presented in Table 1, then we have:

Lemma 2.2. Let 0 < n < 1 and 𝜍 ∈  such that 𝜑
𝜛
<| 𝜍 | 1

n , then we have

℘−1 𝜎
(

n
)( ) (

𝜛
)𝜌1 ( (

𝜛 n
))−𝜎

𝜑

5

[𝜁 ]𝐸
n
,℘ 𝜍, 𝜁 𝜑,𝜛 =

𝜑
. 1 − 𝜍

𝜑
,

𝜛
> 0.
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Proof. Assume that

[𝜁℘−1]𝐸𝜎
n
,℘

(
𝜍, 𝜁n

)(
𝜑,𝜛

)
= 𝜑

𝜛

∞

∫
0

𝜁℘−1𝐸𝜎
n
,℘

(
𝜍.𝜁n

)
𝑒
−𝜑
𝜛

1 𝑑𝜁

= 𝜑

𝜛

∞

∫
0

𝜁℘−1
∞∑
𝓁=0

𝜎𝓁
Γ(n𝓁 +℘)

.
(𝜍𝜁n)𝓁

𝑘!
𝑒
−𝜑
𝜛

1 𝑑𝜁

=
∞∑
𝓁=0

𝜎𝓁
Γ(n𝓁 +℘)

.

(
𝜍𝓁

𝓁!

)(
𝜑

𝜛

) ∞

∫
0

𝜁n𝓁+℘−1 𝑒
− 𝜑
𝜛

1 𝑑𝜁

=
∞∑
𝓁=0

𝜎𝓁
Γ(n𝓁 +℘)

.

(
𝜍𝓁

𝓁!

)(
𝜑

𝜛

)
[
𝜁n𝓁+℘−1]

=
∞∑
𝓁=0

𝜎𝓁
Γ(n𝓁 +℘)

.

(
𝜍𝓁

𝓁!

)(
𝜑

𝜛

)
(Γ(n𝓁 +℘)

(
𝜛

𝜑

)n𝓁+𝜎

=
(
𝜛

𝜑

)℘

.

∞∑
𝓁=0

𝜎𝓁
𝓁!

[
𝜍

(
𝜛

𝜑

)n]𝓁
.

According to 𝜑
𝜛
< |𝜍| 1

n leads us


[
𝜁℘−1𝐸𝜎

n,℘(𝜍, 𝜁
n)(𝜑,𝜛)

]
=
(
𝜛

𝜑

)℘(
1 − 𝜍

(
𝜛

𝜑

)n)−𝜎
. □

Corollary 2.1. Under the hypothesis of Lemma 2.2, we can calculate the  transform of the function 𝐸n(𝜍, 𝜁n), then we have

[
𝐸n(𝜍, 𝜁n)

] (
𝜑,𝜛

)
=
(
𝜛

𝜑

)( ( 𝜑
𝜛
)n

( 𝜑
𝜛
)n − 𝜍

)
.

Thus, the  transform of 𝜁℘−1𝐸n(𝜍, 𝜁n) can be written as:

[
𝜁℘−1 𝐸n

(
𝜍, 𝜁n

)] (
𝜑,𝜛

)
=
( ( 𝜑

𝜛
)n−℘

( 𝜑
𝜛
)n − 𝜍

)
.

Theorem 2.4. The  transform of the ABC fractional derivative 𝐴𝐵𝐶℘
𝜁

is defined as:

[
𝐴𝐵𝐶℘

𝜁
(𝜁)](𝜛,𝜑) = Λ(℘)

1 −℘
∗
([(𝜁)]( 𝜑

𝜛
)℘ − ( 𝜑

𝜛
)℘−1(0)

( 𝜑
𝜛
)℘ + ℘

1−℘

)
.

Proof. It suffices to note that

𝜁

∫
0

′(𝜘)𝐸℘

[
℘

℘− 1
(
𝜁 − 𝜘)℘]

𝑑𝜘 = ′(𝜁).𝐸℘

[
℘

℘− 1
𝜁℘

]
,

then one has

[
𝐴𝐵𝐶𝐷

℘
𝜁
(𝜁)] (𝜛,𝜑) =

[
Λ(℘)
1 −℘

𝜁

∫
0

′(𝜘)𝐸℘

( ℘
℘− 1

(𝜁 − 𝜘)℘𝑑𝜘)]

=
Λ(℘)
1 −℘


[
′(𝜁)𝐸℘

( ℘
℘− 1

𝜁℘
)]

=
Λ(℘)
1 −℘

[′(𝜁)]
[
𝐸℘

( ℘
℘− 1

𝜁℘
)]
.

6

Utilizing (2.7) and the outcome from Corollary 2.1, we have
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V 𝜙1

E 𝜙1

I 𝜙1 + 𝛾R𝜙1

S

Δ

𝜙1

𝜗2V 𝜌E

𝜗1

𝜎I

𝜙2

𝜆S

Fig. 2. Flow diagram for depicting the WP model in WSN (3.1).

[
𝐴𝐵𝐶𝐷

℘
𝜁
(𝜁)] (𝜛,𝜑) =

Λ(℘)
1 −℘

[
𝜑

𝜛
[(𝜁)] − (0)

](
𝜛

𝜑

){ ( 𝜑
𝜛
)℘

( 𝜑
𝜛
)℘ − ℘

℘−1

}

=
Λ(℘)
1 −℘

{[(𝜁)]( 𝜑
𝜛
)℘ − ( 𝜑

𝜛
)℘−1(0)

( 𝜑
𝜛
)℘ + ℘

1−℘

}
. □

3. Configuration of WP model in WSNs

Let us explain the (𝜁), (𝜁), (𝜁), (𝜁) and (𝜁) of nodes that are sensitive, revealed, infected, retrieved and vaccinate at time 
𝜁 . Taking  (𝜁) = (𝜁) + (𝜁) + (𝜁) +(𝜁) + (𝜁), ∀ 𝜁 > 0.
The system of DEs, represented by Fig. 2, which describes the rate of change of multiple categories and according to our assumptions, 
is presented as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

̇(𝜁) = Δ − 𝜆(𝜁)(𝜁) − (𝜙1 + 𝜙2)(𝜁) + 𝜗1(𝜁) + 𝜗2(𝜁),
̇(𝜁) = 𝜆(𝜁)(𝜁) − (𝜙1 + 𝜌)(𝜁),
̇(𝜁) = 𝜌(𝜁) − (𝜙1 + 𝛾 + 𝜎)(𝜁),
̇(𝜁) = 𝜎(𝜁) − (𝜙1 + 𝜗1)(𝜁),
̇(𝜁) = 𝜙2(𝜁) − (𝜙1 + 𝜗2)(𝜁),

(3.1)

where Δ represents the inclusion of new sensor nodes to the population, 1
𝜗1

and 1
𝜗2

represent the periods of exception for immediately 
recovered and given vaccinations sensitive nodes, respectively, 𝜙1 is the crash rate of the sensor nodes due to hardware or software, 
𝛾 is the damaged rate due to invasion of worms and the infection contact rate is represented by 𝜆, where 𝜌 is the E-compartment to 
I-compartment transfer rate, 𝜎 represents a recapture rate, 𝜗1 is the rate of transmission from  -compartment to  -compartment and 
𝜙2 is the vaccinating rate coefficient for the sensitive nodes.

3.1. Fractional-order WP model in WSNs

In what follows, one of these exceptional systems has been identified. The authors categorized the whole community into five 
groups. These include WP in WSNs that is susceptible class  , exposed class  , infected class , recovered class , and vaccinated 
class  , respectively. The examined approach is translated into a fractional version. Order ℘ (0 <℘ ≤ 1) and the fractional operator 
are added to the ABC fractional version, resulting in the following:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐴𝐵𝐶℘
𝜁
(𝜁) = Δ − 𝜆(𝜁)(𝜁) − (𝜙1 + 𝜙2)(𝜁) + 𝜗1(𝜁) + 𝜗2(𝜁),

𝐴𝐵𝐶℘
𝜁
(𝜁) = 𝜆(𝜁)(𝜁) − (𝜙1 + 𝜌)(𝜁),

𝐴𝐵𝐶℘
𝜁
(𝜁) = 𝜌(𝜁) − (𝜙1 + 𝛾 + 𝜎)(𝜁),

𝐴𝐵𝐶℘
𝜁
(𝜁) = 𝜎(𝜁) − (𝜙1 + 𝜗1)(𝜁),

𝐴𝐵𝐶℘
𝜁
(𝜁) = 𝜙2(𝜁) − (𝜙1 + 𝜗2)(𝜁),

(3.2)

with the initial conditions (ICs):

(0) =1 ≥ 0, (0) =2 ≥ 0, (0) =3 ≥ 0, (0) =4 ≥ 0, (0) =5 ≥ 0, (3.3)
7

where 0 ≤ 𝜁 ≤  <∞ and 𝐴𝐵𝐶℘
𝜁

indicates the ABC fractional derivative of order 0 <℘ ≤ 1.
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We outlined the fundamental characteristics of framework (3.2) in order to establish the mathematical system’s well-posedness and 
biological viability.

3.2. Positive invariant and boundedness

By applying Lemma 2.1 to prove the system’s positivity, we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐴𝐵𝐶℘
𝜁
(𝜁)|=0 = Δ ≥ 0,

𝐴𝐵𝐶℘
𝜁
(𝜁)|=0 = 0 ≥ 0,

𝐴𝐵𝐶℘
𝜁
(𝜁)|=0 = 𝜌(𝜁) ≥ 0,

𝐴𝐵𝐶℘
𝜁
(𝜁)|=0 = 𝜎(𝜁) ≥ 0,

𝐴𝐵𝐶℘
𝜁
(𝜁)|=0 = 𝜙2(𝜁) ≥ 0.

(3.4)

Since (3.4) implies that each of the solutions of WP model (3.2) is positive, they stay in ℝ+
5 . Ultimately, considering that all of the 

parameters are positive, we proceed by adding up all of the model’s equations in order to prove the boundedness of the solutions of 
the fractional model (3.2). This yields

𝐴𝐵𝐶℘
𝜁
 (𝜁) = Δ− 𝜙1 (𝜁) − 𝛾.

It follows that

𝐴𝐵𝐶℘
𝜁
 (𝜁) ≤Δ− 𝜙1 (𝜁). (3.5)

In this case, set ℧1 defined in (3.6) is positively invariant for the model (3.2). Therefore, the WP model (3.2)’s epidemiologically 
feasible zone is provided by

℧1 =∶
{
( , ,,,) ∈ℝ+

5 ∶ 0 ≤  +  +  ++  ≤ ≤ Δ
𝜙1

}
. (3.6)

Furthermore, the existence and uniqueness solution of the worms propagation model (3.2) have been established, the only thing left 
to demonstrate is the positively invariant nature of the set defined in (3.6). Applying the Laplace transform to (3.5), then we have

(
𝐴𝐵𝐶℘

𝜁
 (𝜁)) + 𝜙1 (𝜁)

) ≤ (Δ).
It can be expressed as

( )
(
(1 − Ξ)𝐬℘ −

Ξ℘
(1 −℘)

)
− 𝐬℘−1 (0) ≤ 1 −℘

Λ(℘)

(
𝐬℘ +

℘
1 −℘

)Δ
𝐬

≤ (
1 −

Ξ℘
(1 − Ξ)(1 −℘)

𝐬−℘
)−1[ 1 −℘

(1 −℘)Φ(℘)

(
1 +

℘
1 −℘

𝐬−℘
)Δ
𝐬

+ (0) 1
(1 − Ξ)𝐬

]
.

Choosing

Ξ =
−𝜙1(1 −℘)

Λ(℘)
.

After implementing the inverse Laplace transform according to work [53], the solution is presented as

 (𝜁) = Δ
𝜙1

− Δ
𝜙1(1 − Ξ)

𝑑

𝑑(𝜁)

𝜁

∫
0

℘
( Ξ℘
(1 − Ξ)(1 −℘)

(𝜁 − 𝜘)℘𝑑𝜘)
+ 1
1 − Ξ

℘
( Ξ℘
(1 − Ξ)(1 −℘)

𝜁
) (0),

where the Mittag-Leffler function is indicated by 𝜌,Φ. It is worthnoting that the Mittag-Leffler function exhibits asymptotic behavior 
such as

𝜌,Φ(𝑧1) ≈
𝑤1∑
Ξ=1

𝑡−Ξ∕Γ(Φ − 𝜌Ξ) +(|𝜁 |−1−𝑤1
)
, |𝜁 |→∞,

℘𝜋
2

< |𝑎𝑟𝑔(𝜁)| ≤ 𝜋,
8

it is not difficult to observe that  (𝜁) → Δ
𝜙1

as 𝜁 →∞. Hence, (3.6) is the biologically feasible region of model (3.2).
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3.3. Worm-free equilibrium

For worm-free equilibrium, equating the left-hand side of (3.4) to zero, we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 = Δ− 𝜆(𝜁)(𝜁) − (𝜙1 + 𝜙2)(𝜁) + 𝜗1(𝜁) + 𝜗2(𝜁),
0 = 𝜆(𝜁)(𝜁) − (𝜙1 + 𝜌)(𝜁),
0 = 𝜌(𝜁) − (𝜙1 + 𝛾 + 𝜎)(𝜁),
0 = 𝜎(𝜁) − (𝜙1 + 𝜗1)(𝜁),

0 = 𝜙2(𝜁) − (𝜙1 + 𝜗2)(𝜁).

(3.7)

After simple computations, we obtain the equilibrium points as follows:

 =

(
Δ(𝜙1 + 𝜗2)

𝜙1(𝜙1 + 𝜗2 + 𝜙2)
,0,0,0,

𝜙2Δ
(𝜙1 + 𝜗1)(𝜙1 + 𝜙2) − 𝜙2𝜗2

)
.

3.4. Endemic equilibrium point (EEP)

For endemic equilibrium point, when the population’s virus rate continues to persist. In the absence of viruses throughout the 
population, the worm-free equilibrium for the WP model is determined by

∗ =
(𝜙1 + 𝜌)(𝜙1 + 𝛾 + 𝜎)

𝜌𝜆
,

∗ =
(𝜙1 + 𝛾 + 𝜎)(𝜙1 + 𝜗1){

𝜎𝜌𝜗1 − (𝜙1 + 𝜗1)(𝜙1 + 𝜌)(𝜙1 + 𝛾 + 𝜎)
}
𝜌

[
(𝜙1 + 𝜌)(𝜙1 + 𝛾 + 𝜎)

𝜆
.
(𝜙1 + 𝜙2)(𝜙1 + 𝜗2) − 𝜗2𝜙2

𝜙1 + 𝜗2
− 𝜌Δ

]
,

∗ =
(𝜙1 + 𝜗1)

𝜎𝜌𝜗1 − (𝜙1 + 𝜗1)(𝜙1 + 𝜌)(𝜙1 + 𝛾 + 𝜎)

[
(𝜙1 + 𝜌)(𝜙1 + 𝛾 + 𝜎)

𝜆
.
(𝜙1 +𝜙2)(𝜙1 + 𝜗2) − 𝜗2𝜙2

𝜙1 + 𝜗2
− 𝜌Δ

]
,

∗ = 𝜎(
𝜎𝜌𝜗1 − (𝜙1 + 𝜗1)(𝜙1 + 𝜌)(𝜙1 + 𝛾 + 𝜎)

)[ (𝜙1 + 𝜌)(𝜙1 + 𝛾 + 𝜎)
𝜆

.
(𝜙1 + 𝜙2)(𝜙1 + 𝜗2) − 𝜗2𝜙2

𝜙1 + 𝜗2
− 𝜌Δ

]
,

∗ =
𝜙2(𝜙1 + 𝜌)(𝜙1 + 𝛾 + 𝜎)

(𝜙1 + 𝜗2)𝜌𝜆
.

3.5. The basic reproduction number 𝑅0

In this case, the  and  compartments are both compartments for virus.

Let  = ( , ), set  =
{
𝜆
0

}
and  =

{
(𝜙1 + 𝜌)

𝜌 − (𝜙1 + 𝛾 + 𝜎)
}

.

Thus, we consider that  = ( , ) = (𝜘, 𝑥2),
𝑑𝜘
𝑑𝜁

=  (𝜘, 𝜏) − (𝜘, 𝜏) =
{
𝜆𝑥2
0

}
−
{

(𝜙1 + 𝜌)𝜘
𝜌1𝜘 − (𝜙1 + 𝛾 + 𝜎)𝑥2

}
.

 =
⎡⎢⎢⎢⎣
𝜕𝜙1
𝜕𝜘

𝜕𝜙1
𝜕𝑥2

𝜕2
𝜕𝜘

𝜕2
𝜕𝑥2

⎤⎥⎥⎥⎦𝜘=0,𝑥2=0,=
=

[
0 𝜆

0 0

]
.

 =
⎡⎢⎢⎢⎣
𝜕1
𝜕𝜘

𝜕1
𝜕𝑥2

𝜕2
𝜕𝜘

𝜕2
𝜕𝑥2

⎤⎥⎥⎥⎦𝜘=0,𝑥2=0,=
=

[
𝜙1 + 𝜌 0
−𝜌 (𝜙1 + 𝛾 + 𝜎)

]
.

 and  can be calculated to get the fundamental reproduction number; these values can be obtained as

 =
[
𝜙1 + 𝜌 0
−𝜌 𝜙1 + 𝛾 + 𝜎

]
,[

0 𝜆
]

9

 = 0 0 .
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The next generation matrix is

−1 =

[ 𝜌𝜆

(𝜙1+𝜆)(𝜙1+𝛾+𝜎)
𝜆

(𝜙1+𝛾+𝜎)

0 0

]
.

The entries 𝜌𝜆

(𝜙1+𝜆)(𝜙1+𝛾+𝜎)
𝑎𝑛𝑑 𝜆

(𝜙1+𝛾+𝜎)
are the expected number of secondary infections produced in the compartment by an individual 

initially in the compartment.  over the course of its infection and  infected individual originally in compartment  .

As the dominant eigenvalue of −1, the basic reproduction number is expressed in the following way: i.e.,

0 =
𝜌𝜆

(𝜙1 + 𝜌)(𝜙1 + 𝛾 + 𝜎)
.

3.6. Worm-free equilibrium stability

The Jacobin matrix in worm-free equilibrium point  , then we have

 =

⎡⎢⎢⎢⎢⎢⎢⎣

−(𝜙1 + 𝜙2) 0 −𝜆Δ(𝜙1 + 𝜗2) 𝜗1 𝜗2

0 −(𝜙1 + 𝜙2) −𝜆Δ(𝜙1 + 𝜗2) 0 0
0 0 −(𝜙1 + 𝛾 + 𝜎) 0 0
0 0 𝜎 −(𝜙1 + 𝜗1) 0
𝜙2 0 0 0 −(𝜙1 + 𝜗2)

⎤⎥⎥⎥⎥⎥⎥⎦
. (3.8)

Eigenvalues of (3.8) are: 𝜒 = −(𝜙1 +𝜙2), −(𝜙1 + 𝜌), −(𝜙1 + 𝛾 + 𝜎), −(𝜙1 + 𝜗1), −(𝜙1 + 𝜗2) which are all non-positive, meaning that at 
the worm free equilibrium point  , the system is locally asymptotically stable.

Lemma 3.1. The worm-free equilibrium  is asymptotically stable locally if 0 < 1.  is stable if 0 = 1, and unstable if 0 > 1. Say that 
∞ = lim𝜁→∞ 𝑖𝑛𝑓0≥𝜁(𝜛), ∞ = lim𝜁→∞ 𝑠𝑢𝑝0≥𝜁 (𝜛).

Lemma 3.2. Suppose  ∶ [0, ∞] → is a bounded, real-valued function that contains a bounded second derivative and is two times differ-

entiable. If (𝑡𝑘) converges to ∞ 𝑜𝑟 ∞, 𝑙𝑒𝑡 Ξ →∞.

Then, we have

lim𝜁→∞′(𝜁Ξ) = 0

Theorem 3.1. The worm-free equilibrium  is globally asymptotically stable if 0 < 1.

Proof. From worm free equation

𝑑𝑆

𝑑𝜁
≤Δ−

𝜙1(𝜙1 + 𝜗2 +𝜙2)
𝜙1 + 𝜗2

 .
A solution of the equation 𝑑

𝑑𝜁
≤Δ − 𝜙1(𝜙1+𝜗2+𝜙2)

𝜙1+𝜗2
 is solution of (𝜁).

Since  →
(𝜙1+𝜗2)Δ

(𝜙1+𝜗2+𝜙2)𝜙1
as 𝜁 →∞, then for a given 𝛾 > 0, then exists 𝑡0 such that

(𝜁) ≤ (𝜁) ≤ (𝜙1 + 𝜗2)Δ
(𝜙1 + 𝜗2 + 𝜙2)𝜙1

+  ∀ 𝜁 ≥ 𝜁0.
Thus, we have

∞ ≤ (𝜁) ≤ (𝜙1 + 𝜗2)Δ
(𝜙1 + 𝜗2 + 𝜙2)𝜙1

+  (3.9)

Let  → 0, 𝑡ℎ𝑒𝑛 ∞ ≤ (𝜙1+𝜗2)Δ
(𝜙1+𝜗2+𝜙2)𝜙1

. Now, worms propagation system (3.2) reduces to (3.8) as

𝑑
𝑑𝜁

= 𝜆 (𝜙1 + 𝜗2)Δ
(𝜙1 + 𝜗2 + 𝜙2)𝜙1

− (𝜙1 + 𝜌)
Now, considering (3.9) with worms propagation model (3.2), we have[


]
≤ 

[

]
,

10

then, we have
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 =
[
−(𝜙1 + 𝜌) 0

𝜌 −(𝜙1 + 𝛾 + 𝜎)

]
. □

4. Description of HP-TM to the general fractional DE

Here, we demonstrate the main idea of the HP-TM, so we let the following general dynamical fractional non-homogeneous 
partial DE:

𝐴𝐵𝐶℘
𝜁
(𝜘, 𝜁) +ℝ(𝜘, 𝜁) +ℕ(𝜘, 𝜁) = 𝐹1(𝜘, 𝜁), (4.1)

supplemented by the initial conditions (ICs):

(𝜘,0) = ℎ1(𝜘) 𝑎𝑛𝑑 𝑓𝜁 (𝜘,0) = 𝑙1(𝜘), (4.2)

where ℝ signifies the differential linear functional and ℕ indicates the nonlinear factor, while 𝐹1(𝜘, 𝜁) represents the source factor.
Employing  transformation on both sides of (4.1), we have

[𝐴𝐵𝐶℘
𝜁
(𝜘, 𝜁)] +{

ℝ (𝜘, 𝜁)}+{
ℕ(𝜘, 𝜁)} ={

𝐹1(𝜘, 𝜁)}. (4.3)

Applying the differentiation rule to the aforesaid transform, we have

[(𝜘, 𝜁)] = ℎ1(𝜘) + 𝜛

𝜑
𝑙1(𝜘) −

(
1 −℘
Λ(℘)

+
℘

Λ(℘)

(
𝜛

𝜑

)℘)

[
𝐹1(𝜘, 𝜁) −ℝ(𝜘, 𝜁) (4.4)

−ℕ(𝜘, 𝜁)
]
.

Implementing the inverse  transformation on both sides of (4.4) and using (4.2), then we get

(𝜘, 𝜁) =  (𝜘, 𝜁) −−1
[(1 −℘

Λ(℘)
+

℘
Λ(℘)

(
𝜛

𝜑

)℘)[(𝜘, 𝜁) −(𝜘, 𝜁)]
]
, (4.5)

where  (𝜘, 𝜁) is defined to be the non-homogeneous term in the aforesaid (4.5). Now, we implement the HPM [54,55]. Moreover, 
we address the outcome with the aid of the HPM as a power series in the form of 𝜀, as demonstrated below:

(𝜘, 𝜁) = ∞∑
n=0

𝜀nn

(𝜘, 𝜁). (4.6)

Furthermore, we classify the nonlinear term into

ℕ(𝜘, 𝜁) =
∞∑
n=0

𝜀nΩn(). (4.7)

Ωn are the He polynomials [56], which can be estimated using the following formulation:

Ωn(0, ..,n) =
1
n!

𝜕n

𝜕𝜀n

(
ℕ
( ∞∑

n=0
𝜀𝜄𝜄

))
𝜀=0

, n = 0,1,2,3, ... . (4.8)

Plugging (4.6) and (4.7) into (4.5), we get

∞∑
n=0

𝜀nn =  (𝜘, 𝜁) −
[
(−1

[(
1 −℘
Λ(℘)

+
℘

Λ(℘)

)(
𝜛

𝜑

)℘]

[
ℝ

∞∑
n=0

𝜀nn +
∞∑
n=0

𝜀nΩn()
]]
. (4.9)

The aforesaid technique (4.9) is a convolution of the HPM and the  transform. Now, by equating each side of (4.9) with respect 
to the power of 𝜀, we get the initial approximation as follows:

𝜀0 ∶ 0(𝜘, 𝜁) =  (𝜘, 𝜁),
𝜀1 ∶ (𝜘, 𝜁) = −−1

[(
1 −℘
Λ(℘)

+
℘

Λ(℘)

(
𝜛

𝜑

)℘)

[
ℝ0(𝜘, 𝜁) + Ω0()

]]
,

𝜀2 ∶ 2(𝜘, 𝜁) = −−1

[(
1 −℘
Λ(℘)

+
℘

Λ(℘)

(
𝜛

𝜑

)℘)

[
ℝ1(𝜘, 𝜁) + Ω1()

]]
,

𝜀3 ∶ 3(𝜘, 𝜁) = −−1

[(
1 −℘
Λ(℘)

+
℘

Λ(℘)

(
𝜛

𝜑

)℘
)

[
ℝ2(𝜘, 𝜁) + Ω2()

]]
,

11

⋮
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As a result, the series solution is expressed as follows:

(𝜘, 𝜁) = 0(𝜘, 𝜁) + 1(𝜘, 𝜁) + 2(𝜘, 𝜁) + ... .
4.1. Existence-uniqueness via fixed point theory

In what follows, the existence and uniqueness of the WP model (3.2) can be demonstrated as:
Here, (𝑋) is used to indicate a Banach space, where  = [0, 𝑏] and  = (𝑋) × (𝑋) × (𝑋) × (𝑋) × (𝑋) × (𝑋) and the 
given norm ‖(Ω , Ω , Ω , Ω, Ω )‖ =‖Ω‖ + ‖Ω‖ + ‖Ω‖ + ‖Ω‖ + ‖Ω‖, where Ω = 𝑠𝑢𝑝𝜁∈𝑋Ω , Ω = 𝑠𝑢𝑝𝜁∈𝑋Ω , Ω =
𝑠𝑢𝑝𝜁∈𝑋Ω , Ω = 𝑠𝑢𝑝𝜁∈𝑋Ω, Ω = 𝑠𝑢𝑝𝜁∈𝑋Ω , and applying the Definition 2.3 on worms propagation model (3.2), yields

‖ΦΩn (𝜁)‖ ≤ 1 −℘
Λ(℘)

1‖ΦΩn−1
(𝜁)‖ ℘

Λ(℘)Γ(℘)
1 ×

𝜁

∫
0

(𝜁 − 𝜃)℘−1‖ΦΩn−1
(𝜁)‖𝑑𝜃,

‖ΦΩn (𝜁)‖ ≤ 1 −℘
Λ(℘)

2‖ΦΩn−1
(𝜁)‖ ℘

Λ(℘)Γ(℘)
2 ×

𝜁

∫
0

(𝜁 − 𝜃)℘−1‖ΦΩn−1
(𝜁)‖𝑑𝜃,

‖ΦΩn (𝜁)‖ ≤ 1 −℘
Λ(℘)

3‖ΦΩn−1
(𝜁)‖ ℘

Λ(℘)Γ(℘)
3 ×

𝜁

∫
0

(𝜁 − 𝜃)℘−1‖ΦΩn−1
(𝜁)‖𝑑𝜃,

‖ΦΩn
(𝜁)‖ ≤ 1 −℘

Λ(℘)
4‖ΦΩn−1

(𝜁)‖ ℘
Λ(℘)Γ(℘)

4 ×

𝜁

∫
0

(𝜁 − 𝜃)℘−1‖ΦΩn−1
(𝜁)‖𝑑𝜃,

‖ΦΩn (𝜁)‖ ≤ 1 −℘
Λ(℘)

5‖ΦΩn−1
(𝜁)‖ ℘

Λ(℘)Γ(℘)
5 ×

𝜁

∫
0

(𝜁 − 𝜃)℘−1‖ΦΩn−1
(𝜁)‖𝑑𝜃. (4.10)

Again, making the use of Definition 2.3, we have

Ω (𝜁) − Ω (0) =
1 −℘
Λ(℘)

Φ1
(
𝜁,Ω (𝜁)

)
+

℘
Λ(℘)Γ(℘)

×

𝜁

∫
0

(𝜁 − 𝜃)℘−1Φ1
(
𝜃,Ω (𝜃)

)
𝑑𝜃,

Ω (𝜁) − Ω (0) =
1 −℘
Λ(℘)

Φ2
(
𝜁,Ω (𝜁)

)
+

℘
Λ(℘)Γ(℘)

×

𝜁

∫
0

(𝜁 − 𝜃)℘−1Φ2
(
𝜃,Ω (𝜃)

)
𝑑𝜃,

Ω (𝜁) − Ω (0) =
1 −℘
Λ(℘)

Φ3
(
𝜁,Ω (𝜁)

)
+

℘
Λ(℘)Γ(℘)

×

𝜁

∫
0

(𝜁 − 𝜃)℘−1Φ3
(
𝜃,Ω (𝜃)

)
𝑑𝜃,

Ω(𝜁) − Ω(0) =
1 −℘
Λ(℘)

Φ4
(
𝜁,Ω(𝜁)

)
+

℘
Λ(℘)Γ(℘)

×

𝜁

∫
0

(𝜁 − 𝜃)℘−1Φ4
(
𝜃,Ω(𝜃)

)
𝑑𝜃,

Ω (𝜁) − Ω (0) =
1 −℘
Λ(℘)

Φ5
(
𝜁,Ω (𝜁)

)
+

℘
Λ(℘)Γ(℘)

×

𝜁

∫
0

(𝜁 − 𝜃)℘−1Φ5
(
𝜃,Ω (𝜃)

)
𝑑𝜃. (4.11)

Thus, we have

Φ1
(
𝜃,Ω (𝜁)

)
=Δ− 𝜆℘Ω (𝜁)Ω (𝜁) − (𝜙℘

1 + 𝜙℘
2 )Ω (𝜁) + 𝜗℘1 Ω(𝜁) + 𝜗℘2 Ω (𝜁),

Φ2
(
𝜃,Ω (𝜁)

)
= 𝜆℘Ω (𝜁)Ω (𝜁) − (𝜙℘

1 + 𝜌℘)Ω (𝜁),

Φ3
(
𝜃,Ω (𝜁)

)
= 𝜌℘Ω (𝜁) − (𝜙℘

1 + 𝛾℘ + 𝜎℘)Ω (𝜁),

Φ4
(
𝜃,Ω(𝜁)

)
= 𝜎℘Ω (𝜁) − (𝜙℘

1 + 𝜗℘1 )Ω(𝜁),( )

12

Φ5 𝜃,Ω (𝜁) = 𝜙℘
2 Ω (𝜁) − (𝜙℘

1 + 𝜗℘2 )Ω (𝜁). (4.12)
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Furthermore, the ABC derivative operator only satisfies the Lipschitz condition [51].
In this scenario, Ω (𝜁), Ω (𝜁), Ω (𝜁), Ω(𝜁), 𝑎𝑛𝑑 Ω (𝜁) are upper bounds. Given that the pair of functions Ω (𝜁) 𝑎𝑛𝑑 Ω∗ (𝜁) exist 
only if

‖Φ1
(
𝜃,Ω (𝜁)

)
−Φ1

(
𝜃,Ω∗ (𝜁)

)‖ = [
𝜆℘Ω℘

 (𝜁) + (𝜙℘
1 + 𝜙℘

2 )
]‖Ω (𝜁) − Ω∗ (𝜁)‖, (4.13)

where 1 = |𝜆℘Ω (𝜁) + (𝜙℘
1 + 𝜙℘

2 )|.
Now, (4.13) reduces to

‖Φ1
(
𝜃,Ω (𝜁)

)
−Φ1

(
𝜃,Ω∗ (𝜁)

)‖ ≤ 1‖(Ω (𝜁) − Ω∗ (𝜁))‖. (4.14)

In the same manner, one can find

‖Φ2
(
𝜃,Ω (𝜁)

)
−Φ2

(
𝜃,Ω∗ (𝜁)

)‖ ≤ 2‖(Ω (𝜁) − Ω∗ (𝜁))‖,
‖Φ3

(
𝜃,Ω (𝜁)

)
−Φ3

(
𝜃,Ω∗ (𝜁)

)‖ ≤ 3‖(Ω (𝜁) − Ω∗ (𝜁))‖,
‖Φ4

(
𝜃,Ω(𝜁)

)
−Φ4

(
𝜃,Ω∗(𝜁)

)‖ ≤ 4‖(Ω(𝜁) − Ω∗(𝜁))‖,
‖Φ5

(
𝜃,Ω (𝜁)

)
−Φ5

(
𝜃,Ω∗ (𝜁)

)‖ ≤ 5‖(Ω (𝜁) − Ω∗ (𝜁))‖, (4.15)

where

2 = |𝜙℘
1 + 𝜌℘|,

3 = |𝜙℘
1 + 𝛾℘ + 𝜎℘|,

4 = |𝜙℘
1 + 𝜗℘1 |,

5 = |𝜙℘
1 + 𝜗℘2 |. (4.16)

Since Lipschitz’s criteria are satisfied. Now, again, consider the result of (4.11) as

Ωn
(𝜁) − Ω (0) =

1 −℘
Λ(℘)

Φ1
(
𝜁,Ωn−1

(𝜁)
)
+

℘
Λ(℘)Γ(℘)

×

𝜁

∫
0

(𝜁 − 𝜃)℘−1Φ1
(
𝜃,Ωn−1

(𝜃)
)
𝑑𝜃,

Ω
n
(𝜁) − Ω (0) =

1 −℘
Λ(℘)

Φ2
(
𝜁,Ωn−1

(𝜁)
)
+

℘
Λ(℘)Γ(℘)

×

𝜁

∫
0

(𝜁 − 𝜃)℘−1Φ2
(
𝜃,Ωn−1

(𝜃)
)
𝑑𝜃,

Ωn (𝜁) − Ω (0) =
1 −℘
Λ(℘)

Φ3
(
𝜁,Ωn−1

(𝜁)
)
+

℘
Λ(℘)Γ(℘)

×

𝜁

∫
0

(𝜁 − 𝜃)℘−1Φ3
(
𝜃,Ωn−1

(𝜃)
)
𝑑𝜃,

Ωn
(𝜁) − Ω(0) =

1 −℘
Λ(℘)

Φ4
(
𝜁,Ωn−1

(𝜁)
)
+

℘
Λ(℘)Γ(℘)

×

𝜁

∫
0

(𝜁 − 𝜃)℘−1Φ4
(
𝜃,Ωn−1

(𝜃)
)
𝑑𝜃,

Ωn
(𝜁) − Ω (0) =

1 −℘
Λ(℘)

Φ5
(
𝜁,Ωn−1

(𝜁)
)
+

℘
Λ(℘)Γ(℘)

×

𝜁

∫
0

(𝜁 − 𝜃)℘−1Φ5
(
𝜃,Ωn−1

(𝜃)
)
𝑑𝜃,

subject to the ICs:

Ω (0) = Ω0 ,Ω (0) = Ω0 ,Ω (0) = Ω0 ,Ω(0) = Ω0
,Ω (0) = Ω0 .

The difference between successive terms yields

Ωn
(𝜁) =

n∑
𝑖=0

ΦΩn (𝜁),Ωn (𝜁) =
n∑
𝑖=0

ΦΩn (𝜁),Ωn (𝜁) =
n∑
𝑖=0

ΦΩn (𝜁),

n∑ n∑

13

Ωn
(𝜁) =

𝑖=0
ΦΩn

(𝜁),Ωn
(𝜁) =

𝑖=0
ΦΩn (𝜁). (4.17)
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Making the use of (4.14)-(4.15), we have
ΦΩn−1

= Ωn−1
(𝜁) − Ωn−2

(𝜁), ΦΩn−1
= Ωn−1

(𝜁) − Ωn−2
(𝜁), ΦΩn−1

= Ωn−1
(𝜁) − Ωn−2

(𝜁), ΦΩn−1
= Ωn−1

(𝜁) − Ωn−2
(𝜁), 

ΦΩn−1
= Ωn−1

(𝜁) −Ωn−2
(𝜁),

ΦΩn (𝜁) = Ωn
(𝜁) − Ωn−1

(𝜁) =

⎧⎪⎪⎨⎪⎪⎩

1−℘
Λ(℘)Φ1

(
𝜁,Ωn−1

(𝜁)
)
− 1−℘

Λ(℘)Φ1
(
𝜁,Ωn−2

(𝜁)
)

+ ℘
Λ(℘)Γ(℘) × ∫ 𝜁

0 (𝜁 − 𝜃)℘−1Φ1
(
𝜃,Ωn−1

(𝜃)
)
𝑑𝜃

+ ℘
Λ(℘)Γ(℘) × ∫ 𝜁

0 (𝜁 − 𝜃)℘−1Φ1
(
𝜃,Ω𝑆n−2

(𝜃)
)
𝑑𝜃,

ΦΩn (𝜁) = Ωn (𝜁) − Ωn−1
(𝜁) =

⎧⎪⎪⎨⎪⎪⎩

1−℘
Λ(℘)Φ1

(
𝜁,Ωn−1

(𝜁)
)
− 1−℘

Λ(℘)Φ2
(
𝜁,Ωn−2

(𝜁)
)

+ ℘
Λ(℘)Γ(℘) × ∫ 𝜁

0 (𝜁 − 𝜃)℘−1Φ2
(
𝜃,Ωn−1

(𝜃)
)
𝑑𝜃

+ ℘
Λ(℘)Γ(℘) × ∫ 𝜁

0 (𝜁 − 𝜃)℘−1Φ2
(
𝜃,Ωn−2

(𝜃)
)
𝑑𝜃,

ΦΩn (𝜁) = Ωn (𝜁) − Ωn−1
(𝜁) =

⎧⎪⎪⎨⎪⎪⎩

1−℘
Λ(℘)Φ1

(
𝜁,Ωn−1

(𝜁)
)
− 1−℘

Λ(℘)Φ3
(
𝜁,Ωn−2

(𝜁)
)

+ ℘
Λ(℘)Γ(℘) × ∫ 𝜁

0 (𝜁 − 𝜃)℘−1Φ3
(
𝜃,Ωn−1

(𝜃)
)
𝑑𝜃

+ ℘
Λ(℘)Γ(℘) × ∫ 𝜁

0 (𝜁 − 𝜃)℘−1Φ3
(
𝜃,Ωn−2

(𝜃)
)
𝑑𝜃,

ΦΩn
(𝜁) = Ωn

(𝜁) − Ωn−1
(𝜁) =

⎧⎪⎪⎨⎪⎪⎩

1−℘
Λ(℘)Φ1

(
𝜁,Ωn−1

(𝜁)
)
− 1−℘

Λ(℘)Φ4
(
𝜁,Ωn−2

(𝜁)
)

+ ℘
Λ(℘)Γ(℘) × ∫ 𝜁

0 (𝜁 − 𝜃)℘−1Φ4
(
𝜃,Ωn−1

(𝜃)
)
𝑑𝜃

+ ℘
Λ(℘)Γ(℘) × ∫ 𝜁

0 (𝜁 − 𝜃)℘−1Φ4
(
𝜃,Ωn−2

(𝜃)
)
𝑑𝜃,

ΦΩn (𝜁) = Ωn
(𝜁) − Ωn−1

(𝜁) =

⎧⎪⎪⎨⎪⎪⎩

1−℘
Λ(℘)Φ5

(
𝜁,Ωn−1

(𝜁)
)
− 1−℘

Λ(℘)Φ5
(
𝜁,Ωn−2

(𝜁)
)

+ ℘
Λ(℘)Γ(℘) × ∫ 𝜁

0 (𝜁 − 𝜃)℘−1Φ5
(
𝜃,Ωn−1

(𝜃)
)
𝑑𝜃

+ ℘
Λ(℘)Γ(℘) × ∫ 𝜁

0 (𝜁 − 𝜃)℘−1Φ5
(
𝜃,Ωn−2

(𝜃)
)
𝑑𝜃.

(4.18)

Furthermore, we have

‖ΦΩn (𝜁)‖ ≤ 1 −℘
Λ(℘)

1‖ΦΩn−1
(𝜁)‖ ℘

Λ(℘)Γ(℘)
1 ×

𝜁

∫
0

(𝜁 − 𝜃)℘−1‖ΦΩn−1
(𝜁)‖𝑑𝜃,

‖ΦΩn (𝜁)‖ ≤ 1 −℘
Λ(℘)

2‖ΦΩn−1
(𝜁)‖ ℘

Λ(℘)Γ(℘)
2 ×

𝜁

∫
0

(𝜁 − 𝑟)℘−1‖ΦΩn−1
(𝜁)‖𝑑𝜃,

‖ΦΩn (𝜁)‖ ≤ 1 −℘
Λ(℘)

3‖ΦΩn−1
(𝜁)‖ ℘

Λ(℘)Γ(℘)
3 ×

𝜁

∫
0

(𝜁 − 𝑟)℘−1‖ΦΩn−1
(𝜁)‖𝑑𝜃,

‖ΦΩn
(𝜁)‖ ≤ 1 −℘

Λ(℘)
4‖ΦΩn−1

(𝜁)‖ ℘
Λ(℘)Γ(℘)

4 ×

𝜁

∫
0

(𝜁 − 𝜃)℘−1‖ΦΩn−1
(𝜁)‖𝑑𝜃,

‖ΦΩn (𝜁)‖ ≤ 1 −℘
Λ(℘)

5‖ΦΩn−1
(𝜁)‖ ℘

Λ(℘)Γ(℘)
5 ×

𝜁

∫
0

(𝜁 − 𝑟)℘−1‖ΦΩn−1
(𝜁)‖𝑑𝜃. (4.19)

Theorem 4.1. Assume that WP model (3.2) has unique solution for 𝜁 ∈ [0, 𝐜2] subject to the assumption 1−℘Λ(℘)𝜙1 +
℘

Λ(℘)Γ(℘) 𝐜
℘
2 (𝑛𝜄 < 1, 𝑖 =

1, ..., 5) holds.
14

Proof. Assume that Ω̂ (𝜁), ̂Ω (𝜁), ̂Ω (𝜁), ̂Ω(𝜁), ̂Ω (𝜁) is other solution of WP model (3.2).
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Then by Definitions (2.3), we have

‖Ω (𝜁) − Ω̂ (𝜁)‖ ≤ 1 −℘
Λ(℘)

𝜙1‖Ω (𝜁) − Ω̂ (𝜁)‖+ 𝜁℘
Λ(℘)Γ(℘)

𝜙1‖Ω (𝜁) − Ω̂ (𝜁)‖. (4.20)

Since 
(

1−℘
Λ(℘) −

𝜁℘
Λ(℘)Γ(℘)

)
> 0 satisfying that ‖Ω (𝜁) − Ω̂ (𝜁)‖ = 0. So that Ω𝑆 (𝜁) = Ω̂𝑆 (𝜁).

In the similar manner, we can evaluate that Ω (𝜁) = Ω̂ (𝜁), Ω (𝜁) = Ω̂ (𝜁), Ω(𝜁) = Ω̂(𝜁), Ω (𝜁) = Ω̂ (𝜁). This yields the 
intended outcome. □

5. Analytical solution of fractional WP model

Initially, we apply the  transform to both sides of (3.2), we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[𝐴𝐵𝐶℘
𝜁
(𝜁)] =[

Δ
]
− 𝜆[(𝜁)(𝜁)]− (𝜙1 + 𝜙2)[(𝜁)]+ 𝜗1[(𝜁)

]
+ 𝜗2[(𝜁)],

[𝐴𝐵𝐶℘
𝜁
(𝜁)] = 𝜆[(𝜁)(𝜁)]− (𝜙1 + 𝜌)[(𝜁)],

[𝐴𝐵𝐶℘
𝜁
(𝜁)] = 𝜌[(𝜁)]− (𝜙1 + 𝛾 + 𝜎)[(𝜁)],

[𝐴𝐵𝐶℘
𝜁
(𝜁)] = 𝜎[(𝜁)]− (𝜙1 + 𝜗1)[(𝜁)

]
,

[𝐴𝐵𝐶℘
𝜁
(𝜁)] = 𝜙2[(𝜁)]− (𝜙1 + 𝜗2)[(𝜁)].

(5.1)

It follows that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[(𝜁)]= (0) + (
1−℘
Λ(℘) +

℘
Λ(℘) (

𝜛

𝜑
)℘

)([
Δ
]
− 𝜆[(𝜁)(𝜁)]− (𝜙1 + 𝜙2)[(𝜁)]

+𝜗1[(𝜁)
]
+ 𝜗2[(𝜁)]),

[(𝜁)] = (0) + (
1−℘
Λ(℘) +

℘
Λ(℘) (

𝜛

𝜑
)℘

)(
𝜆[(𝜁)(𝜁)]− (𝜙1 + 𝜌)[(𝜁)]),

[(𝜁)] = (0) + (
1−℘
Λ(℘) +

℘
Λ(℘) (

𝜛

𝜑
)℘

)(
𝜌[(𝜁)]− (𝜙1 + 𝛾 + 𝜎)[(𝜁)]),

[(𝜁)
]
= (0) +

(
1−℘
Λ(℘) +

℘
Λ(℘) (

𝜛

𝜑
)℘

)(
𝜎[(𝜁)]− (𝜙1 + 𝜗1)[(𝜁)

])
,

[(𝜁)] = (0) + (
1−℘
Λ(℘) +

℘
Λ(℘) (

𝜛

𝜑
)℘

)(
𝜙2[(𝜁)]− (𝜙1 + 𝜗2)[(𝜁)]).

(5.2)

Using the ICs (3.3), we take the inverse of  transform on both sides of (5.2), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝜁) =1 +−1
[(

1−℘
Λ(℘) +

℘
Λ(℘) (

𝜛

𝜑
)℘

) (
Δ− 𝜆[(𝜁)(𝜁)]− (𝜙1 + 𝜙2)[(𝜁)]

+𝜗1[(𝜁)
]
+ 𝜗2[(𝜁)])],

(𝜁) =2 +−1
[(

1−℘
Λ(℘) +

℘
Λ(℘) (

𝜛

𝜑
)℘

) (
𝜆[(𝜁)(𝜁)]− (𝜙1 + 𝜌)[(𝜁)])],

(𝜁) =3 +−1
[(

1−℘
Λ(℘) +

℘
Λ(℘) (

𝜛

𝜑
)℘

) (
𝜌[(𝜁)]− (𝜙1 + 𝛾 + 𝜎)[(𝜁)])],

(𝜁) =4 +−1
[(

1−℘
Λ(℘) +

℘
Λ(℘) (

𝜛

𝜑
)℘

)(
𝜎[(𝜁)]− (𝜙1 + 𝜗1)[(𝜁)

])]
,

(𝜁) =5 +−1
[(

1−℘
Λ(℘) +

℘
Λ(℘) (

𝜛

𝜑
)℘

)(
𝜙2[(𝜁)]− (𝜙1 + 𝜗2)[(𝜁)])].

(5.3)

We will present the results in the following infinite sequence.

(n) =
∞∑
n=0

𝜀n(n), (n) =
∞∑
n=0

𝜀n(n), (n) =
∞∑
n=0

𝜀n(n), (n) =
∞∑
n=0

𝜀n(n), (n) =
∞∑
n=0

𝜀n(n), (5.4)

as well as nonlinear terms such as

∞∑
n=0

𝜀nn = . (5.5)
15

If we replaced (5.3) and (5.4) with (5.2), we obtain



Heliyon 10 (2024) e35955S. Rashid, R. Shafique, S. Akram et al.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
n=0

𝜀n(n) =1 + 𝜀−1
[(

1−℘
Λ(℘) +

℘
Λ(℘) (

𝜛

𝜑
)℘

)[
Δ
]]

−𝜆𝜀−1
[(

1−℘
Λ(℘) +

℘
Λ(℘) (

𝜛

𝜑
)℘

)[ ∞∑
n=0

𝜀nΩn

]]
−𝜀(𝜙1 + 𝜙2)−1

[(
1−℘
Λ(℘) +

℘
Λ(℘) (

𝜛

𝜑
)℘

)[ ∞∑
n=0

𝜀nn(𝜁)
]]

+𝜗1𝜀−1
[(

1−℘
Λ(℘) +

℘
Λ(℘) (

𝜛

𝜑
)℘

)[ ∞∑
n=0

𝜀nn(𝜁)
]]

+𝜀𝜗2−1
[(

1−℘
Λ(℘) +

℘
Λ(℘) (

𝜛

𝜑
)℘

)[ ∞∑
n=0

𝜀nn(𝜁)
]]
,

∞∑
n=0

𝜀n(n) =2 + 𝜀𝜆−1
[( 1−℘

Λ(℘) +
℘

Λ(℘)1
(𝜛
𝜑
)℘

)[ ∞∑
n=0

𝜀nΩn

]]
−𝜀(𝜙1 + 𝜌)−1

[( 1−℘
Λ(℘) +

℘
Λ(℘) (

𝜛

𝜑
)℘

)[ ∞∑
n=0

𝜀nn(𝜁)]],
∞∑
n=0

𝜀n(n) =3 + 𝜀𝜌−1
[( 1−℘

Λ(℘) +
℘

Λ(℘) (
𝜛

𝜑
)℘

)[ ∞∑
n=0

𝜀nn(𝜁)]]
−𝜀(𝜙1 + 𝛾 + 𝜎)−1

[( 1−℘
Λ(℘) +

℘
Λ(℘) (

𝜛

𝜑
)℘

)[ ∞∑
n=0

𝜀nn(𝜁)
]]
,

∞∑
n=0

𝜀n(n) =4 + 𝜀𝜎−1
[( 1−℘

Λ(℘) +
℘

Λ(℘) (
𝜛

𝜑
)℘

)[ ∞∑
n=0

𝜀nn(𝜁)
]]

−𝜀(𝜙1 + 𝜗1)−1
[( 1−℘

Λ(℘) +
℘

Λ(℘) (
𝜛

𝜑
)℘

)[ ∞∑
n=0

𝜀n(𝜁)
]]
,

∞∑
n=0

𝜀n(n) =5 + 𝜀𝜙2−1
[( 1−℘

Λ(℘) +
℘

Λ(℘) (
𝜛

𝜑
)℘

)[ ∞∑
n=0

𝜀n(𝜁)]]
−𝜀(𝜙1 + 𝜗2)−1

[( 1−℘
Λ(℘) +

℘
Λ(℘) (

𝜛

𝜑
)℘

)[ ∞∑
n=0

𝜀n(𝜁)]].

(5.6)

Considering few initial terms of He’s polynomials’ [56], we have

0 =13,

1 =
[
1 −℘
Λ(℘)

+
℘

Λ(℘)
𝜁℘

Γ(℘+ 1)

]
(
Δ3 − 𝜆12

3 − (𝜙1 + 𝜙2)13 + 𝜗143 + 𝜗253 + 𝜌21 − (𝜙1 + 𝛾 + 𝜎)13

)
,

2 =
3Δ
Λ(℘)

[
1 −℘+

℘.𝜁℘

Γ(℘+ 1)

]
− 1

(Λ(℘))2

[
(1 −℘)2 +

2℘(1 −℘)(𝜁)℘

Γ(℘+ 1)
+

℘2(𝑡2℘)
Γ(2℘+ 1)

]

×

⎧⎪⎪⎨⎪⎪⎩

(
𝜆Δ2

3 − 𝜆
213

3 − (𝜙1 + 𝜙2)𝜆12
3 + 𝜗1𝜆2

34 + 𝜗2𝜆2
35 + 𝜆123

−𝜆(𝜙1 + 𝛾 + 𝜎)12
3 − (𝜙1 + 𝜙2)Δ3 + 𝜆(𝜙1 + 𝜙2)12

3 + (𝜙1 + 𝜙2)213
−𝜗1(𝜙1 +𝜙2)34 − 𝜗2(𝜙1 +𝜙2)35 + 𝜎𝜗12

3 − 𝜗1(𝜙1 + 𝜗1)34 + 𝜗2𝜙213

−𝜗2(𝜙1 + 𝜗2)35

)

−
⎧⎪⎨⎪⎩
([

Δ2 − (𝜙1 + 𝛾 + 𝜎)3
]
×
[
Δ− 𝜆13 − (𝜙1 + 𝜙2)1 + 𝜗14 + 𝜗25

])
+
([
𝜌𝜆2

13 − (𝜙1 + 𝜌)𝜌12 − (𝜙1 + 𝛾 + 𝜎)𝜌12 + (𝜙1 + 𝛾 + 𝜎)213
])
.

⋮ .

Plugging (5.6) and compared both sides of (5.5), we find

0(𝜁) =1,

1(𝜁) =
[
1 −℘
Λ(℘)

+
℘

Λ(℘)
𝜁℘

Γ(℘+ 1)

](
Δ− 𝜆13 − (𝜙1 + 𝜙2)1 + 𝜗14 + 𝜗25

)
,

Δ
[

℘.𝜁℘
]

1
[

2 2℘(1 −℘)(𝜁)℘ ℘2(𝑡2℘)
]

16

2(𝜁) =
Λ(℘)

1 −℘+
Γ(℘+ 1)

−
(Λ(℘))2

(1 −℘) +
Γ(℘+ 1)

+
Γ(2℘+ 1)
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×

⎧⎪⎪⎨⎪⎪⎩

(
−Δ𝜆3 + 𝜆212

3 + (𝜙1 +𝜙2)𝜆13 − 𝜗1𝜆34 − 𝜗2𝜆35 − 𝜌𝜆12

+(𝜙1 + 𝛾 + 𝜎)𝜆13 + (𝜙1 + 𝜙2)Δ − 𝜆(𝜙1 + 𝜙2)13 − (𝜙1 + 𝜙2)21 + 𝜗1(𝜙1 +𝜙2)4

+𝜗2(𝜙1 + 𝜙2)5 − 𝜎𝜗13 + 𝜗1(𝜙1 + 𝜗1)4 − 𝜗2𝜙21 + 𝜗2(𝜙1 + 𝜗2)5

)
,

3(𝜁) = Δ
Λ(℘)

[
1 −℘+

℘𝜁℘

Γ(℘+ 1)

]
− Δ

(Λ(℘))2

[
(1 −℘)2 +

2℘(1 −℘)(𝜁)℘

Γ(℘+ 1)
+

℘2(𝜁2℘)
Γ(2℘+ 1)

]
.
(
𝜆3 + (𝜙1 + 𝜙2)

)
+ 1
(Λ(℘))3

[
(1 −℘)3 +

3℘(1 −℘)2(𝜁)℘

Γ(℘+ 1)
+

3℘2(1 −℘)(𝑡2℘)
Γ(2℘+ 1)

+
℘3𝜁3℘

Γ(3℘+ 1)

]

×

⎧⎪⎪⎨⎪⎪⎩

(
𝜌𝜆2123 − (𝜙1 + 𝛾 + 𝜎)𝜆212

3 + Δ𝜆22
3 + 𝜆

313
3 − (𝜙1 +𝜙2)𝜆212

3

−𝜗1𝜆22
34 + 𝜗2𝜆22

35 − Δ𝜆(𝜙1 + 𝜙2)3 + 𝜆2(𝜙1 + 𝜙2)12
3 + 𝜆(𝜙1 + 𝜙2)213

−𝜗1𝜆(𝜙1 + 𝜙2)34 − 𝜗2𝜆(𝜙1 +𝜙2)35 + 𝜗1𝜎𝜆2
3 − 𝜗1𝜆(𝜙1 + 𝜗1)34 + 𝜆𝜗2𝜙213

−(𝜙1 + 𝜗1)𝜗2𝜆35

)

−
⎧⎪⎨⎪⎩
+
([

Δ𝜆− 𝜆213 − 𝜆(𝜙1 + 𝜙2)1 + 𝜗1𝜆4 + 𝜗2𝜆5

]
.
[
Δ𝜆2 − (𝜙1 + 𝛾 + 𝜎)𝜆3

])
+
(
𝜌𝜆22

13 − (𝜙1 + 𝜌)𝜌𝜆12 − (𝜙1 + 𝛾 + 𝜎)𝜌𝜆12 + (𝜙1 + 𝛾 + 𝜎)2𝜆13

)

+

⎧⎪⎪⎨⎪⎪⎩

(
− (𝜙1 + 𝜙2)𝜌𝜆12 + (𝜙1 + 𝜙2)(𝜙1 + 𝛾 + 𝜎)𝜆13 − (𝜙1 + 𝜙2)Δ𝜆3 + (𝜙1 + 𝜙2)𝜆22

31

+(𝜙1 + 𝜙2)2𝜆13 − (𝜙1 + 𝜙2)𝜗1𝜆34 − (𝜙1 + 𝜙2)𝜗2𝜆35 + Δ(𝜙1 +𝜙2)2 − (𝜙1 + 𝜙2)2𝜆13
−(𝜙1 + 𝜙2)31 + (𝜙1 + 𝜙2)2𝜗14 + (𝜙1 + 𝜙2)2𝜗25 − (𝜙1 + 𝜙2)𝜗1𝜎3 + (𝜙1 + 𝜙2)(𝜙1 + 𝜗1)𝜗14

−(𝜙1 + 𝜙2)𝜗2𝜙21 + (𝜙1 + 𝜗2)(𝜙1 + 𝜙2)𝜗25

)

+

⎧⎪⎪⎨⎪⎪⎩

(
𝜗1𝜎𝜌2 − 𝜗1𝜎(𝜙1 + 𝛾 + 𝜎)3 − 𝜗1𝜎(𝜙1 + 𝜗1)3 + 𝜗1(𝜙1 + 𝜗1)24

)
+
(
𝜗2Δ𝜙2 − 𝜗2𝜆𝜙213 − 𝜗2(𝜙1 + 𝜙2)𝜙21 + 𝜗2𝜗1𝜙24 + 𝜗22𝜙25

−𝜗2(𝜙1 + 𝜗2)𝜙21 + 𝜗2(𝜙1 + 𝜗2)25

)
.

⋮ ,

0(𝜁) =2,

1(𝜁) =
[
1 −℘
Λ(℘)

+
℘

Λ(℘)
𝜁℘

Γ(℘+ 1)

](
𝜆13 − (𝜙1 + 𝜌)2

)
,

2(𝜁) = 1
(Λ(℘))2

[
(1 −℘)2 +

2℘(1 −℘)(𝜁)℘

Γ(℘+ 1)
+

℘2(𝑡2℘)
Γ(2℘+ 1)

]

×
⎧⎪⎨⎪⎩
(
Δ𝜆3 − 𝜆212

3 − (𝜙1 +𝜙2)𝜆13 + 𝜗1𝜆34 + 𝜗2𝜆35 + 𝜌𝜆12

−(𝜙1 + 𝛾 + 𝜎)𝜆13 − (𝜙1 + 𝜌)𝜆13 + (𝜙1 + 𝜌)22

)
,

3(𝜁) =
Δ𝜆3

(Λ(℘))2

[
(1 −℘)2 +

2℘(1 −℘)(𝜁)℘

Γ(℘+ 1)
+

℘2(𝜁2℘)
Γ(2℘+ 1)

]
− 1
(Λ(℘))3

[
(1 −℘)3 +

3℘(1 −℘)2(𝜁)℘

Γ(℘+ 1)
+

3℘2(1 −℘)(𝜁2℘)
Γ(2℘+ 1)

+
℘3𝜁3℘

Γ(3℘+ 1)

]

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
− 𝜌𝜆2123 + (𝜙1 + 𝛾 + 𝜎)𝜆212

3 − Δ𝜆22
3 + 𝜆

313
3

+(𝜙1 + 𝜙2)𝜆212
3 − 𝜗1𝜆

22
34 − 𝜗2𝜆22

35 + Δ𝜆(𝜙1 + 𝜙2)3
−𝜆2(𝜙1 + 𝜙2)12

3 − 𝜆(𝜙1 +𝜙2)213 + 𝜗1𝜆(𝜙1 + 𝜙2)34
+𝜗2𝜆(𝜙1 + 𝜙2)35 − 𝜆𝜗1𝜎2

3 + 𝜗1𝜆(𝜙1 + 𝜗1)34

−𝜆𝜗2𝜙213 + (𝜙1 + 𝜗2)𝜗2𝜆35

)

+
⎧⎪⎨
([
Δ𝜆− 𝜆213 − 𝜆(𝜙1 + 𝜙2)1 + 𝜗1𝜆4 + 𝜗2𝜆5

]
.
[
Δ𝜆2 − (𝜙1 + 𝛾 + 𝜎)𝜆3

])(
2 2 2

)
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⎪⎩ + 𝜌𝜆 13 − (𝜙1 + 𝜌)𝜌𝜆12 + (𝜙1 + 𝛾 + 𝜎)𝜌𝜆12 − (𝜙1 + 𝛾 + 𝜎) 𝜆13
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+

⎧⎪⎪⎨⎪⎪⎩

(
(𝜙1 + 𝜌)𝜌𝜆12 − 𝜆(𝜙1 + 𝜌)(𝜙1 + 𝛾 + 𝜎)13 + Δ𝜆(𝜙1 + 𝜌)3 − (𝜙1 + 𝜌)𝜆212

3

−(𝜙1 + 𝜌)(𝜙1 + 𝜙2)𝜆13 + 𝜗1𝜆(𝜙1 + 𝜌)34 + (𝜙1 + 𝜌)𝜗2𝜆35 − (𝜙1 + 𝜌)2𝜆13

+(𝜙1 + 𝜌)32)
)
.

⋮ ,

0(𝜁) =3,

1(𝜁) =
[
1 −℘
Λ(℘)

+
℘

Λ(℘)
𝜁℘

Γ(℘+ 1)

](
𝜌2 − (𝜙1 + 𝛾 + 𝜎1)3

)
,

2(𝜁) = 1
(Λ(℘))2

[
(1 −℘)2 +

2℘(1 −℘)(𝜁)℘

Γ(℘+ 1)
+

℘2(𝜁2℘)
Γ(2℘+ 1)

]
(
𝜌𝜆13 − (𝜙1 + 𝜌)𝜌2 − (𝜙1 + 𝛾 + 𝜎)𝜌2 + (𝜙1 + 𝛾 + 𝜎)23

)
,

3(𝜁) = 1
(Λ(℘))3

[
(1 −℘)3 +

3℘(1 −℘)2(𝜁)℘

Γ(℘+ 1)
+

3℘2(1 −℘)(𝑡2℘)
Γ(2℘+ 1)

+
℘3𝜁3℘

Γ(3℘+ 1)

]

×

⎧⎪⎪⎨⎪⎪⎩

(
𝜌2𝜆12 − 𝜆𝜌(𝜙1 + 𝛾 + 𝜎)13 + 𝜌𝜆Δ3 − 𝜌𝜆212

3 − 𝜌(𝜙1 + 𝜙2)𝜆13

+𝜗1𝜌𝜆34 + 𝜗2𝜌𝜆35 − (𝜙1 + 𝜌)𝜌𝜆13 + 𝜌(𝜙1 + 𝜌)22
−(𝜙1 + 𝛾 + 𝜎)𝜌𝜆13 + (𝜙1 + 𝜌)(𝜙1 + 𝛾 + 𝜎)𝜌2 + (𝜙1 + 𝛾 + 𝜎)2𝜌2

−(𝜙1 + 𝛾 + 𝜎)33

) ,

⋮ ,

0(𝜁) =4,

1(𝜁) =
[
1 −℘
Λ(℘)

+
℘

Λ(℘)
𝜁℘

Γ(℘+ 1)

](
𝜎3 − (𝜙1 + 𝜗1)4

)
,

2(𝜁) = 1
(Λ(℘))2

[
(1 −℘)2 +

2℘(1 −℘)(𝜁)℘

Γ(℘+ 1)
+

℘2(𝜁2℘)
Γ(2℘+ 1)

]
(
𝜎𝜌2 − 𝜎(𝜙1 + 𝛾 + 𝜎)3 − 𝜎(𝜙1 + 𝜗1)3 + (𝜙1 + 𝜗1)24

)
,

3(𝜁) = 1
(Λ(℘))3

[
(1 −℘)3 +

3℘(1 −℘)2(𝜁)℘

Γ(℘+ 1)
+

3℘2(1 −℘)(𝜁2℘)
Γ(2℘+ 1)

+
℘3𝜁3℘

Γ(3℘+ 1)

]

×
⎧⎪⎨⎪⎩
(
𝜌𝜆𝜎13 − 𝜌𝜎(𝜙1 + 𝜌)2 − 𝜌𝜎(𝜙1 + 𝛾 + 𝜎)2 − 𝜎(𝜙1 + 𝛾 + 𝜎)23

−(𝜙1 + 𝜗1)𝜎𝜌2 + 𝜎(𝜙1 + 𝜗1)(𝜙1 + 𝛾 + 𝜎)3 + 𝜎(𝜙1 + 𝜗1)23 − (𝜙1 + 𝜗1)34

)
⋮ ,

and

0(𝜁) =5,

1(𝜁) =
[
1 −℘
Λ(℘)

+
℘

Λ(℘)
𝜁℘

Γ(℘+ 1)

](
𝜙21 − (𝜙1 + 𝜗2)5

)
,

2(𝜁) = 1
(Λ(℘))2

[
(1 −℘)2 +

2℘(1 −℘)(𝜁)℘

Γ(℘+ 1)
+

℘2(𝜁2℘)
Γ(2℘+ 1)

]
×
{(

Δ𝜙2 − 𝜆𝜙213 − (𝜙1 +𝜙2)𝜙21 + 𝜗1𝜙24 + 𝜗2𝜙25 − (𝜙1 + 𝜗2)𝜙21 + (𝜙1 + 𝜗2)25

)
,

3(𝜁) =
Δ𝜙2

(Λ(℘))2

[
(1 −℘)2 +

2℘(1 −℘)(𝜁)℘

Γ(℘+ 1)
+

℘2(𝜁2℘)
Γ(2℘+ 1)

]
1

[
3 3℘(1 −℘)2(𝜁)℘ 3℘3(1 −℘)(𝜁2℘) ℘3𝜁3℘

]
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−
(Λ(℘))3

(1 −℘) +
Γ(℘+ 1)

+
Γ(2℘+ 1)

+
Γ(3℘+ 1)
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Table 2

Description of model’s parameters.

(𝜁 ) Amount of susceptible Class in time t 100
(𝜁 ) Amount of Exposed Class in time t 3
(𝜁 ) Amount of Infectious Class in time t 1
(𝜁 ) Amount of Recovered Class in time t 0
(𝜁 ) Amount of Vaccinated Class in time t 0
𝜙1 Crashing rate of the Sensor node 0.003
Δ inclusion of new sensor nodes 0.33
𝛾 crashing rate due to attack of worms 0.07
𝜆 infectivity contact rate 0.1
𝜌 rate of transmission from  -class to -class Assumed
𝜎 rate of recovery Assumed
𝜗1 rate of transfer from -class to -class Assumed
𝜗2 rate of transmission from -class to -class Assumed

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
𝜌𝜆𝜙212 − (𝜙1 + 𝛾 + 𝜎)𝜙2𝜆13 + 𝜆Δ𝜙23 − 𝜆2𝜙212

3 − 𝜆𝜙2(𝜙1 + 𝜙2)13 + 𝜗1𝜆𝜙234

+𝜗2𝜆𝜙235 − (𝜙1 + 𝜙2)𝜙2Δ + 𝜆𝜙2(𝜙1 + 𝜙2)13 + (𝜙1 + 𝜙2)2𝜙21 − 𝜗1𝜙2(𝜙1 + 𝜙2)4
−𝜗2𝜙2(𝜙1 + 𝜙2)5 + 𝜗1𝜎𝜙23 − 𝜗1𝜙2(𝜙1 + 𝜗1)4 +𝜙2

2𝜗21 − 𝜗2(𝜙1 + 𝜗2)𝜙25 + (𝜙1 + 𝜗2)Δ𝜙2
−𝜆𝜙2(𝜙1 + 𝜗2)13 − (𝜙1 + 𝜙2)𝜙2(𝜙1 + 𝜗2)1 + 𝜙2𝜗1(𝜙1 + 𝜗2)4 + 𝜙2𝜗2(𝜙1 + 𝜗2)5

−(𝜙1 + 𝜗2)2𝜙21 + (𝜙1 + 𝜗2)3𝜙25

)
.

5.1. Results and discussion

In what follows, we consider the WP model in WSNs, which is highly valuable because military personnel can deploy WSNs for 
a variety of tasks, including force defense and insurgent detection in inaccessible regions. Such networks, which have the necessary 
sensors installed, can identify hostile forces, monitor adversary movements, and analyze the movements and advancements of the 
opponent.

In this work, we considered the fractional-order WP model in WSNs interms of the HPM which is defined by [30],  transform 
[52] has been employed in the frame of ABC fractional derivative operator WSNs is examined. The most significant difference in the 
present research is the diversity of the HP-TM and ABC fractional derivative operators. For the sake of comprehensiveness, we go 
into depth below on the mathematical model for the WP model in WSNs, as it is depicted in Fig. 2. Several system parameters are 
presented in Table 2. Following that, several numerical simulations have been constructed to characterize the WP model in WSNs. 
Several of these modeling methodologies for worms are fractional DE simulations, which suggest that treatment time has no impact 
at all on the rate of recidivism. Applying the ideas of fractional epidemiology [57,58], we established a fractional-order WP in the 
WSNs model method for this study that consisted of control symptoms. The strategy accounts for the chance of recurrence, which 
fluctuates based on the overall duration of the infectious treatment. Fig. 3 (a-e) represents the dynamical behavior of the system 
under different parametric values. In Fig. 3 (a-e), a strong effect of immunization  given to the sensor nodes appears over the 
revealed  and infectious class , respectively. It is noted that while fewer detectors will transmit messages to fusion labs when 
only a handful of detectors are encompassed by a specific node arrangement, the ensuing power use will also be minimal with the 
reduction in fractional-order ℘ = 0.75. Thus, when deploying nodes that have restricted broadcast dominance, our main objective is 
to concurrently boost connectivity and decrease power usage if ℘ = 1.

In Fig. 4 (a-e), for every 𝜌 = 0.28 node in every stage of a homogeneous WSN that has identical properties, factor 𝜌 is constant 
and has no bearing on improvement. The diversity of access points in a diverse WSN, however, results in networks with varying 
transmitter strengths with fractional-order ℘ = 1 has sensitivity criteria; as a result, the value of fractional-order will depend on each 
node’s value.

In higher values of 𝜗1, a suitable node positioning attempts to reduce  when ℘ = 0.75, whereas an ideal setup attempts to decrease 
 since detector generation serves disproportionately to the two access point power consumption for minimal values of 𝜗1 compared 
to access point capacity does, as shown in Fig. 5 (a-e). It concludes that relocating connections in the direction of the confluence 
cores will typically enhance the normal spacing between detectors as well as access indications, increasing sensor accuracy.

Fig. 6 (a-e) shows that the access points’ ranges from the fusion nodes typically expand when they are moved closer to the 
symmetrical gravity centers of the relevant locations with 𝜗2 = 0.06, which raises the accessibility nodes’ potency if fractional-order 
reduces to ℘ = 1 for the recovered class . The accessibility point-sensor strength efficiency drops as 𝜗2 grows, as seen in Fig. 6 (a-e).

Our approach operates better with regard to HP-TM and ABC techniques of overall transmission and use of power than 
connections. The suggested algorithm performs poorly even if it uses a lower value (𝜎 = 0.4) since numerous sensory sites are not 
within the neighboring connection nodes’ transmission capability. Lastly, in contrast to our technique,  produces a 3% reduction 
in power consumption but a far less comprehensive fractional-order value ℘ = 0.85 for  . The figure indicates that the recovery is 
quite substantial when appropriate parameters are included in Fig. 7 (a-e).

For 𝜗1 = 0.3, the illustration shows that the rate of recovery  is fairly substantial when suitable factors are considered and critical 
nodes in the network are discouraged from engaging in a multicasting task. Fig. 8 (a-e) shows the transformation of the recovering 
19

group of networks to the susceptibility group of nodes, while  shows the changing dynamics of the immunized group of nodes vs. the 
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Fig. 3. Two dimensional illustrations for WP model in the WSNs (3.2) for various fractional-order and 𝜎 = 0.45.
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Fig. 4. Two dimensional illustrations for WP model in the WSNs (3.2) for various fractional-order and 𝜌 = 0.28.
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Fig. 5. Two dimensional illustrations for WP model in the WSNs (3.2) for various fractional-order and 𝜗1 = 0.39.
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Fig. 6. Two dimensional illustrations for WP model in the WSNs (3.2) for various fractional-order and 𝜗2 = 0.06.
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Fig. 7. Two dimensional illustrations for WP model in the WSNs (3.2) for various fractional-order and 𝜎 = 0.4.
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Fig. 8. Two dimensional illustrations for WP model in the WSNs (3.2) for various fractional-order and 𝜗1 = 0.30.
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susceptibility group of clusters when fractional-order fluctuations from ℘ = 0.75 to ℘ = 1, respectively. The likelihood of a malware 
assault on sensors will be minimal if they receive the appropriate vaccination.

In a nutshell, this research will help the software company produce antivirus software that is incredibly effective in reducing the 
number of harmful signals that may impact sensor nodes. Additionally, the study should offer end users recommendations on how to 
vaccinate properly and consistently employ antivirus software on sensor nodes in the area of sensors in order to strengthen defences 
against attacks. Our new HP-TM algorithm guarantees every connection is effective, even in situations where the communication 
bandwidth is restricted. According to simulation findings, our strategies outperform others in terms of fractional calculus approach, 
network accessibility, and consumed power.

6. The 𝟎 − 𝟏 test and complexity analysis

This section examines the broad spectrum of chaos practices to assess the fascinating aspects of chaotic processes, wherein the 
more sophisticated the framework, the more chaotic it gets. The problems of this proposed WP model (3.2) are now evaluated by 
means of the ℂ0 complexity approach and the approximation efficiency (ApEn) analysis. Furthermore, to confirm the presence of 
randomness in the WP model (3.2), the 0 − 1 technique will be employed.

6.1. The 0 − 1 test

The purpose of this part is to demonstrate the 0 − 1 assessment, a theory put forth by Gottwald and Melbourne [59], regularly 
to operate multifaceted structures and make distinctions inside chaos. We consider the statistical trend as reinforcement; in the 
case where the construction of the system is chaotic, the estimated number is close to 1; in the other case, it will be close to 0. 
Furthermore, we depict the process as follows: First, we use time-domain research to find the transforming components shown below: 
(𝐯(𝕜))𝕜=1,...,̃ :

𝐰Υ(𝜐) =
𝜐∑

𝕜=1
𝐯(𝕜) cos(𝜄Υ), 𝐰̃Υ(𝜐) =

𝜐∑
𝕜=1

𝐯(𝕜) sin(𝜄Υ), 𝜐 = 1,2, ...,̃ .

Using the (𝐰Υ − 𝐰̃Υ) plot, one can ascertain how much chaos behavior is present in the proposed WP structure. The design of the 
experiment is periodic if the trajectory parameters of 𝐰Υ and 𝐰̃Υ are constrained; the connections within the context become chaotic 
anytime the experiment performs such a Brownian motion. Furthermore, the mean square displacement expression is presented 
below:

ϝΥ(𝜐) = 1
̃

̃∑
𝕜=1

{(
𝐰Υ(𝕜+ 𝜐) −𝐰Υ(𝕜)

)2 + (
𝐰̃Υ(𝕜+ 𝜐) − 𝐰̃Υ(𝕜)

)2}
, ̃ ≥ 10𝜐.

Moreover, we show the following autonomous growth:

ΘΥ = lim
𝜐↦∞

logϝΥ
log 𝜐

.

The growth rate “Θ = 𝑚𝑒𝑑𝑖𝑎𝑛(ΘΥ)” in the broader setting of the given WP model (3.2) allows to distinguish both non-chaotic and 
chaotic behavior. The model is chaotic when Θ is next to 1, but it is not chaotic when Θ equates to 0.

The autonomous exponential rate of progression Θ of the corresponding fractional WP model (3.2) for ℘ ∈ (0, 1], where 𝜗1 = 0.30
and 𝜎 = 0.4, respectively, is shown in Fig. 9. Anyone understands that the growth rate Θ discusses one whereas the value of 𝜗1
decreases. It suggests that the corresponding fractional WP model (3.2) displays chaotic consequences. Fig. 9 ((a)-(c)) illustrates the 
results of the 𝐰Υ − 𝐰̃Υ schematics for different fractional data and settings, respectively, demonstrating that there is disorder in the 
fractional WP model (3.2). It is evident from Figs. 9((d)-(f)) that this system is oscillating because of the sharply limited channels. 
Conversely, Brownian-like paths are shown in Fig. 9, indicating the existence of in chaotic actions in the fractional WP system (3.2).

6.2. The ApEn of the proposed model

At the moment, we use the approximation entropy (ApEn) method [60] to characterize the complex configuration of the frac-
tional WP model (3.2). An indication of the complexity of time-dependent series-generated systems is the ApEn. It needs to be 
mentioned that evidence sources with higher ApEn values have more perspectives. The first 𝐩 − 𝕜 + 1 accessible patterns are identi-
fied below in order to determine ApEn:

 (𝜄) =
[
𝐯(𝜄), ...,𝐯(𝜄+ 𝕜− 1)

]
, ∀ 𝜄 ∈ [𝜄+ 𝕜− 1],

where 𝐯(1), 𝐯(2), ..., 𝐯(𝐩) is an array of isolated objects. Additionally, we use the procedure to characterize each part ℂ𝕜
𝜄 (𝐫) =Θ∕(𝐩 −𝕜 +

1), where Θ is the dimension of  (𝜄) having 𝑑( (𝜄),  (𝕜)) ≤ 𝐫. Observe that two crucial elements influence the ApEn: the incorporated 
observations 𝕜 and the appropriate evaluation 𝐫. Here, we use 𝕜 = 2. In 𝐫 = 0.3𝑆.𝐷( ), 𝑆.𝐷( ) is the value of dispersion of the 
information  , expressed as a positive square root. Thus, the ApEn is as follows:
26

𝐴𝑝𝐸𝑛 = ℏ𝕜(𝐫) − ℏ𝕜+1(𝓁),
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Fig. 9. 𝐰Υ − 𝐰̃Υ depictions of the fractional WP model (3.2) for various values of ℘.

Fig. 10. Graphs for the ℂ0 of the fractional WP model (3.2) via the system settings mentioned in Table 2 and fractional-order ℘ = 0.96, 0.89 and 0.70.

where

ℏ𝕜(𝐫) = 1
𝐩− 𝕜− 1

𝐩−𝕜+1∑
𝜄=0

logℂ𝕜
𝜄 (𝐫).

Selecting the ICs mentioned in Table 2 and the model’s settings, 𝜗1 = 0.30 and 𝜎 = 0.4, Figs. 10 (a-c) depicts the ApEn corresponds 
to the fractional WP model (3.2). It seems evident that an advanced phase pattern is required to achieve higher ApEn. These findings 
thus confirm the existence of chaos in the proposed fractional strategy and align with whichever fractional consequences have been 
earlier shown.

6.3. The ℂ0 complexity analysis

In the following, we use the ℂ0 complexity approach with the inverse Fourier transform (FT) to compute the operational hardness 
of the suggested WP model (3.2). Here is a detailed description of the process [61].
27

The following describes the process for calculating the ℂ0 intricacy throughout a sequence of ℏ(0), ..., ℏ(ϝ − 1):
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Fig. 11. Graphs for the ℂ0 of the fractional WP model (3.2) via the system settings mentioned in Table 2 and fractional-order ℘ = 0.96, 0.89 and 0.70.

Step 1: To determine the expression’s FT 𝐲(𝕜) as:

̃ (𝐭) = 1
̃

̃−1∑
𝜂=0

𝐲(𝜂) exp
(
− 2𝜋𝜄( 𝜐𝕜

𝐩
)
)
, 𝜂 = 0,1, ...,̃ − 1.

Step 2: This formula yields the mean square:

𝐕̃ = 1
̃

̃−1∑
𝜂=0

|̃ (𝜂)|2,
where

̃̃ (𝜂) =

{̃ (𝜂) 𝑖𝑓 ‖̃ (𝜂)‖2 > 𝐫𝐕̃ ,
0 𝑖𝑓 ‖̃ (𝜂)‖2 ≤ 𝐫𝐕̃ .

Step 3: The following method is used for determining the inverse FT:

𝜁(𝐭) = 1
̃

̃−1∑
𝜂=0

̃̃ (𝜂) exp
(
− 2𝜋𝜄( 𝜐𝕜

𝐩
)
)
, 𝜂 = 0,1, ...,̃ − 1.

Step 4: The following process is implemented to determine the extent of ℂ0 :

ℂ0 =
1

̃∑
𝜄=0

‖𝐲(𝜄)‖2
̃∑
𝜄=0

‖𝜁(𝜄) − 𝐲(𝜄)‖
Fig. 11 (a) illustrates the ℂ0 intricacy of the fractional WP (3.2) for exhibiting the results of ℂ0 concerns of the proposed model 
(3.2). The fractional WP (3.2) exhibits an improvement in ℂ0 measurements, as seen by Fig. 11 (b), in tandem with a reduction 
in 𝜎 = 0.4. In addition, the spectrum where the situation 𝜎 decreases indicates the more significant challenges of the fractional WP 
framework (3.2) (see Fig. 11 (c)). Consequently, the ℂ0 complexity analysis is a useful tool for quickly determining intricacy.

7. Conclusion

This article constitutes an analysis that explores the characteristics of the  transform as they relate to the ABC fractional 
operator. Furthermore, we developed a new road map that is based on the  transform, the HPM, and the ABC fractional derivative 
operator. With the aid of the aforesaid technique, we have established the analytical solutions for the nonlinear WP in the WSNs. 
Consequently, this novel technique has been easy to use and yields the necessary outcomes for the proposed model. Several qualitative 
aspects of the WP in the WSN model have been investigated in detail. It is concluded that the total number of immunized people 
increased compared to the results generated via the projected technique. The HP-TM demonstrated its efficiency and potential 
for dealing with nonlinearities in the proposed model and allowed us to get an exact solution more quickly with the help of He’s 
polynomials. The HP-TM is a more vigorous and pragmatic scheme than conventional methods like the Adomian decomposition 
method and the new iterative transform method.

Moreover, the 0 − 1 test has been presented, along with a review analysis using the ApEn methodology and the complexity 
measure. The complex analysis results show that, although the fractional data is distinctive because the fractional pattern produces 
an unpredictable approach coupled with a higher degree of difficulty and a wider range of chaotic areas than the classical case.

Several graphical representations have shown that when the fractional-order is reduced to 1, our findings are close to the actual 
28

results. This shows that even if two terms from the series solution were taken into consideration, the suggested model still offered 
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sufficient accuracy for solving the issue. The presented technique has a lesser computational difficulty than the previous numerical 
procedures. In addition, the method governs and evaluates a series of solutions that quickly approach the precise answer within 
a brief admissible domain. Due to the noise-free nature of the results, we may avoid the need for rectifying functions, stationary 
restrictions, or excessive integrals in this approach, which overcomes the limitations of previous methods. Moreover, we anticipate 
that our method will be utilized in dealing with additional highly complicated non-linear coupled fractional-order equations. We will 
employ the generalized Kudryashov approach and the double  transform to examine an analogous issue in future research. This 
proves to be an advantageous method to address complex phenomena.
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