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Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia

2 Department of Animal Science, Faculty of Agronomy Čačak, University of Kragujevac, Cara Dušana 34,
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Abstract: Increasing milk production requires increasing milking frequency (MF) from two times
daily (2X) to three (3X) or more. High milk production leads to negative energy balance (NEB) and
homeorhesis, characterized by lipolysis, ketogenesis, and endocrinological changes. The relationship
among energy balance (EB), lipolysis, and ketogenesis with endocrine and metabolic parameters in
blood of cows milked 2X and 3X daily was studied. Holstein Friesian cows milked 2X (n = 45) and
3X (n = 45) were analyzed, with approximately 50% of cows in each group in positive EB (PEB) and
50% in NEB. After determining EB, blood samples were collected from all cows and blood serum
was analyzed for non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB), glucose (GLU),
cholesterol (CHOL), triglycerides (TGC), total bilirubin (TBIL), aspartate aminotransferase (AST),
gamma-glutamyl transferase (GGT), calcium (Ca), inorganic phosphate (P), total protein (TPROT),
albumin (ALB), urea, insulin (INS), T3, T4, and cortisol (CORT), and the RQUICKIBHB index of
insulin resistance was calculated. Cows milked 3X in NEB represent a special cluster that partially
overlaps with cows milked 2X in NEB and has no contact points with cows in PEB. Cows milked 3X
had higher levels of NEFA, BHB, AST, GGT, TBIL, and CORT and lower levels of GLU, Ca, INS, and
T4. Cows milked 3X in NEB had higher levels of NEFA, BHB, AST, GGT, TBIL, and CORT and lower
levels of GLU, CHOL, TGC, TPROT, P, INS, RQUICKIBHB, and T3 compared with cows milked 2X in
NEB and cows in PEB. In cows milked 3X, lipolysis and ketogenesis were much more prominent, and
EB levels were lower, implying a pronounced shift in homeorhesis. Metabolic and endocrinology
parameters were determined mainly by the values of EB, NEFA, and BHB in cows milked 3X in NEB
compared with other categories of cows. The results confirm the peculiarity of metabolic adaptation
in cows with increased MF, characterized not only by differences in the concentration of metabolites
but also in their interactions.

Keywords: cow; metabolic status; blood; milk; lactation

1. Introduction

More than five decades ago, more frequent milking was found to have long-term
effects on milk production [1]. With the development of automatic milking and increasing
knowledge about the physiology of lactation, milking frequency (MF) began to increase.
On most farms, cows are milked twice daily (2X). Due to the increase in milk produc-
tion, farmers often decide to increase MF, so cows are milked three times daily (3X) or
more. Increasing MF to 3X increases milk production by 6–26% throughout lactation [2–4].
A large positive shift in milk production due to increased MF appears to be constant, with
daily milk production rising between 3.5 and 4.9 kg/day [5]. The effect of increased MF
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is most pronounced in early lactation (7–8 kg/day), and thereafter, the increase is smaller
until the end of lactation (2.5–5.1 kg/day) [6,7].

Higher milk production should stimulate dry matter intake (DMI) due to increased
energy and nutrient requirements. A previous study showed a moderate linear relationship
(r2 = 0.47) between DMI and milk yield (MY), and models based on intake of nutrients
improved prediction of MY in Holstein cows compared with DMI alone, so intake of NEL
was the dominant variable in MY prediction models [8]. However, the results of studies
show that cows milked 3X and 4X did not have increased DMI relative to cows that were
milked less frequently [9–11] and that it was significantly higher only when the MF was
increased to six milkings per day [12]. Genetic selection for high milk production is not
associated with the ability of cows to have higher DMI, so high milk production predisposes
cows to negative energy balance (NEB) [13]. Furthermore, adding energy to the feed of
cows producing large amounts of milk tends to further increase milk production rather
than decrease NEB [13]. Increased milk and energy-corrected milk (ECM) production can
stimulate the development of NEB in cows, especially because there is a weak genetic
correlation between ECM and DMI in cows, meaning that increases in ECM production are
not accompanied by a corresponding increase in DMI [14,15]. Patton et al. [16] found that
daily energy balance (EB) was less negative in cows on a standard diet milked once a day
than in cows milked 3X and that they had lower MY and higher milk fat and milk protein
concentrations during weeks 1 to 3 of lactation.

Cows milked 3X exhibited lower body condition, more pronounced lipolysis (higher
non-esterified fatty acids, NEFA) and ketogenesis (higher beta-hydroxybutyrate, BHB),
with an increase in growth hormone levels and a decrease in insulin concentration and
slightly higher cortisol levels [6,11]. Reducing MF to once daily can decrease lipolysis and
ketogenesis and improve the metabolic status of cows [17–19]. A recent study suggests that
such a reduction may be a useful tool for treating ketosis in cows [20].

Metabolic adaptation to increasing MF corresponds to NEB of cows and homeorhesis
in early lactation, which is characterized by increased lipolysis and ketogenesis with
dominance of catabolic processes and the development of several unfavorable metabolic
adaptations [21–23]. NEFA and BHB show significant correlations with parameters of
metabolic profile, indicating the functional status of carbohydrate, fat, protein, mineral,
and liver metabolism, as well as with hormones and indicators of cellular stress response
in cows [24–26].

Previous studies have not investigated whether there is a difference in metabolic
adaptation in cows in positive energy balance (PEB) and NEB at different milking frequen-
cies. The aim of this study was to investigate the relationship between EB, lipolysis, and
ketogenesis with endocrine and metabolic parameters in the blood of cows milked 2X and
3X daily in different phases of lactation.

2. Materials and Methods
2.1. Farm Management

The experiment was conducted on a commercial dairy farm with 700 Holstein Friesian
cows housed in two identical free-stall barns located next to each other with a head-to-head
system and central feeding corridor. The farm was in the transition from 2X to 3X milking
during the study, so half of the cows were milked 2X and half 3X per day with an average
MYs of 8100 and 9000 kg per standard lactation, respectively. Cows were housed in groups
according to phase of lactation (LP). In each barn, cows were assigned as those in first and
second half of lactation and as optimal or high productivity cows. The 2X and 3X milked
cows were subjected to the same experimental design, with similar animal characteristics
(DMI, MY, days in milk (DIM), parity, and environmental factors) within the group and the
same total mixed ration (TMR) and identical pens.

The 2X and 3X groups were fed TMR twice daily (after morning and evening milking)
or three times daily (after morning, midday, and evening milking), respectively (Table 1).
The composition of the TMR was in accordance with NRC (2001) [27] recommendations,
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based on NRC feedstuff composition tables and specifications provided by feed additive and
concentrate manufacturers. The data calculated were also compared with data obtained from
analysis of the TMR using standard procedures and the Van Soest method using ANKOM
fiber analyzer (ANKOM Technology, New York, NY, USA) to determine whether the TMR
feed differed from what was expected from the tables. Water was available ad libitum.

On the farm, DMI was determined using a model. For each group of cows on the farm,
the ration was composed according to their average production, body weight, and milk fat
percentage. When preparing a ration, the DMI was first predicted, and then the ration was
balanced. Therefore, our experiment was based on the predicted DMI using the formula:
DMI (kg/d) = 0.372 × FCM (kg/d) + 0.0968 × BW (kg0.75) × [1-e (−0.192 × (WOL + 3.67))],
where FCM = 4% fat-corrected milk (kg/d), metabolic BW = body weight (kg0.75),
WOL = week of lactation, and d = day [27]. To be able to monitor feed consumption
continually and relatively accurately, a suitable feed bunk scoring system was introduced
on the basis of the method developed at Penn State University. In this system, points are
assigned from 0 (when no feed is left in the feed bunk) to 5 (when no feed is taken at all).
A score of 2 is considered optimal when less than 5% of the amount given at the last feeding
remained in the feed bunk. The appropriate time for scoring is in the last hour before the
next feeding [28]. There was at least 0.8 m of feed bunk space per cow in the experiment.
No antagonistic or other behavior affecting feed intake was observed in the cows during
the experiment.

2.2. Energy Balance

The EB was calculated from energy-corrected milk yield (ECM), NEL-intake (NEL–net
energy of lactation), and BW using the following equation: EB = [NEL-intake − (kg ECM
× 3.14 + 0.293 × kg BW0.75)] [29]. NEL-intake, BW, and kg ECM were determined during
one week, and expressed as an average value (7 days average), before the sampling of blood
on Day 7. NEL-intake depends on predicted DMI. The body weight was measured with
a scale. Milk production was recorded by farm software. The chemical composition of
milk was determined with MilkoScan analyser (FOSS, Hileroed, Denmark) using Fourier
transform infrared spectrophotometry. Milk samples (40 mL) were collected according to the
recommendations of the analyzer manufacturer, during regular milking. The content of fat,
protein, lactose, and dry matter was determined. Before analysis, the samples were heated
in a water bath to a temperature of 40 ± 2 ◦C. The analyzer homogenizes the milk sample
before removing approximately 5 mL of it for analysis. ECM was calculated according to the
formula: ECM = (0.327 × milk lbs.) + (12.95 × fat lbs.) + (7.65 × protein lbs.) [27].

2.3. Models and Cows Included in Experiment

This research explored the metabolic adaptations that occurred using a 2 × 2 × 3 fac-
torial assignment of cows: milked 2X vs. 3X, negative vs. positive energy balance, and
lactation stage (early vs. mid vs. late). Randomly selected cows in second and third
lactation, in optimal body condition for their LP (mean BCS 3, range 2.75–3.5), and with-
out clinical health problems (they were also not lame); milked 2X daily (milking interval
10–12 h) (N = 45) and 3X daily (milking interval 6–8 h) (N = 45) were enrolled in the study.
The cows were in early (30–60 DIM), mid (120–190 DIM), and late lactation (220–290 DIM).
Approximately 50% of the cows in each group were in PEB and 50% in NEB. Finally, the cows
were categorized so that cows in different LP were approximately equally represented in the
PEB and NEB groups (Table 2). The minimum number of cows enrolled in the study was
determined based on the number of experimental groups, according to previously described
methods [30]. Moreover, that number was increased to ensure adequate number of sampled
animals that would allow us to obtain a statistically significant difference in metabolite values
between the investigated groups. To calculate the number of animals needed, we used data
on the variability of metabolic parameters determined in our previous research and an online
sample size calculator: https://homepage.univie.ac.at/robin.ristl/samplesize.php (accessed
on 22 April 2022), with targeted power = 0.8 and significance threshold alpha = 0.05.

https://homepage.univie.ac.at/robin.ristl/samplesize.php
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Table 1. Chemical composition of the total mix ration components (% in dry matter (DM)) according to NRC (2001).

Component * Dry Matter, % Crude
Protein, % Crude Fat, % Raw Ash,% NEL **, MJ/kg NDF, % ADF, % Lignin,% Ca, % P, % kg DM CONCENTRATE, %

1 43.6 7 3.3 3.1 6.73 32.2 17.5 1.4 0.28 0.26 8.72 /

2 33 17.3 2.5 10.4 5.43 44.1 33.4 6.6 1.39 0.36 1.65 /

3 84.3 19.6 1.4 11.5 5.8 40.9 29.9 5.5 1.37 0.3 1.94 /

4 26.9 10 7 4 7.34 48 23.1 5 0.91 0.09 1.08 /

5 21.8 28.4 5.2 4.9 7.15 47.1 23.1 4.7 0.35 0.59 0.96 /

6 88.1 9.4 4.3 1.5 8.41 9.5 3.4 0.9 0.04 0.3 5.38 50.33

7 91 12.4 2.2 2.9 7.78 20.8 7.2 1.9 0.06 0.39 0.61 5.52

8 90.3 37.8 5.4 7.4 7.36 29.8 20.5 9.5 0.75 1.1 0.92 8.40

9 89.1 49.9 1.6 6.6 8.91 14.9 10 0.7 0.4 0.71 0.87 8.07

10 92.2 37 1.4 7.7 5.78 40.3 30 9.5 0.48 1 1.44 12.85

11 90.3 32.6 1.7 6.5 6.57 36.1 22.1 8.3 0.4 0.83 0.55 5.02

12 100 0 0 100 0 0 0 0 39.4 0 0.13 1.07

13 100 0 0 100 0 0 0 0 0 0 0.06 0.49

14 100 0 0 100 0 0 0 0 0 0 0.06 0.49

15 98 0 0 100 0 0 0 0 0 0 0.05 0.41

16 99 0 0 100 0 0 0 0 32.8 0 0.18 1.48

17 99 56 0 85.1 0 0 0 0 12 16 0.12 0.99

18 99 283 0 0.03 1.9 0 0 0 6.8 0 0.18 1.48

19 100 0 0 100 0 0 0 0 0 0 0.02 0.16

20 100 0 99 0 32.64 0 0 0 0 0 0.39 3.21

21 52.89 17.01 4.76 6.81 7.24 28.13 16.53 3.1 0.97 0.45 25.3 100.0

* 1-Corn silage, multiple grains, 2-Haylage of alfalfa, average, 3-Hay of alfalfa, average, 4-Silane beet noodles, 5-Beer trope, fresh, 6-Corn, grain, 7-Barley grain, 8-Oil shot rapeseed,
9-Soybean meal 44%, 10-Sunflower meal 33%, 11-Extruded flaxseed, 12-Livestock chalk, 13-Livestock salt, 14-Baking soda, 15-MgO, 16-Premix, 17-Phosphozel, 18-Zenural (urea), 19-Bentonite
(Mycotoxin adsorbent), 20-Dairyfat c 16, and 21-Chemical composition. ** Abbreviations: NEL-net energy of lactation, NDF-neutral detergent fiber, and ADF-acid detergent fiber.
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Table 2. Milk yield, chemical composition of milk, and dry matter intake (DMI) used for classification
of selected 3X and 2X per day milked cows in different lactation periods divided into energy balance
positive (Pos) and negative (Neg) groups.

Production
Parameters

Energy
Balance

Cows Milked 3X Daily Cows Milked 2X Daily

Early Mid Late Early Mid Late

Mean SD * Mean SD Mean SD Mean SD Mean SD Mean SD

Milk (kg/day)
Neg 30.7 2.4 43.8 5.03 40.0 5.5 29.7 1.7 37.3 1.7 38.0 3.1

Pos 25.2 1.83 40.1 1.77 41.3 2.3 25.9 1.6 34.0 2.6 35.1 2.5

Milk Fat (%)
Neg 4.61 0.92 4.46 0.43 4.35 0.44 4.32 0.71 4.48 0.4 4.7 0.51

Pos 3.57 0.28 3.47 0.26 3.53 0.31 3.70 0.4 3.8 0.2 3.63 0.2

Milk Protein (%)
Neg 3.65 0.35 3.89 0.49 3.95 0.50 3.40 0.1 3.57 0.8 3.96 0.6

Pos 3.48 0.45 3.95 0.5 2.47 0.65 3.73 0.3 3.57 0.7 3.58 0.2

Lactose (%)
Neg 4.93 0.1 5.03 0.2 4.95 0.25 4.94 0.15 5.06 0.2 4.91 0.15

Pos 4.82 0.12 4.85 0.11 4.78 0.11 4.81 0.2 4.8 0.2 4.73 0.07

Energy-corrected
Milk (kg/day)

Neg 34.3 6.03 48.8 5.4 43.9 5.14 31.3 2.97 40.72 2.07 43.32 3.09

Pos 23.9 1.76 36.47 1.04 37.6 0.96 25.4 2 33.87 1.92 33.97 2.64

DMI Predicted
(kg/day)

Neg 19.8 2.28 26.8 1.94 25.51 1.73 19.6 1.1 24.1 0.8 25.3 1.04

Pos 17.3 1.02 23 0.35 23.41 0.31 18.04 0.75 21.9 0.77 22.19 0.88

Body Weight (kg)
Neg 582.2 15.5 611.2 19.9 619.7 15.5 592.6 17.5 620.2 10.4 629.5 12.6

Pos 588.3 22.3 605.6 21.5 625.8 16.8 589.5 18.9 611.4 15.2 631.7 14.3

Energy Balance
(MJ NEL/day)

Neg −13.68 4.95 −11.27 4.09 −5.01 2.37 −5.88 2.37 −4.73 1.84 −4.51 2.55

Pos 1.44 0.92 0.98 0.86 0.9 0.31 1.97 1.5 1.94 1.5 3.31 2.21

Number of Cows
Neg 9 7 8 7 8 7

Pos 6 8 7 8 7 8

* Abbreviations: SD—standard deviation.

2.4. Blood Metabolic Analysis

Blood samples for determination of lipolysis, ketogenesis, and other parameters of
metabolic adaptation were collected on Day 7 of the experiment. Blood was sampled
immediately after morning milking. Vacutainers with clot activator for serum separation
(Bexton, Dickinson and Company, Franklin Lakes, NJ, USA) were used for blood collection.
After blood clotting, the tubes were placed in a portable refrigerator (at 4 ◦C) and trans-
ported to the laboratory. Blood serum was obtained by centrifugation twice at 3000 rpm for
10 min at room temperature and divided evenly into 3 aliquots. The separated serum was
analyzed for biochemical and endocrinological parameters the same day after collection in
the Laboratory of Pathophysiology, Department of Veterinary Medicine, University of Novi
Sad, Serbia. The following blood biochemical parameters of lipolysis and ketogenesis were
determined: non-esterified fatty acids (NEFA) (Cat.No FA115) and beta-hydroxybutyrate
(BHB) (Cat.No 21525). Other parameters of the standard metabolic profile in cows were de-
termined: glucose (GLU) (Cat.No 21503), cholesterol (CHOL) (Cat.No 11539), triglycerides
(TGC) (Cat.No 11529), total bilirubin (TBIL) (Cat.No 11544), aspartate aminotransferase
(AST) (Cat.No 11561), gamma-glutamyl transferase (GGT) (Cat.No 11520), calcium (Ca)
(Cat.No 11570), inorganic phosphates (P) (Cat.No 11508), total protein (TPROT) (Cat.No
11553), albumin (ALB) (Cat.No 11573), and urea (Cat.No 11537). Standard kits from Randox
(UK) for NEFA and BioSystem (Spain) for other parameters were used on Rayto Chemray
120 spectrophotometer (Rayto Life and Analytical Sciences, China). Endocrinological anal-
yses included determination of insulin (INS) (Cat.No 025260), triiodothyronine T3 (Cat.No
025282), thyroxine T4 (Cat.No 025258), and cortisol (CORT) (Cat.No 025287). An automated
immunoassay analyzer TOSOH AIA-360 (Tosoh Bioscience, Tokyo, Japan) was used. The
Revised Quantitative Insulin Sensitivity Check Index–β-hydroxybutyrate (RQUICKIBHB)
index of insulin resistance was calculated according to the formula [31].
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2.5. Statistical Analysis

First, the possibility of clustering cows according to LP, EB, MF, and EB×MF when
using the values of blood metabolic parameters was examined by principal components
analysis (PCA). Unit variance scaling was applied to rows; singular value decomposition
with imputation was used to calculate principal components. Prediction ellipses were
chosen so that a new observation from the same group was within the ellipse with 95%
probability. Classification of cows by MF, LP, EB, and interaction of MF × EB was presented
graphically. Online platform for visualizing clustering of multivariate data, CLUSTVIW
source: https://biit.cs.ut.ee/clustvis/ (accessed on 22 April 2022), was used.

The influence of MF, LP, EB, and their interaction on selected blood parameters and
MY was determined using a general linear model (GLM). Comparison of blood parameter
values between groups was made by ANOVA and Tukey’s test. To check assumptions,
homogeneity of variance tests, including Bartlett’s test, were employed. Furthermore,
Levene´s test for equality of error variances was used. For this purpose, statistical software
SPSS, version 22.0 (IBM, Armonk, NY, USA) was utilized.

The correlation between EB, NEFA, and BHB with the studied blood parameters
was determined using Pearson’s correlation coefficient and regression analysis, separately
for 2X and 3X milked cows that were in PEB and NEB as independent groups. The
statistical significance of the connection was determined and the change in the strength
of the connection as a function of the group to which the cows belonged was presented
graphically. The test used was a z-test for Fisher z-transformed correlation coefficients.
The regression line between EB and their blood NEFA and BHB was presented with MF as
the covariate. Correlation analysis and regression line figure were carried out with SPSS,
version 22.0 (IBM, Armonk, NY, USA). The comparison between correlation coefficients was
performed with online calculator http://vassarstats.net/rdiff.html (accessed on 22 April
2022). The strength of the correlation was presented graphically by STHDA http://www.
sthda.com/english/rsthda/correlation-matrix.php (accessed on 22 April 2022).

3. Results
3.1. Clustering of Cows According to Lactation Period, Energy Balance, Milking Frequency, and
Their Interactions Based on the Values of Blood Parameters

Based on the blood biochemical parameters examination, it was possible to distinguish
clusters of cows in early lactation in relation to mid and late lactation. Clusters of cows differed
partially according to EB, but it was not possible to distinguish cows as a function of MF.
However, when cows were classified based on the interaction of EB×MF, the cluster of cows
that were milked 3X in NEB stood out the most. It partially overlapped with cows that were
milked 2X and were in NEB and did not coincide with clusters of cows that were in PEB. These
data indicate that 3X milked cows in NEB exhibit significant metabolic deviations (Figure 1).
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1-3X milking and NEBAL; 2-2X milking and NEBAL; 3-3X milking and PEBAL; 4-2X milking and PE-
BAL; NEBAL-negative energy balance; PEBAL-positive energy balance; and PC-principal component
1 and 2 (% of explained total variations)).

3.2. Value of Blood Parameters in Function of Lactation Period, Energy Balance, Milking
Frequency, and Their Interactions

MF, EB, LP, and MF×EB showed significant effects on metabolic parameters, while
the other MF×LP and the 3-way interaction MF×EB×LP did not show significant effects
on most blood parameters (Table 3). The values of each blood parameter were studied
as a function of EB, MF, LP, and their interactions (Table 4). The LP affected all studied
parameters except the values of Ca and P. In early lactation, there are higher values of NEFA,
BHB, AST, GGT, TBIL, UREA, and CORT and lower values of GLU, CHOL, TGC, TPROT,
ALB, INS, RQUICKIBHB, T3, and T4 compared with other periods. Higher values of NEFA,
BHB, AST, GGT, TBIL, and CORT, and lower values of GLU, Ca, INS, and T4 were found
in cows milked 3X compared with 2X. The EB showed an impact on all tested parameters
except for Ca. Cows in NEB had higher values of NEFA, BHB, AST, GGT, TBIL, UREA, and
CORT and lower values of GLU, CHOL, TGC, TPROT, ALB, P, INS, RQUICKI, T3, and T4.
The interaction of MF × EB affected all selected parameters except Ca, ALB, UREA, and T4.
Cows milked 3X in NEB had higher levels of NEFA, BHB, AST, GGT, TBIL, and CORT and
lower values of GLU, CHOL, TGC, TPROT, P, INS, RQUICKIBHB, and T3 compared with
cows milked 2X in NEB and cows in PEB. The MF×EB×LP interaction was significant for
INS and T3, so that INS and T3 concentrations were lower in 3X milked cows in NEB in
early lactation compared with those in PEB, other LPs, and 2X milked cows.

Table 3. General linear model—influence of lactation period (LP), milking frequency (MF), energy
balance (EB), and their interaction on milk production and blood metabolic and endocrine parameters
in cows. Table represents determined p values.

MF EB LP MF×EB MF×LP EB×LP MF×EB×LP

Milk_LperDay 0.000 0.000 0.000 0.131 0.033 0.214 0.334

MilkFat 0.925 0.000 0.984 0.077 0.373 0.724 0.030

MilkProtein 0.593 0.000 0.448 0.244 0.004 0.000 0.066

Lactose 0.118 0.000 0.075 0.153 0.450 0.141 0.438

NEFA 0.000 0.000 0.000 0.000 0.000 0.050 0.144

AST 0.001 0.000 0.000 0.001 0.071 0.041 0.179

GGT 0.001 0.000 0.000 0.001 0.072 0.041 0.179

Ca 0.000 0.188 0.527 0.109 0.928 0.183 0.170

P 0.325 0.009 0.431 0.073 0.075 0.389 0.941

TPROT 0.114 0.012 0.269 0.924 0.972 0.198 0.841

ALB 0.815 0.000 0.008 0.001 0.944 0.540 0.103

UREA 0.048 0.000 0.000 0.164 0.280 0.667 0.052

INS 0.265 0.000 0.431 0.034 0.746 0.869 0.001

RQUICKIBHB 0.108 0.000 0.001 0.397 0.158 0.001 0.984

T3 0.012 0.000 0.000 0.000 0.801 0.299 0.019

T4 0.647 0.002 0.000 0.000 0.079 0.012 0.118

CORT 0.142 0.000 0.002 0.010 0.953 0.150 0.223

Abbreviations: non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB), glucose (GLU), cholesterol (CHOL),
triglycerides (TGC), total bilirubin (TBIL), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT),
calcium (Ca), inorganic phosphates (P), total protein (TPROT), albumin (ALB), insulin (INS), revised quantitative
insulin sensitivity check index–β-hydroxybutyrate (RQUICKIBHB), triiodothyronine (T3), thyroxine (T4), and
cortisol (CORT).
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Table 4. Comparison between groups with post-hoc analysis.

Parameter Energy
Balance

3X Milking 2X Milking

Early Mid Late Early Mid Late

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

NEFA
(mmol/L)

Neg 1.29 a 0.32 0.68 b 0.17 0.43 c 0.20 0.60 b 0.19 0.34 c 0.16 0.38 c 0.19

Pos 0.74 b 0.17 0.35 c 0.11 0.32 c 0.15 0.59 b 0.21 0.37 c 0.10 0.42 c 0.15

BHB
(mmol/L)

Neg 2.15 a 0.29 1.46 c 0.41 1.04 e 0.47 0.67 d 0.21 0.36 f 0.24 0.50 d 0.17

Pos 0.89 b 0.30 0.64 d 0.16 0.41 f 0.11 0.51 d 0.26 0.30 f 0.15 0.50 d 0.15

GLU
(mmol/L)

Neg 1.94 a 0.19 2.20 c 0.21 2.56 d 0.14 2.27 c 0.08 2.73 f 0.29 2.88 f 0.22

Pos 2.41 b 0.11 2.54 d 0.17 2.78 e 0.11 2.33 c 0.11 2.74 f 0.36 3.00 f 0.29

CHOL
(mmol/L)

Neg 2.58 a 0.30 2.74 a 0.53 3.63 c 0.65 3.48 c 0.38 4.08 b 0.58 4.51 b 0.63

Pos 4.08 b 0.99 4.50 b 0.78 4.49 b 1.17 3.13 c 1.08 4.20 b 1.50 4.49 b 1.07

TGC
(mmol/L)

Neg 0.09 a 0.01 0.09 a 0.02 0.12 c 0.02 0.12 c 0.01 0.14 d 0.02 0.15 d 0.02

Pos 0.16 b 0.04 0.17 b 0.03 0.17 b 0.04 0.12 c 0.04 0.16 b 0.06 0.17 b 0.04

TBIL
(µmol/L)

Neg 18.6 a 4.79 11.3 c 5.34 6.73 e 2.52 8.86 f 3.40 8.36 f 5.31 5.05 e 1.94

Pos 9.52 b 3.59 4.11 d 1.42 4.47 d 1.48 8.08 f 1.94 5.63 e 1.72 4.82 d 1.86

AST
(U/L)

Neg 96.8 a 24.9 58.8 b 27.8 35.0 d 13.1 46.1 b 17.7 43.5 b 27.6 26.3 e 10.1

Pos 46.6 b 17.6 20.1 c 6.94 21.9 c 7.25 39.6 b 9.48 27.6 e 8.42 23.6 c 9.11

GGT
(U/L)

Neg 32.3 a 8.30 19.6 b 9.25 11.7 d 4.37 15.6 b 5.90 14.5 b 9.20 8.75 c 3.36

Pos 15.6 b 5.86 6.71 c 2.31 7.30 c 2.42 13.2 b 3.16 9.19 d 2.81 7.87 c 3.04

Ca
(mmol/L)

Neg 2.22 a 0.46 2.00 a 0.40 1.86 b 0.44 2.73 d 0.20 2.53 d 0.22 2.66 d 0.29

Pos 2.18 a 0.25 2.13 a 0.15 2.40 c 0.23 2.60 d 0.33 2.67 d 0.52 2.59 d 0.20

P
(mmol/L)

Neg 1.89 a 0.19 1.95 a 0.22 1.72 a 0.49 1.77 a 0.60 1.93 a 0.22 2.04 b 0.18

Pos 2.22 b 0.47 2.13 c 0.06 2.21 b 0.18 1.82 a 0.41 1.91 a 0.37 2.21 b 0.42

TPROT
(g/L)

Neg 57.4 a 5.78 63.5 c 5.98 63.4 c 6.99 65.4 c 6.25 63.8 c 5.48 69.7 c 7.61

Pos 75.1 b 10.8 77.6 b 6.32 79.9 b 3.92 68.9 c 7.69 76.9 b 4.49 73.9 b 3.29

ALB
(g/L)

Neg 23.1 a 3.31 26.9 b 3.55 30.5 b 3.63 25.4 a 4.13 32.3 d 2.94 32.9 d 3.58

Pos 26.6 b 6.29 38.4 c 4.28 36.0 c 6.29 32.7 d 6.98 33.9 d 4.30 36.2 c 5.19

UREA
(mmol/L)

Neg 7.53 a 1.63 4.99 b 1.31 4.42 b 2.02 6.57 a 1.32 5.33 b 1.29 4.32 c 1.25

Pos 5.35 b 1.22 4.04 b 1.73 4.99 b 1.25 3.74 c 1.19 4.00 c 1.47 4.38 c 1.22

INS
(mU/L)

Neg 2.49 a 0.97 4.45 b 0.90 4.01 b 0.70 3.04 c 0.61 3.38 c 1.31 3.14 c 0.69

Pos 4.42 b 0.67 4.90 b 1.32 5.11 b 0.58 5.14 b 1.25 6.86 d 2.21 7.68 d 1.70

RQUICKIBHB
Neg 0.40 a 0.14 0.46 c 0.04 0.62 b 0.14 0.58 b 0.09 0.65 b 0.08 0.63 b 0.16

Pos 0.58 b 0.09 0.83 d 0.13 0.71 d 0.10 0.52 b 0.09 0.62 b 0.16 0.54 b 0.06

T3
(nmol/L)

Neg 0.48 a 0.19 0.98 b 0.22 0.95 b 0.42 0.55 a 0.18 0.83 c 0.28 0.81 c 0.42

Pos 1.05 b 0.32 1.07 b 0.18 0.99 b 0.30 1.14 b 0.26 1.38 b 0.34 1.37 b 0.38

T4
(nmol/L)

Neg 12.1 a 6.49 28.4 c 10.2 29.7 c 11.9 23.2 d 4.04 29.3 c 7.69 38.3 b 15.7

Pos 37.1 b 9.10 42.9 b 21.6 27.6 c 10.9 36.5 b 9.04 43.7 b 12.9 56.5 d 18.5

CORT
(nmol/L)

Neg 27.2 a 4.88 20.8 c 8.73 18.9 c 4.68 16.9 c 2.06 12.9 d 4.89 15.4 b 2.14

Pos 15.4 b 3.15 12.0 d 3.40 12.2 d 2.99 11.6 d 3.90 8.90 e 3.90 11.3 d 4.79

Abbreviations: non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB), glucose (GLU), cholesterol (CHOL),
triglycerides (TGC), total bilirubin (TBIL), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT),
calcium (Ca), inorganic phosphates (P), total protein (TPROT), albumin (ALB), insulin (INS), revised quantitative
insulin sensitivity check index–β-hydroxybutyrate (RQUICKIBHB), triiodothyronine (T3), thyroxine (T4), and
cortisol (CORT). Different superscript means significant difference between means at minimum p < 0.05.
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3.3. Correlation between Energy Balance, NEFA, BHB, and Other Blood Parameters in Double-
and Triple-Milked Cows in Positive and Negative Energy Balance

Correlations between EB, NEFA, and BHB and blood parameters were different among
cows depending on MF and EB. Very strong correlations were found in cows milked 3X
in NEB, and then decreased so that correlations were weaker in cows milked 2X in NEB,
even weaker in cows milked 3X in PEB, and many correlations were completely lost in
cows milked 2X in PEB (Figure 2a). When we compared the correlation coefficients, we
concluded that EB, NEFA, and BHB were more significantly correlated with metabolic
parameters in cows milked 3X in NEB (R = 0.78–0.95, p < 0.01) compared with the group of
cows milked 2X in NEB (R = 0.56−0.79, p < 0.01), as well as in relation to the group of cows
milked 3X (R = 0.35−0.59, p < 0.05) and 2X (R = 0.06−0.31; non-significant) which were in
PEB. NEB led to a significantly higher correlation of metabolic parameters with EB, NEFA,
and BHB in cows milked 3X compared with the other study groups. Certain parameters,
such as Ca and P, showed no relationship with EB, NEFA, and BHB regardless of the group
of cows. In cows milked 3X, lipolysis and ketogenesis (higher NEFA and BHB) were much
more pronounced with decreasing EB, and ketogenesis (increase in BHB) was positively
correlated with lipolysis (increase in NEFA) (Figure 2b).
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(MF3EB+)-3X milked in positive EB; and (MF2EB+)-2X milked in positive EB; progression from white
to dark blue dots—increasing positive correlation; from white to dark red dots-increasing negative
correlation; size of dots and intensity of color represents the intensity of correlation; (b) Regression
line between energy balance (EB, MJ NEL/day), non-esterified fatty acids (NEFA, mmol/L) and
beta-hydroxybutyrate (BHB, mmol/L) in 3X (green line) and 2X (blue line) milked cows.

The relative effect of EB, NEFA, and BHB on the parameters varied and depended on
the animal group. In cows in NEB, the value of GLU, CHOL, TGC depended significantly
more on the value of EB. In cows milked 3X in NEB, the values of TBIL, AST, and GGT were
significantly more dependent on EB compared with other groups of cows. The values of
TPROT and ALB were significantly more dependent on EB in cows in PEB, while the value
of UREA was more dependent in cows in NEB. INS was significantly more dependent on
EB in cows milked 2X in PEB, while the value of T3 was significantly more dependent on
EB only in cows milked 3X. RQUICKIBHB positively correlated with EB in cows in NEB.
CORT decreased with increasing EB value, which was most pronounced in cows milked 3X
in PEB, while there was no effect in cows milked 2X in PEB. The values of GLU, CHOL,
TGC, TPROT, ALB, INS, T3, and T4 decreased and the values of AST, GGT, TBIL, UREA,
and CORT increased with the increase of NEFA and BHB.

The dependence of TGC, TBIL, AST, GGT, and CORT on NEFA is higher in 3X milked
cows regardless of EB, while the dependence of GLU, UREA, INS, and T4 on NEFA was
higher in cows in NEB, regardless of MF. RQUICKIBHB was more dependent on NEFA
in cows in PEB. The dependence of the selected blood parameters on BHB was consistent,
regardless of the EB and the MF, with the dependence decreasing in cows milked 2X in PEB
compared with other groups of cows.

4. Discussion
4.1. Milking Frequency and Energy Balance Adaptation

PCA has shown that blood profiles are more uniform when more factors by which cows
were categorized were included. This suggests that we have identified some important
features of the data and there may be dependencies, which were determined by the GLM
to support this clustering. This preliminary result confirms that it is necessary to include
factors such as lactation (LP, MY) and EB in the experimental model to fully understand the
metabolic adaptation in cows milked 2X and 3X per day and their productive and metabolic
characteristics and differences. In this experiment, cows were assigned to NEB and PEB in
double and triple milking groups. MF showed a significant effect on MY, and ECM and no
effect on % fat, protein, or lactose. These results agree with the previously reported results
that milking 3X leads to an increase in MY with little or no change in milk content [32].
There are several mechanisms that explain the increased MY, such as the increase in the
number of mammary epithelial cells, their decreased apoptosis, increased cell activity, and
the absence of lactation inhibitors [33]. Decreased feed intake leads to an increase in milk
fat [34], and this tendency was also observed in the cows in our experiment.

The value of EB is affected by MF, so that NEB is significantly more pronounced in
cows milked 3X than those milked 2X, while in the group of cows in PEB, there is no
significant difference between 2X and 3X milked cows. Feed efficiency for milk production
(ECM: DMI) was better in 3X milked cows in NEB, compared with 2X milked cows in PEB.
This finding agrees with the previously reported results. Namely, ad libitum feeding of 3X
milked cows could fail to meet energy requirements [8]. Nutrients have been shown to
preferentially flow into milk production regardless of the higher rate of tissue catabolism [3],
and increased feed efficiency for milk production occurs only when tissues (liver, muscle,
fat, etc.) are ready to provide organic matter to support MY [35]. All this suggests that
NEB was the result of increased MY because more dietary energy was directed into the
udder to produce milk; therefore, feed efficiency for milk production was higher. MY
largely depends on the precursors that reach the mammary gland, and GLU is one of
the main precursors [36,37]. In cows selected for high MY, GLU mainly enters the udder,
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and the body meets its energy needs from its fat reserves [38]. In cows that are milked
only once per day, the uptake of GLU and acetate is significantly lower compared with
cows that are milked more often [39]. The existence of insulin-independent receptors for
GLU in the udder allow this process. In parallel, insulin resistance with reduced INS
production and reduced sensitivity of adipose tissue to INS was confirmed in cows during
NEB [21]. Deficiency of INS as the main lipogenic hormone and reduced sensitivity of
adipose tissue to INS lead to increased lipolysis and ketogenesis and unfavorable metabolic
adaptation [40], with an increase in NEFA and BHB, which are the main indicators of NEB
and poor metabolic adaptation. From all this, we conclude that the value of EB in 2X and
3X milked cows depends primarily on MY, which activates lipolysis and ketogenesis and
further metabolic adaptation.

4.2. Milking Frequency, Energy Balance, and Metabolic Adaptation

Metabolic and endocrinological profile results show that NEB, early lactation, and 3X
milking affect metabolic parameters, leading to an increase in NEFA, BHB, AST, GGT, TBIL,
UREA, and CORT and decreases in GLU, CHOL, TGC, TPROT, ALB, INS, RQUICKIBHB,
T3, and T4 compared with PEB, 2X milking, and late lactation, with significant MF×EB
interaction. This finding is a direct consequence of energy redistribution and homeorhesis
in cows milked 3X in early lactation, in NEB. A similar result was found in experiments
with feed restriction in cows [41]. The relationship between the above parameters with EB,
NEFA, and BHB shows that the relationships are strongest in 3X milked cows in NEB, and
that they are practically absent in 2X milked cows in PEB. Our results are in line with previous
results given by Wathes et al. [42] and Djoković et al. [24]. In the study by Wathes et al. [42],
correlation was examined as the function of parity and lactation, and correlations were found
to depend on these two factors. MY was positively correlated with NEFA and BHB and
negatively with INS, and relation strength decreased in later lactation. Djokovic et al. [24]
found that correlations between metabolic and endocrinological parameters depended
on the value of EB of the cow, since many correlations were lost when the EB value was
excluded (when calculating the partial correlation). They also found a constant negative
correlation between NEFA and BHB with the values of INS, T3, and T4.

NEFA and BHB are high-value biomarkers of NEB, and an increase in their value
increases the risk of developing metabolic diseases [43,44]. NEFA is considered a better
predictor of NEB [43]. The relationship between NEFA and BHB shows a weak to moderate
positive correlation [45–47], with which our results agree. Their growth and correlation
depend on MF. Thus, NEB was found to cause more intense lipolysis and more intense
ketogenesis in cows milked 3X than in a cow milked 2X. The intensity of ketone formation
is thought to depend more on the conversion of fatty acids to ketone bodies and less on the
process of β-oxidation [48]. Since NEFA is a predictor of NEB, this could be an explanation
for the differences in their correlation and the slope of the curve as a function of MF.

Clustering of cows according to NEFA and BHB significantly affects values of blood
metabolic parameters and productivity in dairy cows [49–51]. Values of NEFA above
0.5 mmol/L and BHB above 1.2 mmol/L were found in cows with metabolic stress load [50].
These cut-off values are higher in our research, so a specific metabolic adaptation to
increased lipolysis and ketogenesis was expected. Reduced DMI and increased GLU
utilization for milk production led to lower GLU concentration [52]. Hyperketonemia
is negatively correlated with GLU in dairy cows [53], and negative correlation between
NEFA and GLU was found in a goat model [47]. Low GLU concentration obstructs INS
secretion, lipid mobilization, and ketogenesis and predisposes to insulin resistance [54].
Functional status of hepatocytes significantly depends on degree of lipid mobilization [49].
There is a negative correlation between NEFA and CHOL, and their ratio can be used
to estimate hepatic lipidosis [55]. Increased lipid uptake in hepatocytes and limited fat
transport from the liver with consequently higher accumulation of triglycerides are the
main reasons for reduced concentrations of CHOL and TGC in the blood of cows [56] in
the function of lipolysis and ketogenesis. All this leads to the formation of fatty liver within
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the ketosis–fatty liver syndrome, which leads to hyperbilirubinemia [57]. AST activity was
higher in cows with higher ketogenesis, due to hepatocyte load with lipids, catabolism
of proteins, and use of their amino acids for gluconeogenesis [58]. Cows with high NEFA
and AST are more likely to be culled in herds [59]. Protein metabolism is also affected
by EB, lipolysis, and ketogenesis. Urea concentration depends on feed intake, and its
determination by NEFA is only at the level of 14% [60]. Reduced concentration of TPROT
and ALB is a consequence of decreased biosynthetic function of the liver due to higher
ketogenesis in hepatocytes [61]. Xu et al. [62] found reduced protein synthesis in cows
with a clinical form of ketosis. Gluconeogenic pathway dominantly uses amino acids when
supply of GLU is insufficient [63]; therefore, glucogenic amino acids concentrations increase
during hyperketonemia in cows [64]. Decreased concentration of Ca is connected to high
concentration of NEFA in cows during early lactation [65,66]. Elevated NEFA with reduced
concentration of Ca predisposes cows to diseases in early lactation [67,68]. Decreased
concentration of P in blood was found in hyperketonemic cows with low concentration
of INS and higher concentration of NEFA [69], and P is related to INS and adipose tissue
response during an intravenous glucose tolerance test [70].

Our results, especially in early lactation, are consistent with previous findings. Loiselle
et al. [71] found that the increase in NEFA and BHB concentrations were greater in cows
milked 2X than in cows milked 1X, serum GLU concentration decreased but remained
higher in cows milked 1X, and serum Ca on Day 4 and serum P on Days 4 and 5 were higher
in cows milked 1X. Increasing MF is associated with higher MY and metabolic changes during
the early postpartum period [72]. Andersen et al. [10] found 19% higher BHB values and 6%
lower GLU values in cows milked 3X compared with cows with lower MF. Similarly, plasma
NEFA and BHB were lower, and GLU was higher in cows milked 1X [73].

4.3. Milking Frequency, Energy Balance, and Endocrine Adaptation

Our results show that cows milked 3X in NEB have higher concentrations of CORT
and lower concentrations of INS, T3, and T4 hormones, which is consistent with findings in
cattle in the peripartum period. INS concentration decreases, and insulin resistance increases
during feed restriction in cows [39] and also during early and pick lactation [74,75]. NEFA
is associated with insulin resistance by inducing changes in post-receptor signaling and
decreasing the density of GLUT4 [76]. RQUICKI is strongly influenced by NEFA in early
lactation [77]. RQUICKIBHB negatively correlates with NEFA and BHB [24]. Weber et al. [78]
showed significantly reduced RQUICKI indices in a group of cows with higher triglycerides
accumulation in the liver, which occurs during lipolysis, ketogenesis, and NEB. RQUICKI
decreases during feed restriction in mid and late lactation or increases in early lactation [38].
In this study, it was found that in cows milked 3X in NEB, RQUICKIBHB decreased, while
in cows milked 2X in NEB, it slightly increased, so this index also showed duality in the
change of values in our case.

Huszenicza et al. [79] showed a negative correlation between NEFA and thyroid hor-
mones in cows in early lactation. In hyperketonemic cows, blood levels of thyroid hormones
T3 and T4 were significantly lower around calving than in healthy cows [80,81]. LP, MY,
and nutrient intake significantly affect thyroid hormone concentrations [82]. A negative
correlation was found between MY and T4 hormone [83]. All the above results support our
finding that there are lower concentrations of thyroid hormones in cows milked 3X in NEB.

Serum CORT concentrations were higher in cows in NEB than in cows in PEB during
feed restriction [84], but the response of CORT to ACTH is lower during early lactation
and in high yielding cows [85], which may lead to the conclusion that lactation is a type
of stress and depletes CORT reserve in the adrenal cortex. One of the most common
metabolic diseases that accompanies lactation is ketosis in cows, and a lower concentration
of CORT was found in cows with ketosis [86], which confirms that reduced cortisolemia is
the result of exhaustion of adaptive abilities of cows. Elevated levels of CORT in 3X milked
cows could be related to the increased needs of the organism for gluconeogenesis [87]
and the production of higher amounts of GLU, which is necessary for milk production.
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It is especially important that glucocorticoids enhance the lipolytic effect of glucagon,
epinephrine, and growth hormone [88]. Growth hormones are known to be responsible for
galactopoiesis and lactation persistence [89], so increased CORT levels in 3X milked cows
due to higher MY could be a logical finding. Higher CORT levels in cows may be related to
more frequent exposure to the automatic milking system, although results in this area are
contradictory [90,91]. All this could be related to higher CORT values and their association
with MF and metabolic adaptation to NEB, lipolysis, and ketogenesis. All mentioned
physiological and pathophysiological mechanisms support the results obtained in terms
of the intensity of metabolic changes in the function of EB, lipolysis, and ketogenesis in
double- and triple-milked cows.

4.4. Limitation of Study

In our trial, EB was obtained by calculation as an individual EB, based on a detailed analysis
of rations, body weight, and MY and predicted DMI on farm. This procedure was weighed as
feasible, due to the agreement between calculated and real EB in cows [92–94]. EB depends on
DMI, and it has been found that there is inter- and intra-individual variability in DMI intake
in cows [95]. The main limitation of this study is the calculative determination of DMI
based on the formula. On commercial farms, DMI is calculated on the basis of the expected
average MY of the group. Cows in our experiment received the same ration in different
amounts depending on productivity. If the ration is the same, the feed bunk space/cow is
sufficient (exceeds a minimum of 0.8 m) and the DMI of cows in the group is similar. Cows
in our study were observed during eating, so it is clear that there will be a discrepancy
between the DMI and the actual nutrient requirements because cows did not have the
same body weight and MY, and they were not even in the same LP. The obtained values of
EB according to the calculated DMI proved to be a good model in this case because such
classification led to deviations in the value of metabolic parameters. Therefore, regardless of
the limitation regarding the absence of individual measurement of DMI, it can be concluded
that the use of the formula for DMI and EB according to NRC was sufficient for this study
because the outcome variables from the metabolic profile showed significant deviations as
a function of classification according to EB and MF. Reproducibility of this study is possible
if the experiment is conducted on the farm where management is changing from 2X to 3X
MF and cows are divided in two groups based on MF. It is of great importance to select
uniform cows with similar production characteristics, body condition and size, determine
a sufficient number of individuals, and to use standards that reduce the risk of imprecision
and bias https://www.ncbi.nlm.nih.gov/books/NBK519366/table/cerguideassess.tab3/
(accessed on 22 April 2022). The study can be conducted on different farms, but then it is
necessary to include the influence of the farm and ration in the model.

5. Conclusions

On the basis of metabolic and endocrine profile parameters, we conclude that cows
milked 3X in NEB represent a specific metabolic cluster. Homeorhesis is more pronounced
in cows milked 3X, as reflected by increased lipolysis, ketogenesis, decreased glycemia and
insulinemia, and increased hepatocyte load. Metabolic and endocrinological parameters
are determined mainly by the values of EB, NEFA, and BHB in 3X milked cows in NEB
compared with other categories of cows. The change in the value of metabolic parameters
per unit EB and NEFA depends on milking frequency and EB, while the change in the value
of metabolic parameters as a function of BHB is constant regardless of milking frequency
and EB of cows. These results confirm the peculiarity of metabolic adaptation in cows
with increased milking frequency, which is characterized not only by differences in the
concentration of metabolites but also in their interactions.
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