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Abstract

Drug sensitivity prediction models for human cancer cell lines constitute important tools in

identifying potential computational biomarkers for responsiveness in a pre-clinical setting.

Integrating information derived from a range of heterogeneous data is crucial, but remains

non-trivial, as differences in data structures may hinder fitting algorithms from assigning

adequate weights to complementary information that is contained in distinct omics data. In

order to counteract this effect that tends to lead to just one data type dominating supposedly

multi-omics models, we developed a novel tool that enables users to train single-omics mod-

els separately in a first step and to integrate them into a multi-omics model in a second step.

Extensive ablation studies are performed in order to facilitate an in-depth evaluation of the

respective contributions of singular data types and of combinations thereof, effectively iden-

tifying redundancies and interdependencies between them. Moreover, the integration of the

single-omics models is realized by a range of distinct classification algorithms, thus allowing

for a performance comparison. Sets of molecular events and tissue types found to be

related to significant shifts in drug sensitivity are returned to facilitate a comprehensive and

straightforward analysis of potential computational biomarkers for drug responsiveness.

Our two-step approach yields sets of actual multi-omics pan-cancer classification models

that are highly predictive for a majority of drugs in the GDSC data base. In the context of tar-

geted drugs with particular modes of action, its predictive performances compare favourably

to those of classification models that incorporate multi-omics data in a simple one-step

approach. Additionally, case studies demonstrate that it succeeds both in correctly identify-

ing known key biomarkers for sensitivity towards specific drug compounds as well as in pro-

viding sets of potential candidates for additional computational biomarkers.

Introduction

Large-scale pharmacogenomic cell line data bases featuring both in-depth multi-omics charac-

terizations and extensive pharmacological profiles of human cancer cell lines constitute a
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crucial tool in uncovering potential mechanisms inducing drug sensitivity towards anti-cancer

drug compounds [1–3]. To this end, multiple studies have been conducted building predictive

models based on a range of different omics data types separately to predict both pre-clinical

and clinical drug sensitivity, including baseline gene expression patterns [4, 5], somatic muta-

tions [1], copy number variations (CNVs) and hypermethylation events [6, 7], or tissue lineage

[2, 3].

Moreover, several comparative studies have been performed that assess the respective

impact, benefits and shortcomings of specific modelling choices in the context of cancer drug

sensitivity prediction tasks: Working with a set of human breast cancer cell lines, Costello et al.

evaluate 44 drug sensitivity prediction algorithms proposed in the framework of a DREAM

challenge, including among others kernel methods, non-linear, sparse linear and principal-

component regression approaches, as well as ensemble models [8]. They find that leveraging

all available omics data in addition to integrating external information, related for instance to

biological pathways, improves prediction performance, as does employing non-linear model-

ling approaches. Gene expression data is found to constitute the most potent predictor vari-

able, potentially as a consequence of its data structure and the wealth of customized tools

available to process it. Jang et al. systematically assess the performance of distinct choices in

five components of the modelling pipeline, including the choice of input features and the

choice of fitting algorithm, as well as the overall impact of these components themselves on

model predictivity [9]. Concluding that the most important modelling factor is the choice of

features and agreeing with Costello et al. on the dominance of gene expression data, they rate

the choice of algorithm as the third most important modelling factor. Expanding on this con-

cept of systematically identifying optimal choices in distinct steps of the modelling pipeline

and applying it to translational modelling, Turnhoff et al. have published an R package that

can be used to perform even more intricate analyses in the context of predicting clinical

responses while training on cell line data [10, 11].

In addition to the missing consensus on optimal fitting strategies, another unsolved prob-

lem is how to adequately integrate heterogeneous data types into one common model while

assigning the proper weights to complementary information from distinct data. To this end,

Aben et al. propose a two-stage approach that first utilizes upstream omics data and conse-

quently fits the resulting errors with a second model based on gene expression [12, 13]. By

employing this method on the GDSC data set, they aim to counteract the tendency of gene

expression data to dominate models that are designed to integrate information from distinct

omics data types in a straightforward approach [1, 2, 7–9, 14, 15]. This ansatz, however, fails to

incorporate pathway information and impedes a simple quantitative analysis into the relative

importance of the contributions of the entirety of data types to the model and consequently,

into the relative influence of possible cellular mechanisms that determine drug sensitivity by

focusing mostly on the subset of upstream omics data. Their results demonstrate that switch-

ing from a one-stage to a two-stage modelling approach yields negligible changes in predictive

performance, but can produce models that are more easily understandable, which is impera-

tive for translating the results to a clinical setting.

In this paper, we present a two-step modelling approach to classify pre-clinical drug sensi-

tivity in cancer based on six distinct feature types, namely basal gene expression, somatic

mutation, CNV and hypermethylation events, pathway activation scores provided by the R
package PROGENy [16, 17], and information on tissue lineage. A set of models is first trained

on one data type each, before their respective outputs are collectively utilized as input features

in a second step, where a range of different classification algorithms are employed, including a

naïve Bayes classifier, a shallow neural network, support vector machines, decision tree ensem-

bles, and both linear and logistic regression approaches with multiple distinct regularization
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schemes. This ansatz leverages and applies the full range of crucial insights gained from the

aforementioned studies, such as the importance of integrating distinct and complementary

data types, especially pathway information and gene expression data, and the challenge of real-

izing this when fitting models on all structurally heterogeneous data types simultaneously. In

turn, our approach contributes substantially to the field of pre-clinical classification models of

drug sensitivity in cancer: In addition to enabling the user to construct pan-cancer models that

integrate various potentially complementary molecular and genetic data types in a way that

impedes any type to overpower the others based solely on its structural properties, our ansatz

also allows for a straightforward in-depth analysis of the respective contributions of data types

and combinations of data types as well as the impact of singular features on drug sensitivity.

Both the source code of this tool as well as the data discussed in this paper are publicly available

and can be downloaded at https://github.com/JRC-COMBINE/two-step-modelling.

Materials and methods

Data

The data to train and test the models on was originally generated in the context of the Geno-

mics of Drug Sensitivity in Cancer project (GDSC) [1, 18] and has been partially processed by

Iorio et al. [7, 19]. We use basal gene expression data, information on somatic mutation, CNV

and hypermethylation events as well as tissue descriptors of cell lines as input features for our

models. Moreover, we downloaded the PROGENy R package developed by Schubert et al. [16,

17] and applied it to the gene expression data in order to infer pathway activation scores. We

obtained the area under the dose-response curve (AUC) values as measure for drug sensitivity

and detailed annotations of genes, cell lines and drugs from the GDSC project. A comprehen-

sive list of the files downloaded and an in-depth description of processing steps can be found

in Table 1.

Implementation

While Fig 1 provides a simplified overview of the model workflow, a more comprehensive

visualization can be found in S1 Fig. The MATLAB routine twostepmodel.m is called with one

input variable, namely the index of the drug compound to be modelled in the GDSC data base,

an integer between 1 and 265. The drug compound annotation, as described in Table 1, holds

the names of and additional pieces of information about the compounds corresponding to any

such index.

The two-step modelling routine computes three sets of drug-specific models across ten

cross-validation folds: six first-step models that are based on one single data type each, 13 inte-

grated second-step models that use all non-constant outputs of the first-step models as inputs,

and up to 41 ablation models per second-step model. The latter result from applying all 13 fit-

ting algorithms to reduced sets of inputs with up to three input vectors missing. Model perfor-

mances are evaluated by a range of different metrics, including predictive accuracy and

ROC-AUC, with the latter not being computed for models based on the naïve Bayes classifier.

Singular discrete features of interest that are found to be linked to a shift in drug sensitivity are

returned to the user, as are the weights and importance scores for the outputs of the first-step

models, as calculated by the second-step fitting algorithms. The twelve outputs of the routine

are listed and explained in Table 2 and are designed to enable the user to comprehensively ana-

lyse the resulting models and their respective features and performance.

Any results pertaining to the first-step models are ordered as follows: somatic mutation-

based, CNV-based, hypermethylation-based, tissue-based, pathway activation-based and

gene expression-based. Results of second-step models are ordered in the same way that the
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corresponding algorithms are listed in the S1 Table, which contains a detailed list of the 13

algorithms used as well as their parameter settings, whenever they diverge from the default set-

tings provided by MATLAB.

First-step models. The first-step models that predict drug sensitivity based on one of the

four discrete data types—somatic mutation, CNV, hypermethylation and tissue descriptors—

are structurally similar, as are the data they are utilizing: Both the hypermethylation and the

CNV matrix of cell lines versus genes are sparse, especially the latter, and they as well as the

somatic mutation matrix include columns that are highly correlated and therefore contain

information redundant for prediction purposes. The binary matrix holding information about

the tissues to which the cell lines belong according to the descriptors used in the GDSC anno-

tation features a significantly lower number of columns, all of which are linearly independent.

All discrete first-step models aim to identify features that are associated with a shift in

responsiveness between cell lines that display such a feature versus those that lack it. To this

end, all features that can be used to split the set of all training cell lines in two such subsets of

sufficiently large size are tested for such an association. In the case of the three genomic feature

data types, namely mutation, CNV, and hypermethylation data, all genes are screened to check

if at least 15 instances of at least two distinct states are present in the training data; if not, they

are temporarily discarded. For tissue data, tissue types are considered if they are featured at

least ten times in the training set. A two-sided t-test with a significance level of α = 0.05 and

Bonferroni-correction is conducted on the pre-binarization response data to identify

Table 1. Data files used for model fitting and the respective processing steps.

Details Processing steps

Somatic mutation data:

SomaticMutation.mat

Coded genomic variants found via whole-exome sequencing (WES) in all cell

lines versus all genes

Downloaded [19], converted to a binary matrix,

and sorted

Copy number variation data: CNV.

mat

RACSs (focal recurrently aberrant copy number segments) found in all cell

lines versus all genes

Downloaded [19], converted to a discrete matrix,

and matched to annotation from the GDSC base

Hypermethylation data:

Hypermethylation.mat

Hypermethylated informative 5’C-hosphate-G-3’ sites in gene promoters

(iCpGs) found in all cell lines versus all genes

Downloaded [19], converted to a binary matrix,

and matched to annotation from the GDSC base

Tissue data TissueType.mat Tissue type descriptors for all cell lines versus all tissue types Binary matrix created from downloaded [18]

GDSC annotation

Inferred pathway activation data:

PathwayActivation.mat

PROGENy-calculated pathway activation scores based on consensus gene

signatures derived from perturbation experiments for all cell lines versus all

pathways

R package downloaded [17] and run; results

matched to the GDSC annotation

Basal gene expression data:

GeneExpression.txt

RMA-normalized basal expression profiles for all cell lines versus all genes Downloaded [18] and sorted

Response data: Response_AUC.

mat

Area under the dose-response curve-values for all cell lines versus all drugs Downloaded [18] and sorted

Cell line annotation: CelllineOrder.

mat

1. Sample name

2. COSMIC identifier

3. GDSC tissue descriptor 1

4. GDSC tissue descriptor 2

Downloaded [18] and condensed

Gene annotation: GeneOrder.mat Gene names as per HUGO gene nomenclature Downloaded [18]

Drug compound annotation:

DrugOrder.mat

1. Drug name

2. Alternative drug name

3. Target molecules

4. Target pathway

Downloaded [18] and condensed

Pathway annotation:

PathwayOrder.mat

PROGENy Pathway descriptors R package downloaded [17] and run

Tissue annotation: TissueOrder.

mat

List of GDSC tissue descriptors 1 Downloaded [18]

https://doi.org/10.1371/journal.pone.0238961.t001
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significant differences in responsiveness between the sets of cell lines where a specific feature is

either present or absent. All genes yielding statistically significant results are used to sort the

training cell lines into clusters where all members exhibit the exact identical pattern of signifi-

cant features being present or absent. If no such feature is identified, all training cell lines are

pooled into one trivial cluster and their mean binarized responsiveness is set as the model pre-

diction for all cell lines indiscriminately. Any model yielding such a constant prediction vector

that is devoid of information is subsequently removed and not utilized as input to the second-

step models.

Models identifying at least one feature significantly associated with a shift in responsiveness

use these to sort all training cell lines into 2n clusters, where n denotes the number of non-

redundant features found. Pairs of redundant features, that is two features both present and

absent in exactly the same subset of training cell lines, are identified, and one of them is

removed from the set of relevant features used for clustering. Empty clusters are discarded,

and for all remaining ones, the mean responsiveness over all training cell lines associated with

a cluster is computed. Subsequently, it is used as the model prediction for any test cell line that

would belong to the respective cluster based on their profile of relevant features. Should the

somatic mutation-based model identify two significant, non-redundant features, for instance

mutations in TP53 and BRAF, it would sort all training cell lines into four clusters: the cluster

of cell lines where both mutations are present, that of cell lines where both mutations are

Fig 1. Two-step modelling workflow. A simplified diagram of the two-step modelling workflow, visualizing the link between the single-data type first-step models

and the integrated second-step models. Boxes shaded in dark blue symbolize sets of models, while light-blue boxes represent individual models. Yellow boxes stand

for sets of discrete features that are linked to a shift in drug sensitivity. Ablation models are not included in the graphic.

https://doi.org/10.1371/journal.pone.0238961.g001
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absent, and two clusters of cell lines where exactly one of these two mutations would be

present.

In order to speed up computation times, an upper limit to the number of non-redundant

relevant features has been introduced for mutation, CNV and hypermethylation data. The rou-

tine returns the set of relevant features as well as the reduced set of relevant, non-redundant

features that is ultimately used for cluster definition and drug sensitivity prediction. In addi-

tion, the user can access the percentage of responding cell lines associated with each cluster as

well as the exact state of any relevant, non-redundant feature in each cluster.

In the case of tissue data, redundancy cannot occur and cell lines are sorted into n + 1 clus-

ters if n tissue types are found to be associated with a significant change in responsiveness: the

last n clusters correspond to the n tissue types and the first one is composed of the cell lines of

all remaining tissues. This ordering applies to all outputs pertaining to the clusters of the tissue

models: for instance, the average percentage of responding cell lines per cluster starts with that

of the joined cluster of non-significant tissue types and continues with the values correspond-

ing to the singular-tissue clusters in the order that these tissues are listed in the sets of signifi-

cant features. A schematic visualization of the structure of the first-step models that utilize the

discrete data types can be found in Fig 2.

Table 2. Model outputs.

Quantity of interest Details

First-step models Predicted response for all clusters calculated by the discrete first-step models;

pathway activation- and gene expression-based model; feature values associated

with the genetic feature-based clusters

Second-step models 13 integrated multi-omics models

Predictions on the training set Binarized predictions of all first-step models and second-step models; pre-

binarized predictions of all first-step models and all second-step models minus the

naïve Bayes model

Predictions on the test set Binarized predictions of all first-step models and second-step models; pre-

binarized predictions of all first-step models and all second-step models minus the

naïve Bayes model

Measured response Measured response data, both unprocessed and binarized, in the training and in

the testing set

Model performance on the

training set

Evaluation metrics—accuracy, precision, recall, f1-score, FDR—for all first- and

second step models in training

Model performance on the

test set

Evaluation metrics—accuracy, precision, recall, f1-score, FDR—for all first- and

second step models in testing

ROC-AUCs ROC-AUCs of all first- and second-step models, with the exception of the naïve

Bayes classifier, in training and testing

Significant features Sets of relevant mutation, CNV, and methylation events as well as tissue types used

in the discrete first-step models, in addition to the three extended sets of genetic

features, including redundant features

Importance of first-step

models

Indices of all non-constant first-step models; input weights as calculated by the

linear and logistic regression models and the SVMs as well as input importance

scores calculated by the ensemble models

Ablation studies Up to 41 ablation models for each second-step model; ROC-AUCS, if applicable,

and accuracy values of all ablation models in training and testing

Cross-validation Partition object used for the 10-fold cross validation

Descriptions of outputs are listed in the order of them being returned by the routine; if not stated differently, all

featured quantities are computed for each of the 10 cross-validation folds, which correspond to rows in the resulting

output objects.

https://doi.org/10.1371/journal.pone.0238961.t002
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As for the two continuous molecular data types, a principal component analysis is per-

formed on the basal gene expression data of the training cell lines and the first seven compo-

nents are used to fit a linear regression model to the binarized response data. The number of

principal components was chosen based on an analysis of their respective variances, as com-

puted on the complete data set; in particular, it was determined to constitute a fitting trade-off

between including the highest possible number of potentially informative components and

reducing the number of input vectors in order to facilitate the fitting process. A second linear

regression model is fitted on the eleven pathway activation scores provided by the PROGENy

package for the training cell lines. The output vectors of these two models are normalized to

the interval [0, 1] and an optimal binarization cutoff is calculated such that the predictive accu-

racy is maximized.

Fig 2. First-step models on discrete data types. Schematic visualization of the structure of the discrete first-step models built on genomic features. In the case of

the CNV-based model, single features fj may also take on values in {0, −1}, with the latter value denoting a deletion event. The tissue-based model is structured

similarly, but does not require the removal of redundant features and defines n + 1 clusters out of n features identified as significant. Dotted lines represent

routines that are computed on the training data and subsequently applied to the test data set. Boxes in yellow refer to sets of features, while those coloured light blue

indicate subsets of cell lines.

https://doi.org/10.1371/journal.pone.0238961.g002
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Second-step models. After the computation of the six first-step models, constant model

output vectors − the results of models that failed to find any statistically significant relation

between drug sensitivity and at least one genomic event or tissue − are removed, while the

remaining ones are used as input feature vectors for 13 fitting algorithms in a second step.

These algorithms comprise both one straight-forward classification approach, namely a

naïve Bayes classifier, as well as a diverse set of regression methods that are post-processed to

identify an optimal cut-off yielding a classification with maximal accuracy. For these models,

an additional performance evaluation metric is computed, the ROC-AUC, as detailed in

Table 2.

For a subset of second-step models, weights and importance scores can be calculated in

order to estimate the significance of the contributions of singular data types; in those cases,

namely all algorithms but the neural networks and the naïve Bayes classifier, these coefficients

are returned to the user. Since at least three of the data types used have been shown to be inter-

dependent and to contain highly redundant information, these fitted coefficients may not

accurately reflect the actual significance of the information contained in any particular data

type. In order to address this effect and to gain an improved insight into this issue, ablation

studies are performed subsequently.

Ablation studies. Since tissue types and genome-wide expression patterns such as princi-

pal components have been shown to coincide [20] and since the PROGENy-derived pathway

activation scores are calculated by integrating pathway information and gene expression, we

expect these data types to contain highly correlated and redundant information. As a conse-

quence, ablation studies are performed where all possible combinations of up to three first-

step model outputs are omitted as inputs to the second-step fitting algorithms, which are then

run on the remaining inputs. In the case of all six data types producing non-constant first-step

models, a set of 41 ablation models is computed for any of the 13 second-step fitting algo-

rithms. Accuracy and ROC-AUC values are calculated for any ablation model except for those

applying a naïve Bayes classifier, where only the accuracy is calculated.

Results and discussion

Running the proposed two-step modelling routine on any of the 265 drug compounds present

in the GDSC data set results in 13 two-step integrated multi-omics models, six first-step mod-

els based on one data type only, and up to 41 ablation models with combinations of up to three

first-step models removed for any of the aforementioned 13 algorithms. Additionally, sets of

events associated with shifts in responsiveness, performance evaluation metrics in training and

testing and the weights or importance scores associated with first-step models by a subset of

the second-step models are computed and returned to the user. All of these results are calcu-

lated for each of the 10 folds used in the cross-validation scheme that is applied to the data. A

detailed list of the entirety of output objects and details about the exact pieces of information

they hold is presented in Table 2.

When computing the averaged test ROC-AUC over the cross-validation folds of each

model calculated on the 265 drug compounds, with the exception of the naïve Bayes classifier,

we achieve a spread ranging from 0.92 for the best model across all drugs to 0.37 for the model

yielding the overall worst test performance. The worst performance over all drug-specific best

models results in a mean test ROC-AUC of 0.50, while for 155 drugs, at least one model pro-

duces a mean test ROC-AUC of at least 0.7. A visualization of these findings is provided in Fig

1-3 in S1 Appendix; for any particular drug compound, the distribution of the ten test

ROC-AUCs of the one model yielding the highest mean test ROC-AUC is shown.
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Impact of drug classes and algorithms on the model performances

Evaluating the distribution of the averaged test ROC-AUCs over all drug compounds for all

suitable two-step models separately, we observe no significant difference between the distinct

second-step fitting algorithms when correcting for multiple testing. Notable are slightly lower

means and medians for both of the decision tree ensembles and a lack of models producing

mean test ROC-AUCs over 0.87 for the bagged decision tree ensembles. In addition, we find

that the boosted decision tree ensembles exhibit signs of severe overfitting in drugs that feature

less than 500 measurements across cell lines, as depicted in Fig 3, where their performance is

compared to that of models based on neural networks in order to illustrate the severity of the

effect. The two bins plotted constitute a complete coverage of the entire set of drugs featured

in the GDSC data base, since there are none that were tested on more than 500, but less than

600 cell lines.

When excluding models fitted via boosted decision tree ensembles, the remaining models

tend to exhibit gradually fewer cases of overfitting as their mean training ROC-AUC increases,

an effect that is visualized in Fig 4.

In contrast to the choice of second-step algorithm, the type of drug compound to be mod-

elled greatly influences the performance of the resulting models. Using the official annotation,

the drug compounds featured in the GDSC data base can be sorted into 20 well-defined classes

with respect to their target pathway or mechanism and one more broadly-defined class titled

‘other’. After binning together all models calculated on any drug compound of a particular

class, a two-sided t-test with a Bonferroni-correction for multiple testing is applied to the

respective mean test ROC-AUC values and yields a high number of significantly different

results between drug classes. These findings replicate the conclusions drawn by Jang et al [9]

Fig 3. Comparison of overfitting effects between models basedon neural networks and models based on boosted decision tree ensembles. Distribution of the

margins between ROC-AUCs in training and testing for all two-step models fitted with either a neural network or with a boosted decision tree ensemble. Models

are divided into bins based on the number of respective response measurements present in the GDSC data base for the particular drug compound that they are

fitted for. Distributions between bins are compared via a two-sided t-test.

https://doi.org/10.1371/journal.pone.0238961.g003
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upon working with a prior version of the GDSC data set, namely that the choice of input fea-

tures and the compound to be modelled exert a far stronger influence on the variance of pre-

dictive accuracy than the choice of algorithm. The results of a statistical analysis of this effect

can be found in S2 Appendix, while a visualization of the variation in model performance

across different algorithms and drug classes can be drawn from Fig 5.

Comparison to one-step multi-omics classification models

The two-step multi-omics modelling approach presented in this paper is designed to create

drug compound-specific classification models of cancer cell lines that integrate a range of dis-

tinct data types. This integration of heterogeneous data is realized in a separate second step

that minimizes the chance that any inherent structural difference, such as sparsity or range,

causes one data type to overpower additional ones and to drown out crucial information. As a

consequence, complementary information contained in structurally heterogeneous data types

can be conserved and utilized to not only improve the predictive power of the models, but also

to provide insight into computational biomarkers of responsiveness. Our routine additionally

provides the opportunity to analyse and quantify the importance of data types and to identify

redundancies between the information they contain in a straightforward and easily interpret-

able manner.

In order to contextualize the overall predictive performance of the resulting classification

models, the test ROC-AUC of any model is compared to the results obtained by Jang et al. [9].

In their study, 114,000 classification models are computed and applied to prior versions of the

CCLE and the GDSC data sets with the aim to systematically quantify the importance of five

categories in the modelling workflow. To the best of our knowledge, these results constitute

the most fitting standard to compare the performance of our algorithm to, since they, in con-

trast to other studies, fit multi-omics pan-cancer classification models on the GDSC data set,

Fig 4. Overfitting effects as a function of mean training ROC-AUC. Distribution of the margins between ROC-AUCs in training and testing for all two-step

models and for all but those fitted via a boosted decision tree ensemble. Models are divided into bins based on their respective mean ROC-AUC in training.

https://doi.org/10.1371/journal.pone.0238961.g004
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using similar sets of data types as predictors as well as AUC values as the metric quantifying

drug sensitivity. As evidenced by Aben et al. [12], we do not necessarily expect the two-step

modelling approach to yield significantly improved predictive performances, since the algo-

rithm was designed mainly to produce actual multi-omics models that enable an intuitive and

straightforward analysis of data contributions.

While our study uses a more current version of the GDSC data base with 265 instead of 138

drugs and a higher number of input data types that additionally include hypermethylation

events, pathway activation scores and somatic mutation events identified on all of the 17,737

genes present in the data set, comparability between the studies is ensured by a number of

steps. Firstly, a similar binarization regime on the response data is applied by using upper and

lower quartile thresholds, which results in a number of cell lines to be modelled that is reason-

ably close to the one achieved by Jang et al., who worked with a smaller number of cell lines

and used tertiles as thresholds. Secondly, for any model we calculate test ROC-AUCs by com-

puting the concatenated prediction vector over all each cross-validation folds and by compar-

ing it to the vector of measured responses that are binarized using the entire data set. In

internal evaluations, we prefer to study test ROC-AUCs averaged across all cross-validation

folds, as the model routine binarizes the measured response vectors by calculating the thresh-

olds on the training data only. Binarizing on the complete data set tends to result in a small

number of cell lines being labelled differently and consequently does not accurately reflect the

model performance; however, we treat these small alterations as negligible in order to ensure a

fair comparison. Lastly, we apply a cross-validation regime and utilize a significant set of algo-

rithms overlapping with the ones used by Jang et al., such as regularized regressions, random

forests and support vector machine approaches.

The findings of the Jang study demonstrate that the choice of genomic features used to

build a model and the drug compound to be predicted explain by far the most significant share

Fig 5. Effects of the choice of fitting algorithms and targetdrug classes on predictive performances. Distribution of mean test ROC-AUCs of models using

different fitting algorithms for the second-step models (left) and of models being fitted to drug compounds of distinct classes, annotated by the target structure

(right).

https://doi.org/10.1371/journal.pone.0238961.g005
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of variation in model performance across the complete set of models; the choice of the fitting

algorithm is found to be only the third most important with a considerably smaller influence

on the results. As evidenced by Fig 5 and S2 Appendix, our study confirms that different drug

classes can be associated with significantly different distributions of performance measures,

while there is little variation observed between distinct fitting algorithms.

The results obtained for 138 distinct drug compounds that are present in both versions of

the GDSC data set and included in both studies are compared by selecting for each drug com-

pound the model yielding the best test ROC-AUC. The two-step modelling approach produces

higher-ranking performances for 23 drug compounds, with a statistically significant enrich-

ment for drugs targeting the EGFR signalling pathway. The classes of drugs targeting the p53,

the WNT, as well as the JNK and p38 signalling pathway additionally yield statistically signifi-

cant enrichment values in a single-test setting. This hints at our two-step approach potentially

being particularly useful and capable of improving on the benefits of already existing model-

ling platforms in applications involving targeted drugs with particular modes of action. A

detailed visualization of these results can be found in Fig 6 and S3 Appendix.

In contrast to the approaches applied by Jang et al, our two-step models additionally allow

for an in-depth analysis of the absolute and relative contributions of data types − the weightiest

component of the modelling workflow − to the resulting model performance and yield a list of

the specific features that are linked to resistance or sensitivity to a particular drug. Not only

can the performance of any two-step model integrating different data types be directly com-

pared to that of up to six first-step models built on one data type only in order to quantify the

benefits of incorporating additional input data, but extensive ablation studies enable the user

to further analyse potential drops in model performance upon excluding combinations of up

to three input data types. Thus, redundant information that is featured in more than one data

type may be identified and the contribution of that data type to model performance can be

Fig 6. Two-step models outperforming one-step models. Concatenated test ROC-AUC of the respective best-performing

two-step model (blue) for any drug where at least one two-step model outperforms all straightforward multi-omics models

generated in the study of Jang et al. (red).

https://doi.org/10.1371/journal.pone.0238961.g006
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quantified more accurately. Moreover, weights and importance scores assigned to data types

by eleven of the second-step fitting algorithms can be assessed and studied.

Case study 1: Nutlin-3a

Nutlin-3a is a small cis-imidazoline molecule and, a as potent inhibitor of MDM2-TP53 inter-

actions, known to induce senescence in cancer cells that express wild-type TP53 [21], therefore

repressing tumour growth in the absence of mutations of the TP53 gene. It has been studied in

pre-clinical settings in the context of a wide range of cancer types [22, 23]. Due to its well-

understood mode of action, it constitutes a highly suitable candidate for evaluating whether

the two-step modelling algorithm succeeds in correctly identifying computational biomarkers

of drug responsiveness and in leveraging them in order to predict drug efficacy. In particular,

we expect the somatic mutation-based model to outperform all other first-step models and to

identify a mutation in TP53 as strongly linked to a shift in responsiveness to Nutlin-3a.

Overall, the two-step modelling approach yields integrated models producing high

ROC-AUCs in testing, with the best-performing models, namely the logistic regression

approach with elastic net regularization, achieving a median ROC-AUC of 0.9 across all folds.

In contrast, the majority of first-step models based on a singular data type struggle to classify

the cell lines correctly into responders and non-responders, with the CNV-based, the hyper-

methylation-based, the tissue-based and, to a lesser extent, the gene expression-based models

producing median ROC-AUCs in the range of 0.54 to 0.67. The sole models yielding moderate

to high median ROC-AUCs are the somatic mutation-based and the pathway activation-based

models with values of 0.86 and 0.8, respectively, as visualized in Fig 1 in S4 Appendix. Conse-

quently, the outputs of these two models are assigned the highest averaged weights and impor-

tance factors, when fed as input features into the second-step fitting algorithms, as evidenced

by Tables 1, 2 in S4 Appendix. The remaining model outputs receive notably lower scores, as is

consistent with their inferior predictive performance. A notable exception is the tissue-based

model, which is assigned the lowest averaged weight, although it achieves a median ROC-AUC

of 0.64, significantly outperforming both the CNV- and methylation-based models, only

slightly below that of the gene expression-based model. This indicates a potential overlap of

the prediction-relevant information present in these two data types.

In order to disentangle such potential redundancies in the data and more accurately quan-

tify the individual contributions of data types to the predictive performance of the integrated

models, ablation studies are performed. Fig 7 demonstrates the resulting relative mean loss of

performance for every second-step algorithm separately: 41 ablation models per second-step

algorithm are trained and tested across ten folds and their respective performance is evaluated

via ROC-AUC and accuracy for the best cut-off; in the case of the naïve Bayes classifier, only

the latter metric is computed and used for plotting. All of the remaining algorithms are evalu-

ated by ROC-AUC. For each algorithm, the resulting performance metrics of any ablation

model are averaged across all folds and then normalized by dividing by the mean performance

metric of the corresponding complete two-step model. Consequently, values close to 1 indicate

that the removal of a certain set of input data types on average does not affect any particular

reduced model, while values smaller than 1 hint at a loss of performance due to information

being discarded that cannot be compensated for by the remaining data types.

As visible in Fig 7, little variation in the relative performance values between distinct fitting

algorithms can be observed, with the occasional exception of the naïve Bayes classifier and the

bagged decision tree ensemble. Instead, the resulting performances appear to be impacted

exclusively by four sets of data types whose corresponding first-step models were removed as

inputs: firstly, the removal of CNV, hypermethylation, tissue descriptor or gene expression
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data as well as combinations thereof yields a cluster of ablation models with virtually the same

predictive performance as the full models. Secondly, ablation models without pathway activa-

tion data and all possible combinations of the data types listed in the first group display a

slightly lowered performance value, with the majority losing 3–5% of test performance. A

more notable loss in predictive performance occurs in the group of models trained without

both somatic mutation data and at least one of the data types defining the models in the first

cluster: with few exceptions, a drop in performance of around 8–11% can be observed. Lastly,

simultaneously withholding somatic mutation and pathway activation data, regardless of

whether any additional data types are withheld, results in ablation models performing mostly

at only 75–80% of the full model performance. This cluster of models yields the worst-per-

forming ablation models of the entire set, regardless of the fitting algorithm applied. A notable

exception is the bagged decision tree ensemble, which exhibits only a moderate drop in predic-

tive performance in its corresponding ablation models within the fourth cluster. Instead, its

single lowest predictive performance occurs in the absence of tissue descriptor, pathway activa-

tion and gene expression data.

These findings relate to known pharmacological properties of the compound, most notably

its mode of action: TP53 mutations are identified as statistically significant computational bio-

markers of resistance in all folds and consequently, the somatic mutation data yield not only

the best-performing first-step models, but are also assigned high weights and importance

scores by the all second-step fitting algorithms but the bagged decision tree ensembles, which

base their predictions virtually exclusively on gene expression data. The eleven pathways fea-

tured in the PROGENy-supplied pathway activation data include the TP53 signalling pathway,

which is consistently ranked the most significant by the linear regression algorithm applied in

the respective first-step model with averaged p-values of around 10−19. Other pathways deter-

mined to be significant, albeit to a lesser extent, are the MAPK and the EGFR pathways. Path-

way activation-based first step models constitute the second-best performing first-step models

Fig 7. Ablation study results for the compound Nutlin-3a. Heatmap of the mean relative change in performance upon removing combinations of first-step

model outputs as input features for the integrated second-step models for Nutlin-3a. Rows correspond to the fitting algorithms used to construct a model, while

columns denote the single data type—or combinations thereof—whose corresponding first-step model outputs are removed as inputs. Colours indicate averaged

test ROC-AUCs—or accuracy scores in the case of the naïve Bayes classifier—of ablation models normalized by the respective value of the full model utilizing all

available inputs. Values close to 1 indicate that no noticeable change in performance occurred, while scores larger than 1 denote improved predictivity and those

smaller than 1 mark a loss in predictivity.

https://doi.org/10.1371/journal.pone.0238961.g007
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and are assigned high weights or importance scores by a majority of the second-step fitting

algorithms. The sole exceptions are the decision tree ensembles and the support vector

machines, which favour the mutation- or gene expression-based first-step models exclusively.

The aforementioned drastic drop in model performance induced by removing both somatic

mutation and pathway activation scores as inputs to the second-step fitting algorithms might

implicate that these two data types harbour complementary information pertaining to cellular

responsiveness to the compound Nutlin-3a.

Analysing the individual features determined to be significant computational bioomarkers

of responsiveness to Nutlin-3a results in confirming well-known factors such as TP53 muta-

tions and, to a lesser extent, tissue types such as skin [24] or hematopoietic and lymphoid cells

[25, 26], that have been shown to react positively to Nutlin-3a treatment. This case study there-

fore serves as a proof of concept, demonstrating that the features identified as significant by

the algorithm do indeed impact the cellular response to the drug. In addition, the models also

yield a set of features that, to the best of our knowledge, have yet to be studied in the context of

impacting tumour responsiveness to Nutlin-3a specifically and therefore constitute promising

potential targets for future studies. These are visualized in Fig 8 and include for instance copy

number aberrations in JAK2, which have already been linked to tumour progression and che-

moresistance [27] as well as to responsiveness of lymphoma to a semi-selective kinase inhibitor

Fig 8. Discrete features linked to responsiveness to Nutlin-3a. Bars represent discrete features that are found to be associated with significant shifts in cellular

responsiveness to Nutlin-3a. Colours indicate the data type of the feature, while the absolute bar height corresponds to the mean relative importance of the first-

step model based on the respective data type, as calculated by the second-step algorithms. Error bars denote the standard deviation of said importance score. The

vertical orientation of any bar indicates whether the associated feature induces sensitivity or resistance to Nutlin-3a, whereas its position on the horizontal axis

shows how often it is found in the 10 runs of the cross-validation procedure. Features that are identified at least seven times out of ten are considered stable.

https://doi.org/10.1371/journal.pone.0238961.g008
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[28]. A complete list of the features found to be significantly related to shifts of responsiveness

can be found in Tables 1, 2 in S4 Appendix.

Case study 2: Docetaxel

Docetaxel is a cytotoxic chemotherapeutic agent of the taxane family of drugs and is routinely

used in the treatment of a wide range of cancers including breast, lung, gastric, colorectal,

liver, renal, ovarian, prostate, and head and neck cancers as well as melanoma. Its principal

mode of action lies in interfering with the dynamics of microtubule assembly and disassembly,

which in turn impedes cell division and promotes apoptosis [29]. In stark contrast to the case

of the targeted drug Nutlin-3a, where mutations in the TP53 gene are well-known to induce

resistance, it is not evident from the outset which data types and which corresponding first-

step models ought to be expected to perform best in predicting cellular responsiveness to

Docetaxel.

Fitting the set of first-step models results in a lack of somatic mutations with a significant

link to shifts in responsiveness. CNV- and hypermethylation-based models perform very

poorly with averaged test ROC-AUCs rarely exceeding 0.6. Tissue-based models fare moder-

ately better, producing test ROC-AUCs that average 0.74, while gene expression-based and, to

a lesser extent, pathway activation-based models, yield high predictive performances with aver-

age ROC-AUCs of 0.89 and 0.8, respectively. These findings are visualized in Fig 1 in S5

Appendix. Integrating the first-step model outputs via a neural network approach results in

models yielding a median ROC-AUC of 0.89 in testing across all folds, barely outperforming

all other second-step fitting algorithms and the gene expression-based first-step model.

As a consequence, the output of the gene expression-based first-step model is consistently

determined to constitute the most important and impactful input across all second-step fitting

algorithms that allow for an analysis of weights or importance factors, as depicted in Fig 2 in

S5 Appendix. Methylation-based and tissue descriptor-based model outputs are assigned a

mean relative importance score of 0.22 and 0.2, respectively, while the corresponding scores

for CNV-based and pathway activation-based model outputs hover around 0.1. It can be

hypothesized that the relatively low importance scores of the comparatively well-performing

pathway activation-based and tissue descriptor-based model outputs are due to them contain-

ing information that is equally present in gene expression-based model outputs. This redun-

dancy of information content might drive second-step fitting algorithms to assign a high

weight only to the gene expression-based input, given that the corresponding first-step model

yielded the highest average ROC-AUC. This effect can be observed to be particularly exacer-

bated in algorithms that have been designed to assign only a small number of non-zero weights

to inputs, such as LASSO-regularized regressions.

In order to identify redundancies between data types, the results of the ablation studies for

Docetaxel, as visualized in Fig 9, can be evaluated. Since constant first-step models − that is

models that fail to find features associated with a shift in responsiveness in a statistically signifi-

cant way − are not used as inputs to second-step fitting algorithms, the number of ablation

models calculated might differ both between distinct drug compounds as well as between dif-

ferent folds for one particular drug. Ablation models that are computed in less than five folds

for any particular drug are excluded in this analysis; as a consequence, the lack of significant

somatic mutation features in all but one fold results in only 25 ablation models being calcu-

lated with a frequency high enough to warrant further evaluation.

The heatmap visualizing the remaining relative average performance of two-step models

running on reduced sets of input features shows little difference between distinct second-step

fitting algorithms and can easily be divided into two parts. The cluster on the left-hand side of
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the figure features 14 ablation models that about retain the performance score of the full

model with only minor deviations. In contrast, the cluster on the right-hand side consists of

eleven models that have been fitted without utilizing the output of the gene expression-based

first-step model and that exhibit an increasing decline in performance when viewed from left

to right: removing gene expression and any combination of CNV and methylation data results

in a drop of performance of about 6–8% in the majority of algorithms, while excluding both

gene expression and tissue information plus any combination of the aforementioned two addi-

tional data types yields a drop of 9–10% for a majority of fitting algorithms. In the case of hold-

ing out the model outputs based on gene expression, pathway activation and all additional

data types but tissue descriptors, a loss of performance of about 15–17% can be observed for a

majority of algorithms, whereas removing gene expression, pathway activation and tissue

descriptor data simultaneously generates a sharp reduction of performance of around 31–32%

in most algorithms. These findings strongly indicate an overlap among the pieces of informa-

tion present in these three data types, in particular between the two continuously-valued data

types of pathway information and gene expression.

The two-step modelling routine proposed in this paper not only enables the user to analyse

and compare the contributions of data types to the overall prediction of the integrated models,

but also facilitates the study of the effects of individual features from distinct data types on the

distribution of responsiveness across the set of cell lines. Fig 10 depicts the complete set of sig-

nificant discrete features identified in at least one fold, while a complete list of both discrete

and continuous features can be found in Tables 1-2 in S5 Appendix. The set of tissue types

Fig 9. Ablation study results for the compound Docetaxel. Heatmap of the mean relative change in performance upon removing combinations of first-step

model outputs as input features for the integrated second-step models for Docetaxel. Rows correspond to the fitting algorithms used to construct a model, while

columns denote the single data type—or combinations thereof—whose corresponding first-step model outputs are removed as inputs. Colours indicate averaged

test ROC-AUCs—or accuracy scores in the case of the naïve Bayes classifier—of ablation models normalized by the respective value of the full model utilizing all

available inputs. Values close to 1 indicate that no noticeable change in performance occurred, while scores larger than 1 denote improved predictivity and those

smaller than 1 mark a loss in predictivity.

https://doi.org/10.1371/journal.pone.0238961.g009
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found to be linked significantly to a shift in cellular responsiveness to Docetaxel in at least

seven out of ten folds includes the upper aerodigestive tract, which is associated with an

increase in drug sensitivity and reflects the routine application of Docetaxel in the treatment of

head and neck cancers [30]. The list of significant CNVs includes EGFR, which is known to

constitute a crucial target in cancer therapies in general [31] and that has been shown to

induce tumorigenesis in lung cancer when amplifications are present [32]. Relevant and stable

hypermethylation events occur, among others, in three members of the ZNF family, an exten-

sive set of genes involved in tumorigenesis, cancer progression and metastasis formation [33].

Moreover, the list of crucial sites for hypermethylation events features WNK4, a member of

the WNK signalling pathway that has been linked to cancer progression [34, 35] and is known

to interfere with the TGFB1 pathway. This particular pathway in turn is identified as a signifi-

cant pathway by the pathway activation models with an average p-value of 10−4 and has been

found to cause cancerogenesis when misregulated [36]. Additional continuous-valued features

include genome-wide expression patterns, namely three principal components calculated on

the gene expression data, with averaged p-values of up to 10−10.

Future developments

Currently, the two-step modelling algorithm is specified to run on the GDSC data base as it

provides an immense depth of characterization of a wide range of human cancer cell lines that

have been tested against a high number of diverse drug compounds. Ideally, in an effort to fur-

ther prove the reliability of the obtained results and to minimize the chances of them being

Fig 10. Discrete features linked to responsiveness to Docetaxel. Bars represent discrete features that are found to be associated with significant shifts in cellular

responsiveness to Docetaxel. Colours indicate the data type of the feature, while the absolute bar height corresponds to the mean relative importance of the first-

step model based on the respective data type, as calculated by the second-step algorithms. Error bars denote the standard deviation of said importance score. The

vertical orientation of any bar indicates whether the associated feature induces sensitivity or resistance to Docetaxel, whereas its position on the horizontal axis

shows how often it is found in the 10 runs of the cross-validation procedure. Features that are identified at least seven times out of ten are considered stable.

https://doi.org/10.1371/journal.pone.0238961.g010
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overfitted to the GDSC data base, one would subsequently run the algorithm on additional

large pharmacogenomic data bases which overlap with the GDSC data base in terms of the set

of cell lines and drug compounds that are included and the omics data types that are profiled.

Unfortunately, to the best of our knowledge, there is currently a lack of publicly available data

bases that meet those requirements. The CCLE data set would seemingly constitute the most

appropriate candidate; however, systematic analyses [37] have demonstrated that response

measurements regarding the small set of shared drug components between both data sets are

highly discordant. As a consequence, associations between genomic features and drug

response have also been shown to be extremely inconsistent between the two data bases, which

effectively renders the CCLE unsuitable to currently perform a comparative study on. We are

looking forward to future publications or modifications of data bases that support a cross-plat-

form study of the stability of results on at least a subset of drug components across a variety of

cancer cell lines. However, the applications of the approach presented in this paper do not

have to remain limited to pre-clinical human cancer cell line sets. Due to the versatility of the

underlying principle, the algorithm can easily be adapted to aid research in a broad range of

areas, where it is equally imperative to integrate distinct heterogeneous data sources and to

identify computational biomarkers of pharmacological effects. In order to facilitate any such

development, we are currently planning on exporting the source code to R.

Conclusion

In this paper, we propose a two-step multi-omics modelling approach for the pan-cancer clas-

sification of cell lines into responders and non-responders with respect to a wide range of anti-

cancer drug compounds. Our algorithm is designed to integrate six distinct data types in a

manner that reduces the chance that the process of fitting weights to the input data features is

influenced more strongly by structural heterogeneity rather than by the relevant information

content. A range of different classification approaches is used for the integration step, which

enables users to compare their respective performances. In addition, our algorithm allows for

a straightforward in-depth analysis of redundancies between the pieces of information present

in the distinct data types and of individual features that shift responsiveness. As a consequence,

it produces more interpretable models that not only show a predictive performance that is

comparable to the gold standard, but additionally yield valuable biological insights into cellular

mechanisms and features that impact drug sensitivity. The case studies presented in this paper

underscore that our approach succeeds both in correctly identifying established computational

biomarkers for drug sensitivity of compounds with a well-understood mechanism of action as

well as in finding a set of as of yet unrelated features that constitute suitable candidates for

future studies. Comparing our results on the GDSC data set with that of comparable studies

implies that our ansatz might be particularly well-suited to be applied to a particular set of tar-

geted drug compounds. Currently, the MATLAB routine is run on the GDSC data base, but

the design and implementation of the algorithm is easily generalizable and can be modified

and applied to a range of data bases and classification problems.
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S1 Appendix. Overview over the model results. Visualizations of the distributions of model

performances; drug compounds are sorted according to their target mechanism.
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izing the significance of differences between the model performances on distinct drug classes
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36. Massagué J. TGFbeta in cancer, Cell. 2008; 134(2):215–230 https://doi.org/10.1016/j.cell.2008.07.001

PMID: 18662538

37. Haibe-Kains B, El-Hachem N, Birkbak NJ, Jin AC, Beck AH, Aerts H et al. Inconsistency in large phar-

macogenomic studies, Nature. Dec 2013; 504(7480):389–393 https://doi.org/10.1038/nature12831

PMID: 24284626

38. Hoffmann H. Violin Plot, version 1.7.0.0, MATLAB Central File Exchange, https://www.mathworks.com/

matlabcentral/fileexchange/45134-violin-plot

PLOS ONE Two-step multi-omics modelling of drug sensitivity in cancer cell lines

PLOS ONE | https://doi.org/10.1371/journal.pone.0238961 November 23, 2020 22 / 22

https://doi.org/10.1371/journal.pone.0135101
https://doi.org/10.1371/journal.pone.0135101
http://www.ncbi.nlm.nih.gov/pubmed/26248031
https://doi.org/10.1038/leu.2011.28
https://doi.org/10.1038/leu.2011.28
http://www.ncbi.nlm.nih.gov/pubmed/21394100
https://doi.org/10.1158/0008-5472.CAN-13-2424
http://www.ncbi.nlm.nih.gov/pubmed/24336067
https://doi.org/10.1111/j.1755-148X.2010.00773.x
http://www.ncbi.nlm.nih.gov/pubmed/20849464
https://doi.org/10.1038/leu.2008.11
http://www.ncbi.nlm.nih.gov/pubmed/18273046
https://doi.org/10.1182/blood-2005-08-3273
http://www.ncbi.nlm.nih.gov/pubmed/16439685
https://doi.org/10.1126/scitranslmed.aad3001
http://www.ncbi.nlm.nih.gov/pubmed/27075627
https://doi.org/10.1158/1078-0432.CCR-13-3007
http://www.ncbi.nlm.nih.gov/pubmed/24610827
https://doi.org/10.1016/S0305-7372(03)00097-5
http://www.ncbi.nlm.nih.gov/pubmed/12972359
https://doi.org/10.1097/00000421-199810000-00013
http://www.ncbi.nlm.nih.gov/pubmed/9781605
https://doi.org/10.1517/14728222.2011.648617
https://doi.org/10.1517/14728222.2011.648617
http://www.ncbi.nlm.nih.gov/pubmed/22239438
https://doi.org/10.1002/1878-0261.12155
http://www.ncbi.nlm.nih.gov/pubmed/29124875
https://doi.org/10.1186/s12929-016-0269-9
https://doi.org/10.1186/s12929-016-0269-9
http://www.ncbi.nlm.nih.gov/pubmed/27411336
https://doi.org/10.1186/s12964-018-0287-1
http://www.ncbi.nlm.nih.gov/pubmed/30390653
https://doi.org/10.1007/s00018-010-0261-6
http://www.ncbi.nlm.nih.gov/pubmed/20094755
https://doi.org/10.1016/j.cell.2008.07.001
http://www.ncbi.nlm.nih.gov/pubmed/18662538
https://doi.org/10.1038/nature12831
http://www.ncbi.nlm.nih.gov/pubmed/24284626
https://www.mathworks.com/matlabcentral/fileexchange/45134-violin-plot
https://www.mathworks.com/matlabcentral/fileexchange/45134-violin-plot
https://doi.org/10.1371/journal.pone.0238961

