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Abstract

Seroprevalence survey is the most practical method for accurately estimating infection attack rate (IAR) in an epidemic such
as influenza. These studies typically entail selecting an arbitrary titer threshold for seropositivity (e.g. microneutralization
[MN] 1:40) and assuming the probability of seropositivity given infection (infection-seropositivity probability, ISP) is 100% or
similar to that among clinical cases. We hypothesize that such conventions are not necessarily robust because different
thresholds may result in different IAR estimates and serologic responses of clinical cases may not be representative. To
illustrate our hypothesis, we used an age-structured transmission model to fully characterize the transmission dynamics and
seroprevalence rises of 2009 influenza pandemic A/H1N1 (pdmH1N1) during its first wave in Hong Kong. We estimated that
while 99% of pdmH1N1 infections became MN1:20 seropositive, only 72%, 62%, 58% and 34% of infections among age 3–12,
13–19, 20–29, 30–59 became MN1:40 seropositive, which was much lower than the 90%–100% observed among clinical
cases. The fitted model was consistent with prevailing consensus on pdmH1N1 transmission characteristics (e.g. initial
reproductive number of 1.28 and mean generation time of 2.4 days which were within the consensus range), hence our ISP
estimates were consistent with the transmission dynamics and temporal buildup of population-level immunity. IAR
estimates in influenza seroprevalence studies are sensitive to seropositivity thresholds and ISP adjustments which in current
practice are mostly chosen based on conventions instead of systematic criteria. Our results thus highlighted the need for
reexamining conventional practice to develop standards for analyzing influenza serologic data (e.g. real-time assessment of
bias in ISP adjustments by evaluating the consistency of IAR across multiple thresholds and with mixture models), especially
in the context of pandemics when robustness and comparability of IAR estimates are most needed for informing situational
awareness and risk assessment. The same principles are broadly applicable for seroprevalence studies of other infectious
disease outbreaks.
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Introduction

Severity of influenza infection is defined as the probability of

severe complications (e.g. hospitalization or death) if infected [1].

Timely and accurate estimates of severity are extremely valuable

for informing decisions about the scale and targeting of response to

an emerging pandemic [2]. In 2011, the International Health

Regulations Review Committee highlighted the lack of ‘‘a

consistent, measurable and understandable depiction of severity’’

as a major shortcoming of global response to the 2009 influenza

pandemic [3]. Real-time serial cross-sectional or longitudinal

seroprevalence studies can address this shortcoming in future

pandemics by providing direct estimates of infection attack rate

(IAR) as the denominator for severity [4].

In serial cross-sectional seroprevalence studies, with the absence

of vaccination, IARs are estimated from seroprevalence rise (DS).
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These studies typically entail selecting an arbitrary titer threshold

for seropositivity. Although many influenza seroprevalence studies

have been conducted, there is no consensus on how to select

seropositivity thresholds and adjust for the proportion of infections

that became seropositive (infection-seropositivity probability, ISP).

Haemagglutinin-inhibition (HI) titer 1:40 and microneutralization

(MN) titer 1:40 have been commonly used as seropositivity

thresholds [5]; ISP has either been ignored (IAR<DS, e.g. [6–11])

or assumed to be similar to the proportion of clinical cases that

became seropositive during convalescence (IAR<DS/(proportion

of clinical cases seropositive), e.g. [12–15]). Historically, seropos-

itivity thresholds were often chosen by conventions instead of

systematic evaluation and ISP was rarely included or discussed [4].

Previous studies have noted the arbitrariness associated with

predefined seropositivity thresholds and proposed to circumvent

such arbitrariness by fitting the cross-sectional titer distribution to

a mixture of probability distributions for estimating IAR [16]. A

simple example of these so-called mixture models is the

superposition of two lognormal distributions which correspond

to the titer distributions of the uninfected and infected populations

[17]. In this study, we incorporated such mixture model structure

into a transmission model to show that conventional seropositivity

thresholds and ISP adjustments had probably led to underestima-

tion of IARs in many seroprevalence studies of 2009 pandemic

influenza A/H1N1 (pdmH1N1). Our results thus resonate with

these earlier studies regarding the lack of robustness in conven-

tional practice for inferring IAR from seroprevalence data, not

only for influenza but also other infectious diseases [18,19]. Our

results highlighted the need to reexamine the widely accepted

practice in interpreting seroprevalence data, especially in the

context of pandemics when little is known but robust and

comparable estimates of the number of infections and severity

are most needed for informing situational awareness and guiding

control policies.

Results

Seroprevalence data
During the 2009 influenza pandemic in Hong Kong, we

conducted a large serial cross-sectional seroprevalence study with

,14,800 serum samples from individuals aged 3–59 years, the

details of which have been previously documented [11,13]. Briefly,

for samples collected before or in July 2009, we tested whether

they were seropositive with respect to MN titer 1:10, 1:20, 1:40,

1:80, 1:160, 1:320, 1:640, 1:1280, and 1:2560 (Figure 1A). Due to

logistical constraints, for samples collected after July 2009, we only

tested whether they were MN1:20 and MN1:40 seropositive, e.g. if a

sample was MN1:80 seropositive, we would only know that it was

MN1:20 and MN1:40 seropositive. We denoted the seroprevalence,

seroprevalence rise and infection-seropositivity probability for

MN1:X by SX, DSX and ISPX, respectively.

Hospitalization data
The bulk of the first wave of pdmH1N1 in Hong Kong occurred

between 1 June and 30 November 2009 (Figure 1B). Age-stratified

daily number of pdmH1N1 hospitalizations during this period was

provided by the Hong Kong Hospital Authority [20,21]. Since

May 2009, patients admitted with acute respiratory illnesses

routinely underwent laboratory testing for pdmH1N1 [22]. Due to

containment efforts enforced until June 29, all lab-confirmed

pdmH1N1 cases before that date were hospitalized for isolation

regardless of their clinical conditions. Therefore, our analysis only

used hospitalization data from June 30 onwards during which only

those required hospital care were admitted.

Preliminary analysis
In our previous IAR estimates, we (i) adopted the conventional

MN1:40 seropositivity threshold because the proportion of

pdmH1N1 clinical cases who became MN1:20 and MN1:40

seropositive during convalescence were ,100% and 90%,

respectively [23,24]; and (ii) assumed that ISP of all pdmH1N1

cases (i.e. including mild and asymptomatic infections) were similar

to the proportion of clinical cases that became seropositive, i.e.,

ISP20<1 and ISP40<0.9–1. Because IAR<DSX/ISPX, it follows

that DS40/DS20<ISP40/ISP20. The assumption ISP20<1 and

ISP40<0.9–1 thus implied DS40/DS20.0.9. However, this contra-

dicted our serial cross-sectional seroprevalence data which

suggested that DS40/DS20 was consistently much smaller than

0.9 in all cross-sections throughout the first wave for all age groups,

especially among older adults (Figure 2). The contribution of

seasonal influenza to DS20 was small because (i) ,34% of influenza

A isolates during the first wave were seasonal influenza (http://

www.chp.gov.hk/en/epidemiology/304/518/519.html); and (ii)

in a Hong Kong study of within-household influenza transmission

[25], only a small percentage of subjects infected with seasonal

influenza became MN1:20 seropositive against pdmH1N1 (unpub-

lished data, BJ Cowling). Thus, given that pdmH1N1 vaccination

was absent during the study period, DS20 could only be attributed

to pdmH1N1 infections. This preliminary analysis strongly

suggested that a substantial proportion of pdmH1N1 infections

(e.g. mild and asymptomatic infections) did not become MN1:40

seropositive. To substantiate this hypothesis, we developed a

mathematical model to fully characterize the transmission

dynamics and seroprevalence rises of pdmH1N1 during its first

wave in Hong Kong.

Transmission dynamics and ISP estimates
We used an age-structured Susceptible-Exposed-Infected-Re-

covered (SEIR) model with 4 age groups (age 3–12 y, 13–19 y,

20–29 y and 30–59 y) to simulate pdmH1N1 transmission

between 1 June and 30 November 2009. The 0–2 and $60 age

groups were omitted because (i) reliable serologic data from them

were not available and (ii) they only represented 2% of all lab-

confirmed pdmH1N1 cases and 5% of all pdmH1N1 hospitaliza-

tions and thus likely to have small contribution in pdmH1N1

Author Summary

Seroprevalence studies have been regarded as the most
practical method for accurately estimating the number of
infections in influenza epidemics and pandemics. Howev-
er, methods for inferring the number of infections from
seroprevalence data in previous studies have mostly been
based on conventional practice instead of standardized
criteria. Specifically, there are no systematic criteria on how
to select the seropositivity threshold and adjust for the
proportion of infections that become seropositive. Here,
we showed that under the conventional criteria, the
number of 2009 pandemic influenza A/H1N1 infections
had been substantially underestimated in Hong Kong as
well as other countries, mostly due to overestimation of
the proportion of infections that became seropositive. Our
results highlighted the need to reexamine the widely
accepted practice in interpreting seroprevalence data,
especially in the context of pandemics when little is known
but robust and comparable estimates of the number of
infections and severity are most needed for informing
situational awareness and guiding control policies.
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transmission. In our sensitivity analysis, we showed that our results

remained almost unchanged if we included these age groups in

disease transmission. We used the POLYMOD matrices con-

structed for European countries (8 matrices and their average

PAVG) as the contact matrix C because analogous data was

unavailable from Hong Kong [26] and most of our results were

insensitive to the choice of contact matrix. We included the effect

of infection importations from Shenzhen, a large city adjacent to

Hong Kong with a population of 13 million (Figure 1B).

We fitted the transmission model to the seroprevalence and

hospitalization data by estimating the parameters listed in Table 1.

All parameters were identifiable (Figure 3 and Table 1) and the

fitted model was congruent with the data (Figure 4). Parameter

estimates were very similar across all nine contact matrices except

for age-specific susceptibility (see below for details). Partial rank

correlation coefficient (PRCC) analysis did not indicate any

unexpected confounding effects (see Text S1).

We estimated that the initial reproductive number R(0) was 1.28

(95% credible interval, 1.23–1.34) and mean generation time Tg

was 2.4 (2.1–2.8) days, i.e. consistent with estimates of pdmH1N1

transmission parameters in other studies [27]. The scaling factor

for the force of infection (FOI) from Shenzhen was eSZ = 15 (9–23),

which conformed with the intuition that

eSZ

&
daily proportion of population crossed the border|mean infectious duration

proportion of pdmH1N1 cases in Shenzhen who sought medical care

(see Text S1).

Among infected individuals who were MN1:20 seronegative

before infection, 99% (93%–100%) became MN1:20 seropositive

with a mean delay of 7.3 (6.1–8.6) days after onset. Among

infected individuals who were MN1:40 seronegative before

infection, 72% (63%–82%), 65% (56%–75%), 58% (49%–68%)

and 34% (24%–44%) among the 3–12, 13–19, 20–29 and 30–59

age group became MN1:40 seropositive with a mean delay of 9.5

(7.9–11.3) days after onset. Hence, ISP40 decreased with age and

was much lower compared to the 90–100% of clinical cases that

became MN1:40 seropositive [23,24]. Consequently, IAR estimates

here were significantly higher than our previous estimates,

especially for the 30–59 age group [13]: 52% (46%–58%), 49%

(43%–55%), 25% (21%–29%) and 13% (10%–16%) for age 3–12,

13–19, 20–29 and 30–59.

Proactive closure of kindergartens and primary schools reduced

mixing among children aged 3–12 by 86% (44%–99%). Summer

holidays reduced within-age-group mixing by 59% (46%–73%)

Figure 1. Prepandemic seroprevalence and the epidemic curve of pdmH1N1 in Hong Kong. A Age-stratified pre-pandemic MN titer
distributions which were estimated from serum samples collected in June and early-July 2009. For samples collected after July 2009, we only tested
whether they were MN1:20 and MN1:40 seropositive because of logistical constraints. B Epidemic curves of pdmH1N1 in Hong Kong and Shenzhen.
Estimated weekly numbers of lab-confirmed cases in Shenzhen were extracted from [38].
doi:10.1371/journal.ppat.1004054.g001

Figure 2. Age-specific DS40/DS20 during the first wave of pdmH1N1 in Hong Kong. DS40 and DS20 at each cross-section were estimated
using the method described in our previous work [11]. If ISP20 and ISP40 (among all pdmH1N1 infections) were the same as the proportions of clinical
cases that became MN1:20 and MN1:40 seropositive (i.e. around 100% and 90%, respectively [23,24]), DS40/DS20 should have remained close to 0.9–1
(the horizontal dashed line) throughout the first wave, which was not the case in reality as shown here.
doi:10.1371/journal.ppat.1004054.g002
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and 23% (15%–30%) for age 3–12 and 13–19. A weaker effect of

school closing for age 13–19 was plausible because older teenagers

were more likely to actively mix with their peers in non-school

settings while schools were closed.

Age-specific susceptibilities ha’s were sensitive to the choice of

contact matrix C because disease transmission was essentially

driven by the matrix {Wab = haCab}. For all POLYMOD matrices,

adults aged 30–59 were 0.4–0.7 times as susceptible as those aged

20–29. Children aged 3–12 were ,2–3 times as susceptible as

those aged 20–29 except for the Netherlands matrix which gave an

estimate of 1.3 (1.1–1.4). Children aged 13–19 were 1.1–1.6 times

more susceptible than adults aged 20–29 except for the Italy

matrix which gave an estimate of 0.9 (0.8–1). In summary, these

age-specific susceptibility estimates were consistent with analogous

estimates from studies which showed that susceptibility decreased

with age after adjusting for preexisting antibody titers and close

contacts [28,29].

Discussion

We hypothesized that influenza seroprevalence studies might

substantially underestimate IARs if ISP is ignored or based on data

from patients presenting to healthcare providers with clinically

overt disease. We substantiated this hypothesis with pdmH1N1

seroprevalence data from Hong Kong. To further examine the

validity of this conjecture, we performed crude analyses of

published pdmH1N1 seroprevalence data from other countries

to examine the robustness of their IAR estimates across different

seropositivity thresholds and ISP adjustments (see Text S1). In a

study in Germany with HI1:40 threshold and no ISP adjustments,

DSHI 1:40/DS HI 1:20 was around 0.9, 0.7, and 0.4 among

unvaccinated individuals of age 18–32, 33–52 and .52 [8].

Similarly, in a study in New Zealand with HI1:40 threshold and no

ISP adjustments, DSHI 1:40/DS HI 1:20 was around 0.7, 0.9, and 0.6

among individuals of age 1–4, 5–19 and 20–59 [6]. Therefore,

IAR have probably been underestimated in these studies,

especially among older adults.

To our knowledge, only four pdmH1N1 studies had adjusted

for ISP: one from the UK with HI1:32 threshold [12], two from the

US with HI1:40 threshold [14,15], and the remaining one by

ourselves previously with MN1:40 threshold [13]. All four assumed

that ISP was similar to the proportion of patients with clinical

disease presenting to healthcare providers who became seropos-

itive. We have already shown that this assumption was inconsistent

with population-level seroprevalence rises in Hong Kong where

only 60%–70% and 34% of pdmH1N1 infections among age 3–29

and 30–59 became MN1:40 seropositive (Table 1). In the UK study

[12,30], the HI1:8 IAR estimate was 1.2–1.4 times the HI1:32

estimate for those aged 25–44. Similarly, in the study in Florida

[14], the HI1:20 IAR estimate was around 1.5–1.7 and 1.9–2.1

times the HI1:40 estimate for those aged 25–49 and 50–64. In the

US multi-state study [15], the HI1:20 IAR estimate was 1.2–1.3

times the HI1:40 estimate for those aged 25–64. These results

support our conjecture that serologic responses of clinical cases are

not necessarily representative.

The most plausible and straightforward explanation was that

mild and asymptomatic cases were less likely to become

seropositive compared to clinical cases. Testing this hypothesis

Table 1. Model parameters and their posterior statistics.

Parameter Description Posterior median (95% credible interval)

R(0) Initial reproductive number 1.28 (1.23–1.34)

Tg Mean generation time (days) 2.4 (2.1–2.8)

p0 Reduction in within-group transmission for the 3–12 age group during proactive
school closure

86% (44%–99%)

p1, p2 Reduction in within-group transmission during summer holidays Age 3–12: 59% (46%–73%)

Age 13–19: 23% (15%–30%)

xa,i(0) Proportion of age group a with the ith pre-pandemic titer level Very similar to the distributions in Figure 1A

ha Age-specific susceptibility of age group a compared to the 20–29 age group Age 3–12: 2.3 (2–2.6)

Age 13–19: 1.3 (1.1–1.5)

Age 30–59: 0.6 (0.5–0.7)

ISP20 MN1:20 infection-seropositivity probability 0.99 (0.93–1)

ISP40,a Age-specific MN1:40 infection-seropositivity probability Age 3–12: 0.72 (0.63–0.82)

Age 13–19: 0.65 (0.56–0.75)

Age 20–29: 0.58 (0.49–0.68)

Age 30–59: 0.34 (0.24–0.44)

mSeropos, X Mean delay (days) from onset to MN1:X seropositivity for those infections who
became MN1:X seropositive during convalescence

MN1:20: 7.3 (6.1–8.6)

MN1:40: 9.7 (7.9–11.3)

M Seed size 246 (132–420)

eSZ Scaling factor for exogenous FOI from Shenzhen 15 (9–23)

IHPa Age-specific infection-hospitalization probability Age 3–12: 0.89% (0.8%–1%)

Age 13–19: 0.29% (0.26%–0.34%)

Age 20–29: 0.22% (0.18%–0.26%)

Age 30–59: 0.23% (0.19%–0.29%)

doi:10.1371/journal.ppat.1004054.t001
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would require studying serologic responses of infected cases with

different severity which would be feasible only with a large

prospective cohort study with intensive monitoring to identify mild

and asymptomatic cases. Nonetheless, some data from indepen-

dent studies support this hypothesis. Hung et al reported that

among 881 lab-confirmed pdmH1N1 symptomatic patients in

Hong Kong, convalescent MN titer correlated well with initial

viral load and was independently associated with severity [23].

Figure 3. Posterior distributions of parameter estimates. Different colors correspond to different POLYMOD contact matrices. A Age-
dependent parameters including IARs (first column), ISP40 (second), and age-specific susceptibility (third). B Other parameters including R(0), Tg, ISP20,
reduction in within-age-group mixing due to school closure (p0, p1, p2), seed size, and scaling factor for FOI from Shenzhen (eSZ).
doi:10.1371/journal.ppat.1004054.g003

Figure 4. Comparison of the data and the fitted model. The hospitalization and serial cross-sectional seroprevalence data are shown in blue
(vertical bars indicate 95% confidence intervals). Posterior intervals of hospitalizations and seroprevalence in the fitted model are shown as heat
shades in which darker colors represent higher probability densities (i.e. highest density in red and zero density in white).
doi:10.1371/journal.ppat.1004054.g004
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Specifically, being afrebile on presentation was associated with

poorer MN convalescent response. Among 44 RT-PCR confirmed

cases (22 cohort subjects with mild symptoms and 22 hospital

patients) in Singapore, 89% and 57% became MN1:20 and MN1:40

seropositive [7]. However, there are also published data which

contradict the hypothesis. In a study of 24 patients and their 34

household infectees (all RT-PCR confirmed) in Canada, the

MN1:20 and MN1:40 seropositivity rates were both 83% [31].

Nonetheless, we caution that titer measurements from different

studies might not be directly comparable because serologic titer

from different laboratories might vary due to differences in

serologic assay protocols and endpoint analysis methods [32]. In

particular, serologic follow-ups of clinical cases and seroprevalence

studies are often conducted by separate groups with different

laboratories, thus adding uncertainty to the consistency between

ISP adjustments and seroprevalence data. Our serologic methods

were the same as that in the serologic follow-up studies in Hung et

al and Mak et al [23,33], so the results therein should be readily

comparable with ours. The Consortium for the Standardization of

Influenza Seroepidemiology (CONSISE) is a recent global

initiative aiming to standardize both laboratory and field

investigation protocols for influenza seroepidemiology (http://

consise.tghn.org). Our study suggested that collective interpreta-

tion of seroprevalence data and convalescent serologic data should

also be an essential part of this standardization effort (e.g. real-time

assessment of bias in ISP adjustments by evaluating the consistency

of IAR across multiple thresholds and with mixture models; see

below for more detailed discussions). Robust sero-surveillance

requires an integrated understanding and standardization of the

field, laboratory and analytical components of seroepidemiology.

Our results indicated that preexisting MN titers and age group

mixing alone could not explain the age distribution of infections.

The age-specific susceptibility estimates (Table 1) suggested that

older individuals were protected from pdmH1N1 infections by

some forms of immunity not reflected by pre-existing MN titers

(e.g. cell-mediated immunity). Cytotoxic T cells established by

prior seasonal influenza infections were demonstrated to cross

react with pdmH1N1 viruses and it is conceivable that such cross-

reactive T cell immunity increases with age [34]. Furthermore, the

substantial proportion of infections that remained MN1:40

seronegative might have relatively weak and short-lived immunity

against pdmH1N1. Waning of such immunity might have

subsequently replenished the pool of susceptibles and permitted

a second epidemic of pdmH1N1 to occur in Hong Kong in 2011.

Our study has several limitations. First, we assumed that MN

titer rises were entirely attributable to pdmH1N1 infection with

immunity (lasting until at least 30 November 2009). In theory, it

might be possible that individuals could be exposed to pdmH1N1,

became MN1:20 seropositive but MN1:40 seronegative, and

remained susceptible and noninfectious (i.e. weak serologic

response without infection and immunity). This could be an

alternative explanation for the discrepancy between DS40/DS20 in

seroprevalence data and the ratio of clinical cases that became

MN1:40 and MN1:20 seropositive in Hong Kong (Figure 2). In this

case, ISP20 and ISP40 could remain at 1 and 0.9 (as observed

among clinical cases) for all infections and the gap between DS40/

ISP40 and DS20/ISP20 would comprise these exposed but

uninfected individuals who became MN1:20 seropositive but

MN1:40 seronegative. Second, our serologic data were collected

via convenience sampling of blood donors, hospital outpatients

and participants in community-based studies and hence did not

necessarily provide a representative description of pdmH1N1

seroprevalence in the general population. Third, we did not

account for any seasonal effects of influenza transmission. The

bulk of pdmH1N1 first wave transmission in Hong Kong occurred

between 1 September and 30 November 2009, a period during

which circulation of seasonal influenza is typically low [35]. As

such, the effect of school closure might be stronger than estimated

here if seasonality had substantially reduced the transmissibility of

pdmH1N1 during September-November 2009. Fourth, we did not

consider the potential effect of oseltamivir use on serologic

responses. Although oseltamivir use might attenuate serologic

response of pdmH1N1 cases [25], treatment coverage was unlikely

to be high enough to have a substantial impact on DS40/DS20.

Finally, we did not have local social contact data to parameterize

our transmission model and had to resort to uncertainty analysis

using the POLYMOD matrices. However, this does not imply that

we expect the contact pattern in Hong Kong to be similar to that

in the European countries. Instead, we showed that our results

were robust against the choice of contact matrix because given any

contact matrix, the age-specific susceptibility was adjusted by the

Bayesian inference algorithm accordingly to result in similar

transmission dynamics and hence goodness-of-fit (Figure S4, S5,

S6, S7, S8, S9, S10, S11, Figure S12).

Sero-epidemiologic study is the most practical method for

accurately estimating influenza IAR, disease severity and popula-

tion-level immunity which in turn are used to inform vaccination

policies and decisions [5]. Our study emphasizes that IAR

estimates in seroprevalence studies are sensitive to not only

seropositivity thresholds but also ISP adjustments. Steens et al has

made a similar observation when they compared pdmH1N1 IAR

estimates obtained from conventional thresholds with that from

mixture model [17]. Seropositivity thresholds have been typically

chosen based on conventions instead of systematic criteria [4]. ISP

adjustments have either been ignored or based on clinical patients

whose antibody kinetics might not be representative for all

infections in the community. Although we have shown that

conventional seropositivity thresholds and ISP adjustments have

probably led to underestimation of the incidence of pdmH1N1,

such bias associated with conventional practice is not specific to

pdmH1N1 or the serial cross-sectional design of sero-epidemiol-

ogy. The longitudinal (cohort) design relies on the definition of

seroconversion and infection-seroconversion probability. A recent

study by Cauchemez et al reported that under the conventional

criterion of seroconversion, namely 4-fold rise or more in antibody

titers, influenza IARs were substantially underestimated when

there were a significant proportion of subjects with 2-fold rises not

explainable by measurement errors alone [36].

These studies and ours thus indicated the need for reevaluating

current methods for analyzing influenza serologic data. For

example, our group and Baguelin et al previously considered a

method for generating real-time estimates of IAR and disease

severity for pandemic influenza from serial cross-sectional

seroprevalence and clinical surveillance data [12,13]. This method

requires a priori specifying the seropositivity threshold and ISP.

Although basing ISP on antibody kinetics of clinical cases is likely

to be the best a priori option in the real-time pandemic setting, the

associated bias can and should be assessed by evaluating the

consistency of IAR and severity estimates across multiple

thresholds and with mixture models. A natural extension of the

method is to analyze seroprevalence data at multiple thresholds

under a Bayesian framework using ISPs among clinical cases as

priors (possibly with the extension of integrating transmission

dynamics as done here and in Birrel et al [37]). Within this

framework, ISP can be continuously updated by the posteriors to

reconcile discrepancies between seroprevalence data and ISP

priors (e.g. Figure 2). Although the potential bias in ISP priors may

not be completely eliminated in real-time, the resulting IAR and
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severity estimates will likely remain sufficiently precise for

informing situational awareness and pandemic responses. In

conclusion, our results indicated the need for reexamining

conventional practice in influenza sero-epidemiology to develop

standards for analyzing influenza serologic data, especially in the

context of pandemics when robustness and comparability of IAR

estimates are most needed for informing situational awareness and

risk assessment. While these studies were conducted within the

context of influenza, these methodological approaches are broadly

applicable to other infectious disease outbreaks.

Materials and Methods

Ethics statement
All study protocols were approved by the Institutional Review

Board of The University of Hong Kong/Hospital Authority Hong

Kong West Cluster. All adult subjects provided written informed

consent, and a parent or guardian of any child participant

provided written consent on their behalf.

Transmission modeling
Major modeling assumptions are summarized below (see Text

S1 for further technical details):

1.Antibody kinetics and testing. Each infection in age group

a became MN1:X seropositive with probability ISPX,a if they

were MN1:X seronegative before infection. Because ISP20,a and

ISP40,a were not simultaneously identifiable from our data, we

assumed that ISP20,a was independent of age. We assumed four

pre-pandemic MN titer levels (,1:10, 1:10, 1:20, and $1:40;

Figure 1A) and that the ith pre-pandemic titer level reduced

susceptibility by 12gi compared to the lowest level (i.e. g1 = 1).

The onset-to-seropositivity duration was estimated using

antibody kinetics data from clinical cases in Hong Kong

[33]. Sensitivity (specificity) of serologic testing, defined as the

probability that the serologic result was positive (negative) if the

specimen was truly seropositive (seronegative), was assumed to

be 100%. Imperfect sensitivity and specificity had little impact

on our conclusions (see Text S1).

2.Age-specific susceptibility. Age group a was ha times as

susceptible compared to the 20–29 age group, i.e. h3 = 1. These

age-specific susceptibility parameters modeled differential

susceptibility not explainable by the contact matrix and pre-

pandemic MN titers.

3.School closure. As a proactive mitigation measure, the Hong

Kong government closed all kindergartens and primary schools

on 11 June 2009 until summer holidays. We assumed that

summer holidays and fall semester started on 10 July and 1

September, respectively. Within-age-group mixing was re-

duced by p0 for age 3–12 during proactive school closure, and

by p1 and p2 for age 3–12 and 13–19 during summer holidays.

4.Importation of infections. We seeded the pandemic on 1

June 2009 with M infectious cases. In addition, we assumed

that Hong Kong was subject to an exogenous force of infection

that was eSZ times the estimated daily number of lab-confirmed

cases in Shenzhen [38] because (i) an average of ,350,000

people crossed the border on a daily basis; and (ii) sustained low

levels of transmission in Hong Kong during November 2009

was likely fueled by the Shenzhen epidemic which peaked in

that month [38] (Figure 1B).

5.Hospitalization. We assumed that each infection in age

group a required hospitalization with probability IHPa

(infection-hospitalization probability).

6.Infectiousness and antibody response. We assumed that

all infected individuals were equally infectious regardless of

their antibody response. In the Text S1, we showed that our

results were robust against potential association between

infectiousness and antibody response.

Statistical analysis
We fitted the transmission model to the seroprevalence and

hospitalization data by estimating the parameters listed in Table 1

using Markov Chain Monte Carlo methods with non-informative

flat priors. Because around 85% and 10% of each age group had

pre-pandemic MN titer ,1:10 and 1:10 (Figure 1A), the gi’s were

not identifiable. As such, we assumed gi = gi which had negligible

effect because the small proportion of individuals who had pre-

pandemic titer .1:10 had little impact on transmission dynamics.

Partial rank correlation coefficients (PRCC) among estimated

parameters were calculated to identify any strong (defined here as

|PRCC|.0.5) but unexpected confounding effects.

For uncertainty analysis, we performed statistical inference for

g = 0, 0.5 and 1 and each of the nine POLYMOD matrices, i.e. a

total of 27 scenarios. Higher g (i.e. preexisting MN titer conferred

weaker protection) resulted in slightly higher IARs and lower R(0)

and Tg (Figure S4, S5, S6, S7, S8, S9, S10, S11, Figure S12).

Otherwise, all combinations of g and C resulted in similar

goodness-of-fit and parameter estimates except for age-specific

susceptibilities. As such, we describe in the main text the inference

results (posterior medians and 95% credible intervals) for g = 0.5

and C = PAVG unless parameter estimates were sensitive to g and

C (i.e for age-specific susceptibilities).

Supporting Information

Figure S1 Probability density function of k20=k40 assum-
ing that sens20,U(0.9,1), spec40,U(0.9,1), sens40,U(0.9,
sens20), spec20,U(0.9, spec40).
(TIF)

Figure S2 Estimating the ratio of IAR estimates at
higher and lower titers in Baguelin et al.
(TIF)

Figure S3 Estimating the ratio of IAR estimates at
higher and lower titers in Cox et al and Reed et al. Red,
green and blue correspond to assuming the overlap
between proportion infected and vaccination coverage
was minimal, random and maximal, respectively.
(TIF)

Figure S4 Posterior distributions of parameters for
different values of g with the average POLYMOD contact
matrix. A. Age-dependent parameters including IARs (first

column), ISP40 (second), and age-specific susceptibility (third). B.

Other parameters including R(0), Tg, ISP20, reduction in within-

age-group mixing due to school closure (p0, p1, p2), seed size, and

scaling factor for FOI from Shenzhen (eSZ). Higher g (i.e.

preexisting MN titer conferred weaker protection) resulted in

slightly higher IARs and lower R(0) and Tg.

(EPS)

Figure S5 Posterior distributions of parameters for
different values of g with the Belgium POLYMOD
contact matrix. A. Age-dependent parameters including IARs

(first column), ISP40 (second), and age-specific susceptibility (third).

B. Other parameters including R(0), Tg, ISP20, reduction in within-

age-group mixing due to school closure (p0, p1, p2), seed size, and

scaling factor for FOI from Shenzhen (eSZ). Higher g (i.e.
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preexisting MN titer conferred weaker protection) resulted in

slightly higher IARs and lower R(0) and Tg.

(EPS)

Figure S6 Posterior distributions of parameters for
different values of g with the Finland POLYMOD contact
matrix. A. Age-dependent parameters including IARs (first

column), ISP40 (second), and age-specific susceptibility (third). B.

Other parameters including R(0), Tg, ISP20, reduction in within-

age-group mixing due to school closure (p0, p1, p2), seed size, and

scaling factor for FOI from Shenzhen (eSZ). Higher g (i.e.

preexisting MN titer conferred weaker protection) resulted in

slightly higher IARs and lower R(0) and Tg.

(EPS)

Figure S7 Posterior distributions of parameters for
different values of g with the Germany POLYMOD
contact matrix. A. Age-dependent parameters including IARs

(first column), ISP40 (second), and age-specific susceptibility (third).

B. Other parameters including R(0), Tg, ISP20, reduction in within-

age-group mixing due to school closure (p0, p1, p2), seed size, and

scaling factor for FOI from Shenzhen (eSZ). Higher g (i.e.

preexisting MN titer conferred weaker protection) resulted in

slightly higher IARs and lower R(0) and Tg.

(EPS)

Figure S8 Posterior distributions of parameters for
different values of g with the Italy POLYMOD contact
matrix. A. Age-dependent parameters including IARs (first

column), ISP40 (second), and age-specific susceptibility (third). B.

Other parameters including R(0), Tg, ISP20, reduction in within-

age-group mixing due to school closure (p0, p1, p2), seed size, and

scaling factor for FOI from Shenzhen (eSZ). Higher g (i.e.

preexisting MN titer conferred weaker protection) resulted in

slightly higher IARs and lower R(0) and Tg.

(EPS)

Figure S9 Posterior distributions of parameters for
different values of g with the Luxembourg POLYMOD
contact matrix. A. Age-dependent parameters including IARs

(first column), ISP40 (second), and age-specific susceptibility (third).

B. Other parameters including R(0), Tg, ISP20, reduction in within-

age-group mixing due to school closure (p0, p1, p2), seed size, and

scaling factor for FOI from Shenzhen (eSZ). Higher g (i.e.

preexisting MN titer conferred weaker protection) resulted in

slightly higher IARs and lower R(0) and Tg.

(EPS)

Figure S10 Posterior distributions of parameters for
different values of g with the Netherland POLYMOD
contact matrix. A. Age-dependent parameters including IARs

(first column), ISP40 (second), and age-specific susceptibility (third).

B. Other parameters including R(0), Tg, ISP20, reduction in within-

age-group mixing due to school closure (p0, p1, p2), seed size, and

scaling factor for FOI from Shenzhen (eSZ). Higher g (i.e.

preexisting MN titer conferred weaker protection) resulted in

slightly higher IARs and lower R(0) and Tg.

(EPS)

Figure S11 Posterior distributions of parameters for
different values of g with the Poland POLYMOD contact
matrix. A. Age-dependent parameters including IARs (first

column), ISP40 (second), and age-specific susceptibility (third). B.

Other parameters including R(0), Tg, ISP20, reduction in within-

age-group mixing due to school closure (p0, p1, p2), seed size, and

scaling factor for FOI from Shenzhen (eSZ). Higher g (i.e.

preexisting MN titer conferred weaker protection) resulted in

slightly higher IARs and lower R(0) and Tg.

(EPS)

Figure S12 Posterior distributions of parameters for
different values of g with the United Kingdom POLY-
MOD contact matrix. A. Age-dependent parameters including

IARs (first column), ISP40 (second), and age-specific susceptibility

(third). B. Other parameters including R(0), Tg, ISP20, reduction in

within-age-group mixing due to school closure (p0, p1, p2), seed

size, and scaling factor for FOI from Shenzhen (eSZ). Higher g (i.e.

preexisting MN titer conferred weaker protection) resulted in

slightly higher IARs and lower R(0) and Tg.

(EPS)

Table S1 Model parameters and their posterior statis-
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