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HD#1 (n=30) CC  (n=30) CD  (n=32) UC  (n=25) CRC#2  (n=30)

Age (years) 48.62 ± 14.36 47.07 ± 17.16 33.89 + 11.37 51.04 + 14.72 70.40 + 11.06

Male/female (No.) 16/14 17/13 25/7 18/7 20/10

Disease duration (CD) (months) N/A N/A 60.11 + 15.56 62.08 + 13.84 N/A

Disease location  (CD)#3

  L1 N/A N/A 7 4 N/A

  L2 N/A N/A 13 21 N/A

  L3 N/A N/A 12 0 N/A

  L4 N/A N/A 0 0 N/A

Disease location  (CRC)

  Ascending colon N/A N/A N/A N/A 7

  Transverse colon N/A N/A N/A N/A 1

  Descending colon N/A N/A N/A N/A 0

  Sigmoid colon N/A N/A N/A N/A 11

  Rectum N/A N/A N/A N/A 11

Stool and tissue samples were collected in healthy controls, patients with CC, CD, and UC.

#1 Only stool sample collected, used as healthy controls in gut microbiota analysis.

#2 Only adjacent normal tissue collected, used as normal tissue control in staining and QPCR assays.

#3 According to the Montreal classification system.

colorectal cancer (CRC) and healthy controls (HD).
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Figure S1. Colonic musoca from patients with chronic constipation displayed increased mucosal 
inflammation. A) QPCR analysis of inflammatory gene expression in colonic tissues from patients 
with chronic constipation (CC) (n=30), inflamed region from patients with Crohn’s disease (CD) 
(n=32), inflamed region from patients with ulcerative colitis (UC) (n=25), and normal adjacent tissue 
from patients with colorectal cancer served as normal control (NC) (n=30). B) Immunofluorescence 
staining of macrophages, CD4+ T and CD8+ T cells in tissues displayed in A. Scale bars, 100 μm. C) 
Quantification of macrophages, CD4+ T and CD8+ T cells per field in B. In A and C, data represent 
mean ± SD; *P < 0.05, **P < 0.01, ***P < 0.001 by one-way ANOVA with Dunnett's post hoc test.
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Figure S2. DSS treated Kitwsh/wsh mice displayed altered infiltraiton of Treg and Th17. The abundance of Treg 
(A), Th17 (B), Th1 (C) cells in colonic lamina propria (LP) were analyzed by flow cytometry. Data represent 
mean ± SEM; ns, not significant, *P < 0.05, **P < 0.01 by unpaired Student’s t test.
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Figure S3. Loperamide treatment did not alter the expression of tight junction proteins in intestinal and 
colonic tissues. WT mice (n=6/group) were gavaged with 10 mg/kg body weight (b.w.) loperamide every day for 
7 days. The expression of tight junction proteins including claudin-1, claudin-2, JAM-A, occludin, and ZO-1 was 
examined by QPCR (A) and immunofluorescence staining (B). Scale bar, 100 μm. Data represent means ± SEM; 
ns, not significant by two-sided Student t test.
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Figure S4. Mice fed with low-carbohydrate and high-protein diet displayed an elevated abundance of A. 
muciniphila, while decreased abundance of Lactobacillus. A) Composition of the control diet (CD) and the 
low-carbohydrate and high-protein diet (LCHD) represented in percent calories. B) Food intake of mice fed with 
CD or LCHD. C) QPCR analysis of the abundance of A. muciniphila and Lactobacillus in fecal sample from mice 
fed with CD or LCHD for 4 weeks. Data represent mean ± SD; *P < 0.05, **P < 0.01, ***P < 0.001, ns, not signif-
icant by two-sided Student t test.
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Figure S5. GI dysmotility was responsible for the altered gut microbiota in Kitwsh/wsh mice, rather  than mast 
cell. A) QPCR analysis of the absolute abundance of L. animalis, L. johnsonii and A. muciniphila in feces of WT, 
Kitwsh/wsh and Kitwsh/wsh mice reconstituted with bone marrow derived mast cells (BMMC) (n=6/group). B) QPCR anal-
ysis of the absolute abundance of Lactobacillus genus and A. muciniphila in feces of Mclfl/fl and Cpa3-cre; Mclfl/fl mice 
(n=6/group). Data represent means ± SEM; ns, not significant, ***P < 0.001 by one-way ANOVA with Dunnett's post 
hoc test (A) and unpaired Student’s t test (B).
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Figure S6. Phenylalanine metabolism did not significantly alter susceptibility to colitis. A) The normalized 
abundance of metabolites enriched in phenylalanine metabolism which includes phenylacetylglycine, phenylacet-
aldehyde, and L-Tyrosine in WT and Kitwsh/wsh mice. B-G) WT mice (n=6/group) were treated with phenylacetyl-
glycine, phenylacetaldehyde, and L-Tyrosine in drinking water at a concentration of 200 mg/kg per day for 2 
weeks, followed by a 2.5% DSS treatment for 7 days and water 2 days. The body weight changes (B), colon 
lengths (C), representative images of H&E-stained colon sections (D), proinflammatory cytokine expression (E) 
and infiltration of Treg and Th17 in colonic tissue (F, G) were monitored or analyzed. Scale bar (D), 100 μm. In 
A-C, E, and G, data represent mean ± SD; *P < 0.05, **P < 0.01, ***P < 0.001, ns, not significant by one-way 
ANOVA with Dunnett's post hoc test.
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Figure S7. L. animalis has the ability to convert linoleic acid. A) Redundancy analysis (RDA) of species that 
different between Kitwsh/wsh and WT mice, and long chain fatty acids. Only top 20 different bacterial species were 
labeled. B) Correlation analysis of L. animalis and fecal levels of linoleic acid. C) BLAST search of the LAI 
homologous enzyme in L. animalis genome. D-F) WT mice were treated with a cocktail of antibiotics (ABX) for 
4 weeks, and then gavaged with L. animalis for 2 weeks. Linoleic acid (LA) was administrated during the whole 
process. Fecal samples were collected and the amount of LA was quantified by gas chromatography before and 
after L. animalis gavage. The quantification data was shown in E and the representative chromatogram was shown 
in F. ***P < 0.001 by paired two-sided Student t test.
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Figure S8. Representative images of mucus layer stained using anti-Mucin2 antibody 
in adjacent normal tissue from CRC patients and inflamed colon tissue from CD and 
UC patients. Scale bar, 100 μm.
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