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Abstract: Na-K-ATPase on the basolateral membrane provides the favorable transcellular Na gradient
for the proper functioning of Na-dependent nutrient co-transporters on the brush border membrane
(BBM) of enterocytes. As cells mature from crypts to villus, Na-K-ATPase activity doubles, to
accommodate for the increased BBM Na-dependent nutrient absorption. However, the mechanism
of increased Na-K-ATPase activity during the maturation of enterocytes is not known. Therefore,
this study aimed to determine the mechanisms involved in the functional transition of Na-K-ATPase
during the maturation of crypts to villus cells. Na-K-ATPase activity gradually increased as IEC-18
cells matured in vitro from day 0 (crypts) through day 4 (villus) of post-confluence. mRNA abundance
and Western blot studies showed no change in the levels of Na-K-ATPase subunits α1 and β1 from 0 to
4 days post-confluent cells. However, Na-K-ATPase α1 phosphorylation levels on serine and tyrosine,
but not threonine, residues gradually increased. These data indicate that as enterocytes mature
from crypt-like to villus-like in culture, the functional activity of Na-K-ATPase increases secondary
to altered affinity of the α1 subunit to extracellular K+, in order to accommodate the functional
preference of the intestinal cell type. This altered affinity is likely due to increased phosphorylation of
the α1 subunit, specifically at serine and tyrosine residues.

Keywords: Na/K-ATPase; intestinal absorption; Na-dependent nutrient co-transport; crypt cells;
villus cells; cell maturation

1. Introduction

An essential function of the mammalian small intestine is nutrient absorption [1]. While the intestinal
epithelium is composed of multiple specialized cell types including goblet cells, enteroendocrine cells,
Paneth cells, and enterocytes [2], only enterocytes are responsible for nutrient absorption from the intestinal
lumen. The enterocytes comprise of undifferentiated crypt cells, which proliferate and differentiate to
mature villus cells [3]. Nutrient, electrolyte and fluid absorption primarily occur through the villus cells
while the crypt cells are thought to be primarily secretory.

During the differentiation process, enterocytes acquire more transport properties, and are
physiologically able to absorb more nutrients compared to undifferentiated crypt cells. Among the acquired
transporters, Na-K-ATPase, a basolateral membrane (BLM) transporter, plays a vital role in regulating
ionic homeostasis, cell volume and maintaining membrane potential [4]. Na-K-ATPase transports three
Na+ out of the cell in exchange for two K+ into the cell, thus maintaining a high level of intracellular K+

and low intracellular Na+ concentration [5]. This establishes a Na+ gradient that is responsible for driving
other secondary transport processes across the brush border membrane (BBM). Transport of different ions
(H+, Ca2+, Cl–, PO4

2−, SO4
2−), nutrients like glucose, amino acids and vitamins, certain nucleic acids, bile

acids, and neurotransmitters across the plasma membrane are all dependent on Na-K-ATPase activity [6,7].
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Previous studies have shown that Na-nutrient co-transport processes in the BBM, namely Na-glucose
(SGLT1), Na-alanine (ATB0), Na-glutamine (B0AT1), Na-taurocholate (ASBT) and Na-adenosine (DMT1)
are dependent on the BLM Na-K-ATPase for their optimal activity. Furthermore, their inhibition in villus
cells in a rabbit model of inflammatory bowel disease (IBD) [8–10] is at least in part secondary to altered
Na extruding capacity of the cell due to diminished Na-K-ATPase activity. Therefore, Na-K-ATPase plays
a crucial role in nutrient absorption and maintenance of intestinal health.

The Na-K-ATPase enzyme consists of various subunits: alpha (α), beta (β) and gamma (γ)
subunits [5]. The α and β subunits are ubiquitously present and are important for the activity of
Na-K-ATPase [11,12], while the γ-subunit is an optional subunit and its expression is restricted to
certain tissues [13]. Of these subunits, α subunit does the catalytic function of the transporter [12],
whereas other subunits (β and γ) are responsible for the regulatory function of the α subunit [14,15].
The α subunit is a transmembrane protein having intracellular Na+, ATP and phosphate binding sites,
and extracellular K+ binding sites [5]. The β subunit is important for the proper folding of α subunit
and its translocation to the plasma membrane [16,17]. At least four isoforms of α subunit (α1, α2, α3,
and α4) and three isoforms of β (β1, β2, and β3) subunit are known. These isoforms are expressed in a
tissue-specific manner [5,18,19]. The combination of different isoforms of α and β subunits make up a
series of Na-K-ATPase isoenzymes [20]. Each isoenzyme has a different functional property, and they
are expressed differentially in tissue- and cell specific-manner [21]. Of these isoforms, α1 and β1 are
ubiquitously present in epithelial cells and are also present in the mucosa of the intestine [22].

Na-K-ATPase activity may change according to the physiological requirements of the cell. Several
mechanisms may regulate Na-K-ATPase activity. For example, availability of the substrate (Na+, K+

and ATP), the amount of the enzyme at the plasma membrane, which can be modified by changes
in the rate of synthesis or degradation of the individual Na pump polypeptide, and also by the
movement of the pump from cytoplasmic vesicles to the plasma membrane by exo/endocytotic
vesicular transport [23]. Besides these mechanisms, Na-K-ATPase activity at the cell surface is
directly regulated by direct phosphorylation and dephosphorylation by protein kinases and protein
phosphatases [24–26]. Alterations in the phosphorylation levels of α and regulatory γ subunits are
known to change the affinity and, therefore, the activity of the transporter.

Studies using in vivo models have shown that the Na-K-ATPase functional activity varies
depending on the cell type and function: rabbit villus cells that have the primary function of
sodium-dependent nutrient absorption have twice the amount of Na-K-ATPase function compared to
the crypt cells that have minimal absorptive capacity [27]. However, the mechanisms underlying the
alteration of Na-K-ATPase function during maturation of crypts to villus cells is not known. Therefore,
this study was aimed to determine the mechanism(s) underlying the alteration of Na-K-ATPase activity
during growth and maturation of intestinal epithelial cells.

2. Results

2.1. Alkaline Phosphatase (ALP) Levels during Cell Maturation

To determine cell growth and maturation of intestinal epithelial cells (IEC-18), alkaline
phosphatase activity was measured from cells collected from 0-day to 4-day post confluence
(Figure 1). The highest level of alkaline phosphatase activity was observed at 4-days post-confluence
(1536 ± 44.16 picomole/min·mL), whereas the lowest level of activity (1092 ± 5.432 picomole/min·mL)
was observed at 0-day post-confluence. Thus, increasing alkaline phosphatase activity demonstrates
that cells mature as they grow from 0-day post confluence (crypt-like) to 4-day post confluence
(villus-like).
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Figure 1. Alkaline phosphatase (ALP) activity to validate IEC-18 cell maturation. Values are 
represented as means ± standard error of the mean (SEM), n = 4. Values not sharing common 
superscripted letters are significantly different at p < 0.001. 

2.2. Na-Dependent Glucose Uptake during Cell Maturation 

As enterocytes mature from crypt to villus, physiological alterations are accompanied by the 
appearance of different transporters in the BBM. Specifically, the Na-glucose co-transporter SGLT1 
appears as enterocytes mature from crypt to villus. Similar to in vivo observations [28], we also found 
that Na-dependent glucose uptake increased almost three-fold as cells matured from crypt-like to 
villus-like. Figure 2 shows that minimal SGLT1 activity (92.53 ± 13.35 picomole/mg protein•min) was 
seen at 0-day post-confluence. There was a steady and robust increase in SGLT1 activity from 0- to 4-
day post-confluence in IEC-18 cells (376 ± 57.71). This phenomenon of increasing SGLT1 activity may 
be due to increasing cellular maturation, cellular polarity and/or an increase in the number of 
transporters itself, and is comparable to what is seen in vivo during crypt to villus maturation [29].  

 
Figure 2. Increase in Na-dependent glucose uptake as IEC-18 cells matured. Uptake was performed 
in the presence and absence of phlorizin (1 mM) in reaction medium containing [3H]-OMG tracer. 
Values are represented as means ± SEM, n = 6 independent experiments. Values not sharing common 
superscripted letters are significantly different at p < 0.001. 

2.3. Na-K-ATPase Activity Levels during Cell Maturation 

As enterocytes mature, along with the appearance of BBM transporters, BLM Na-K-ATPase 
activity increases to provide the favorable Na gradient necessary to absorb nutrients. Similar to the 
in vivo observation in rabbit intestine [27], Na-K-ATPase activity, as determined by inorganic 
phosphate (Pi) release, increased gradually in IEC-18 cellular homogenates from 0–4 days post-

Figure 1. Alkaline phosphatase (ALP) activity to validate IEC-18 cell maturation. Values are represented
as means ± standard error of the mean (SEM), n = 4. Values not sharing common superscripted letters
are significantly different at p < 0.001.

2.2. Na-Dependent Glucose Uptake during Cell Maturation

As enterocytes mature from crypt to villus, physiological alterations are accompanied by the
appearance of different transporters in the BBM. Specifically, the Na-glucose co-transporter SGLT1
appears as enterocytes mature from crypt to villus. Similar to in vivo observations [28], we also found
that Na-dependent glucose uptake increased almost three-fold as cells matured from crypt-like to
villus-like. Figure 2 shows that minimal SGLT1 activity (92.53 ± 13.35 picomole/mg protein·min) was
seen at 0-day post-confluence. There was a steady and robust increase in SGLT1 activity from 0- to
4-day post-confluence in IEC-18 cells (376 ± 57.71). This phenomenon of increasing SGLT1 activity
may be due to increasing cellular maturation, cellular polarity and/or an increase in the number of
transporters itself, and is comparable to what is seen in vivo during crypt to villus maturation [29].
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Figure 2. Increase in Na-dependent glucose uptake as IEC-18 cells matured. Uptake was performed
in the presence and absence of phlorizin (1 mM) in reaction medium containing [3H]-OMG tracer.
Values are represented as means ± SEM, n = 6 independent experiments. Values not sharing common
superscripted letters are significantly different at p < 0.001.

2.3. Na-K-ATPase Activity Levels during Cell Maturation

As enterocytes mature, along with the appearance of BBM transporters, BLM Na-K-ATPase activity
increases to provide the favorable Na gradient necessary to absorb nutrients. Similar to the in vivo
observation in rabbit intestine [27], Na-K-ATPase activity, as determined by inorganic phosphate (Pi)
release, increased gradually in IEC-18 cellular homogenates from 0–4 days post-confluence (Figure 3A:
5.01 ± 0.12 nanomole/mg protein·min in 0-day, 5.74 ± 0.47 in 1-day, 14.48 ± 1.07 in 2-day, 14.58 ± 0.90 in
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3-day, 13.72 ± 0.23 in 4-day). Since Na-K-ATPase is functional only as a membrane protein, plasma
membrane was prepared from IEC-18 cells and Na-K-ATPase activity was measured. In plasma
membrane preparations also, Na-K-ATPase activity increased gradually from 0-day to 4-day (Figure 3B:
49.81 ± 02.74 nanomole/mg protein·min in 0-day, 81.36 ± 1.775 in 1-day, 86.53 ± 1.617 in 2-day,
102.8 ± 4.01 in 3-day, 115.6 ± 3.58 in 4-day). Finally, since radiolabeled rubidium (86Rb+) uptake is
more a functional measure of Na-K-ATPase in live cells, it was also carried out. 86Rb+ uptake also
increased gradually from 0-day to 4-day (Figure 4: 649.2 ± 6.95 nanomole/mg protein·min in 0-day,
958.6 ± 32.52 in 1-day, 1285 ± 22.28 in 2-day, 1335 ± 39.27 in 3-day, 1565 ± 8,17 in 4-day). Thus, these
data indicate that as IEC-18 cells mature from crypt-like at 0-day post-confluence to villus-like at 4-day
post-confluence, Na-K-ATPase activity increased comparable to in vivo crypt and villus cells.
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2.4. Kinetic Studies of Na-K-ATPase Activity during Cell Maturation 

To determine the mechanism of the increase in Na-K-ATPase activity from 0–4 days post-
confluence, we performed 86Rb+ kinetics in IEC-18 cells. As the concentration of extracellular Rb+ was 
increased, 86Rb+ uptake was stimulated and subsequently became saturated in all conditions. Kinetic 

Figure 3. Na-K-ATPase activity as measured by Pi release in IEC-18 cells. Na-K-ATPase activity was
measured in the presence or absence of ouabain (1 mM). The absolute Na-K-ATPase activity presented
was calculated by subtracting Pi release in the presence of ouabain from that in the absence of ouabain.
(A) Cellular homogenates. (B) Plasma membrane preparations. Values are represented as means ± SEM,
n = 5. Values not sharing common superscripted letters are significantly different at p < 0.01.
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p < 0.01.

2.4. Kinetic Studies of Na-K-ATPase Activity during Cell Maturation

To determine the mechanism of the increase in Na-K-ATPase activity from 0–4 days post-confluence,
we performed 86Rb+ kinetics in IEC-18 cells. As the concentration of extracellular Rb+ was increased,
86Rb+ uptake was stimulated and subsequently became saturated in all conditions. Kinetic parameters
showed that there was no significant change in Vmax among the groups. However, there was a
significant difference in Km from 0–4 days post-confluence. Affinity (1/Km) of Na-K-ATPase activity
increased gradually as the cells matured from 0-4 days post-confluence as shown in Table 1.
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Table 1. Kinetic parameters of Na-K-ATPase transporters in IEC-18 cells.

0 Day 1 Day 2 Day 3 Day 4 Day

Vmax (picomole/mg protein·30 S) 742.5 ± 62 714 ± 83.5 718 ± 58.4 713 ± 27.9 733 ± 44.8
Km (mM) 0.68 ± 0.11a 0.61 ± 0.15a 0.39 ± 0.08b 0.37 ± 0.04b 0.33 ± 0.06b

Uptake of 86Rb+ as a function of varying concentration of extracellular Rb+ (RbCl). As extracellular Rb+ concentration
was increased, uptake of 86Rb+ was stimulated and subsequently became saturated in all groups. Kinetic parameters
[maximal uptake (Vmax) and affinity (1/Km)] were obtained after the analysis of data with GraphPad Prism 7 software
(GraphPad Software Inc., San Diego, CA, USA). Values are represented as mean ± SEM, n = 6. Values not sharing
common superscripted letters are significantly different at p < 0.01.

2.5. Na-K-ATPase α1 and Na-K-ATPase β1 Subunit mRNA Abundance during Cell Maturation

The α subunit primarily provides Na-K-ATPase functional activity whereas the β subunit does
not have pumping activity, but contributes for proper transportation of α subunit to the plasma
membrane to make the entire protein fully functional. Therefore, to determine whether the change
in Na-K-ATPase activity may be transcriptionally regulated, we performed quantitative real-time
polymerase chain reaction (qRT-PCR) analysis. There was no significant difference in the relative
expression of Na-K-ATPase α1 mRNA (Figure 5A) between different groups (0–4 days). Similarly, the
Na-K-ATPase β1 subunit mRNA abundance (Figure 5B) was also not statistically different between the
groups (0–4 days).
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Figure 5. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of IEC-18 cells on different
days of post confluence. Values are relative to 0-day and normalized to β-actin. (A). Na-K-ATPase α1.
(B). Na-K-ATPase β1. Values are represented as mean ± SEM, n = 4.

2.6. Na-K-ATPase α1 and Na-K-ATPase β1 Subunit Protein Expression during Cell Maturation

Since mRNA levels of Na-K-ATPase α1 and Na-K-ATPase β1 subunits may not definitely
correlate with protein expression, Western blot analysis of protein expression of Na-K-ATPase α1
and Na-K-ATPase β1 subunits were performed. Immunoreactive protein levels of Na-K-ATPase
α1 and Na-K-ATPase β1 subunits were determined in cellular homogenates and plasma membrane
fractions. Densitometric analysis of relative protein expression revealed that the level of Na-K-ATPase
α1 protein expression was not statistically different in IEC-18 cells from 0–4 days post-confluence
in cellular homogenates (Figure 6A,B) or plasma fractions (Figure 7A,B). Similarly, there was also
no significant difference in Na-K-ATPase β1 subunit protein expression among IEC-18 cells from
0–4 days post-confluence in cellular homogenates (Figure 6A,C) and plasma membrane fractions
(Figure 7A,C). Protein expression of Na-K-ATPase α1 and Na-K-ATPase β1 subunits correlates with
mRNA expression of their respective subunits. Furthermore, these studies are consistent with kinetic
parameters determined above. Therefore, the expression of Na-K-ATPase α1 and Na-K-ATPase
β1 subunits are unaltered in cellular homogenates and plasma membrane fractions in IEC-18 cells
during maturation. Thus, the increase in Na-K-ATPase activity as IEC-18 cells mature from crypt-like
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to villus-like cells is secondary to increased affinity of the protein, which may be due to altered
phosphorylation of the α1 Na-K-ATPase subunit.
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β-actin. Values are represented as mean ± SEM, n = 4.
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2.7. Protein Phosphorylation Levels of Na-K-ATPase α1 Subunit during Cell Maturation

To examine whether changes in Na-K-ATPase activity during different days of post confluence
may be due to alteration in phosphorylation of Na-K-ATPase α1 subunit, thus affecting its affinity,
immunoprecipitation studies were performed. Na-K-ATPase α1 subunit was immunoprecipitated
from the plasma membrane on different days of post-confluence and probed with antibodies specific for
phosphorylated amino acids (serine, threonine, and tyrosine). As shown in the representative blot and
densitometric analysis in Figure 8, immunoprecipitated Na-K-ATPase α1 subunit from different days of
post confluence had a gradual increase in the levels of phosphorylated tyrosine (Figure 8A,B; 100% in
0-day and 170 ± 21.41 in 4-day post-confluence). Similarly, phosphorylated serine levels also increased
(Figure 8A,C; 100% in 0-day and 179 ± 5.08 in 4-day post confluence). However, phosphorylated
threonine levels remained unchanged (Figure 8A,D). To determine which specific residues might be
the target of phosphorylation during maturation, protein extracted from different days were probed
with anti-p-Na-K-ATPase α1-Ser23 antibody, the target of which has been previously implicated in
alterations in Na-K-ATPase activity. As shown in the representative blot and densitometric analysis
in Figure 9, p-Na-K-ATPase α1-Ser23 had a gradual increase (100% in 0-day and 241.3 ± 5.5 in 4-day
post-confluence) in its phosphorylation levels during IEC-18 cell maturation. These data confirmed that
change in Na-K-ATPase activity during cell maturation is likely due to changes in phosphorylation of
Na-K-ATPase α1 subunit, specifically at serine and tyrosine amino acid residues and possibly involving
p-Na-K-ATPase α1-Ser23 residue.
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Figure 8. Western blot analysis of phosphorylation levels of Na-K-ATPase α1 in plasma membrane
during different days post confluence. (A). Representative blot of p-tyrosine, p-serine, p-threonine
and Na-K-ATPase α1 after immunoprecipitation with Na-K-ATPase α1 antibody. Densitometric
quantitation of Western blots. (B). p-tyrosine. (C). p-Serine. (D). p-Threonine. Values are relative to
0-day and normalized to Na-K-ATPase α1. Values are represented as mean ± SEM, n = 3. Values not
sharing common superscripted letters are significantly different at p < 0.05.
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3. Discussion

Villus and crypt cells have been extensively investigated concerning absorption mechanisms of
Na-dependent nutrient co-transporters at the level of the co-transporters in the BBM. At the cellular
level, all of these Na-dependent co-transport processes are regulated secondary to alterations in
BLM Na-K-ATPase since it provides the necessary Na gradient for their secondary active transport
processes. During the maturation of enterocytes from crypts to villus, Na-K-ATPase activity doubles to
accommodate for the increased BBM Na-dependent nutrient absorption by the villus cells. However,
the Na-K-ATPase located in the BLM that drives these nutrient transporters have not been previously
studied for their capacity to adapt themselves to support the increasing nutritional absorptive capacity
that the intestinal epithelial cells acquire during their growth and maturation. Therefore, the present
study was undertaken to understand the mechanism of Na-K-ATPase regulation during the maturation
of intestinal epithelial cells from the crypt to the villus.

During the maturation of intestinal cells from the crypt to the villus, significant morphological and
physiological changes occur. Morphological changes include changes in composition and increases
in brush border membrane surface area. Along with these changes, physiologically mature cells
acquire more transporters and, therefore, their capacity to absorb nutrients increases. A study of
the crypt-villus axis of piglets has shown that there is upregulation of proteins associated with
glycolysis/gluconeogenesis, fatty acid metabolism, amino acid metabolism, and citrate cycle as cells
mature from crypt to villus [30]. Additionally, it has been reported that alkaline phosphatase (ALP),
aminopeptidase, sucrose, lactase, and Na-K-ATPase activities increased along the crypt-villus axis
in jejunum and ileum of neonatal pigs [31]. Similar to these results, our study has shown that there
is an increase in ALP and SGLT1 activities as IEC-18 cells mature from crypt-like to villus-like cells
in vitro [30,31].

There are conflicting reports in the literature addressing the levels of Na-K-ATPase activity during
the maturation of cells [32–34]. For example, in one study a reduction in activity was found to be due
to the shedding of Na-K-ATPase into exosomes or due to degradation [35]. The present study, however,
has shown that there is an increase in Na-K-ATPase activity as IEC-18 cells mature from crypt-like to
villus-like cells. The increase or decrease in activity may be the result of various mechanisms: firstly,
due to an increase or decrease in the protein levels of the subunits α and β [36–39]. The increased
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Na-K-ATPase activity could, therefore, be due to increase in the protein levels of these subunits by
increased mRNA and protein synthesis. Secondly, increased translocation of alpha and beta subunits
from the cytoplasm to the plasma membrane can increase Na-K-ATPase activity [24,25,40]. Among
different isoforms of α and β subunits, α1 and β1 isoforms are expressed ubiquitously and are known
to perform a housekeeping role in most epithelial cell types including intestinal epithelial cells [22,41].
During the development of neonates to newborn, Na-K-ATPase enzyme activity in erythrocytes
was found to decrease with maturation, correlating with a decrease in α1 subunit [42]. Similarly,
in conjunction with Na-K-ATPase activity, the α1 isoform also increased during the maturation
of cochlea [43]. However, in the present study, we did not find any significant changes in mRNA
expression of the α1 isoform or its protein levels although there was an increase in Na-K-ATPase activity.

For Na-K-ATPase to be fully functional as a transporting unit in the plasma membrane, assembly
of β subunit with α subunit is essential. The association of β subunit with α subunit is required for
maturation, membrane insertion and transport activity of the alpha subunit [44]. Na-K-ATPase α and
β heterodimer are selective in their subunit isoform association, where α1 mostly assembles with β1
isoform [44]. Although there was elevated Na-K-ATPase activity, the expression levels of α1 and β1
mRNA and protein in cellular homogenate remain unchanged during maturation. Therefore, the level
of Na-K-ATPase α1 and β1 mRNA and protein in cellular homogenate confirmed that Na-K-ATPase is
regulated post-translationally. Correspondingly, there was also no alteration in Na-K-ATPase α1 and
β1 expression in the plasma membrane. Therefore, the unaltered level of Na-K-ATPase α1 and β1
protein expression in both cellular homogenate and plasma membrane also indicate that increased
Na-K-ATPase activity during maturation is not likely due to altered membrane trafficking.

The increase in Na-K-ATPase activity could be due to change in the affinity of Na-K-ATPase
for Na+, K+ and ATP [45,46]. In the present study, there was an increase in the affinity for K+

of Na-K-ATPase during cell maturation. This change in affinity may be due to alteration in the
level of the phosphorylation of the protein. Considerable evidence indicates that the Na-K-ATPase
activity is regulated by phosphorylation of Na-K-ATPase α1 subunit on serine, threonine [47–50] and
tyrosine residues [51,52]. It has been reported that there are at least 21 phosphorylation sites in rat
Na-K-ATPase α1 [53], including 6 tyrosine, 1 threonine, and 14 serine phosphorylation sites. Protein
kinases A and C (PKA, PKC) have been reported to phosphorylate α1 subunit specifically on serine
and threonine residues [47–50], whereas various tyrosine kinases phosphorylate at tyrosine residues
thus regulating Na-K-ATPase activity [51,52]. Multiple studies have reported that the phosphorylation
of the Na-K-ATPase α1 subunit on tyrosine residues causes different responses on Na-K-ATPase
activity [51,52,54]. While some reports have demonstrated that increased tyrosine phosphorylation of
Na-K-ATPase α1 in rat kidney tubules [51] and human skeletal muscle cells [54] increase the activity of
the Na-K-ATPase, others have reported that increased tyrosine phosphorylation of Na-K-ATPase α1 in
human and pig renal cells reduces the activity of Na-K-ATPase [52]. This differential regulation of
Na-K-ATPase pump activity by tyrosine phosphorylation might be due to phosphorylation at different
amino acid residues or due to the differences in both tissue and species. Our study demonstrates that
there is an increase in Na-K-ATPase α1 tyrosine phosphorylation in conjunction with its increase in
activity as cells mature. The different results suggest that, depending on the tissue studied, and the
experimental conditions, phosphorylation of serine and tyrosine leads to either activation or inhibition
of Na-K-ATPase [40]. However, in the present study, we observed that there was an increase in
serine and tyrosine phosphorylation whereas there was no change in threonine phosphorylation of
Na-K-ATPase α1, as cells matured.

4. Materials and Methods

4.1. Cell Culture

Rat small intestinal epithelial cells (ATCC CRL-1589, American Type Culture Collection, Manassas,
VA, USA), between passages 5 and 20, were used for all of the experiments. Cells were maintained
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in Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 10% (v/v) fetal bovine serum,
100 U/L human insulin, 0.25 mM β-hydroxybutyric acid and 100 U/mL of penicillin and streptomycin.
These cells were cultured in a humidified atmosphere of 10% CO2 at 37 ◦C. The cells were fed with
fresh medium every other day. When the cells reached 100% confluence, it was considered as 0 day,
and cells were grown until 4 days post-confluence. Experiments were conducted on 0-day, 1-day, 2-day,
3-day, and 4-day post-confluent cells.

4.2. Alkaline Phosphatase Activity (ALP) Assay

The activities of ALP were determined using an enzyme assay kit, according to the manufacturer’s
protocol (Alkaline phosphatase assay kit, colorimetric (Abcam#83369) Abcam PLC, Cambridge, MA,
USA). ALP activity was calculated as picomole/min/mL from the cells that were harvested between 0
and 4-day post-confluence.

4.3. Na-Dependent Glucose Uptake Studies

To determine Na-dependent glucose transport in IEC-18 cells, glucose uptake studies were
performed on cells grown on transwell inserts (0.4 µm; #140620, Thermo Fisher Scientific Inc., Waltham,
MA, USA) in 24 well plates. Cells were rinsed once with warm wash buffer (130 mM NaCl, 5 mM KCl,
1mM MgSO4, 2 mM CaCl2, 20 mM HEPES [4-(2-Hydroxyethyl)-1-poperazineethanesulfonic acid] and
pH adjusted to 7.4) and incubated with the same buffer for 10 min. After the incubation, wash buffer
was removed from the wells and replaced with the reaction mixture containing a trace amount of [3H]
OMG in Na-HEPES buffer with and without phlorizin (SGLT1 inhibitor). The reaction was stopped
after two minutes with cold wash buffer (130 mM NaCl, 5mM KCl, 1mM MgSO4, 2 mM CaCl2, 20 mM
HEPES, 10 mM D-Glucose and pH adjusted to 7.4), and the cells were then washed twice with the
same buffer. Cells were lysed by incubating them with 1M NaOH for 20 min at 70 ◦C. The lysed cells
from each well was then mixed with 5 mL of Ecoscint A (National Diagnostics, Atlanta, GA, USA).
The vials were kept in darkness overnight and radioactivity retained by the cells was determined in a
Beckman Coulter 6500 scintillation counter (Beckman Coulter Inc., Brea, CA, USA).

4.4. Crude Plasma Membrane Isolation

Plasma membrane (crude) was prepared from cells according to the method of Havrankova et al. [55].
Briefly, 100 mg cells were homogenized in 5 mL of 1 mM NaHCO3 and centrifuged at 600× g for 30 min.
The supernatant was collected and centrifuged for 30 min at 20,000× g. After washing membrane pellets
with 1mM NaHCO3 for a couple of times, final pellet was resuspended in 0.04 M Tri-HCl buffer (pH 7.4)
containing 0.1% bovine serum albumin (BSA). All the procedures mentioned above were carried out at
4 ◦C.

4.5. Na-K-ATPase Activity Assay

Na-K-ATPase activity was measured as Pi liberated in cellular homogenates and crude plasma
membrane fractions from the cells that were harvested 0-4 days post-confluence according to the
protocol of Forbush et al. [56]. Enzyme-specific activity was expressed as nanomoles of Pi released per
milligram protein per minute.

4.6. Determination of Na-K-ATPase Activity and Kinetics by 86Rb+ Uptake

Uptake studies were performed in cells grown on transwell inserts in 24 well plates. IEC-18
cells were plated with approximately 1 × 105 cells. Uptake studies for Na-K-ATPase were done using
radioactive Rubidium (86Rb+; PerkinElmer, Inc., Waltham, Massachusetts, U.S.). Cells were incubated
for 1 hr in serum-free DMEM media at conditions as mentioned above. The cells were subsequently
washed with serum-free media and incubated for 10 min at 37 ◦C with 20 µM monensin (in serum-free
DMEM) added to both the apical and basolateral sides. The cells were then washed with serum-free
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DMEM. Uptake of 86Rb+ was started by incubating the cells for 15 min in a reaction mixture (serum-free
DMEM) containing ~1 µCi/ of 86Rb+ added to the basolateral side of the cells in the presence and
absence of ouabain (1mM).

For Na-K-ATPase kinetics, after incubation with serum-free DMEM for 1hr, the cells were
subsequently washed with incubation buffer (130 mM NaCl, 5 mM KCl, 1 mM MgSO4, 2 mM CaCl2
and 20 mM HEPES) and incubated for 10 min at 37 ◦C in the incubation buffer with 20 µM monensin on
both sides of the membrane. Then cells were washed with wash buffer (130 mM NaCl, 1 mM MgSO4,
2 mM CaCl2, 20 mM HEPES and 5 mM mannitol) on both sides. Na-K-ATPase kinetic studies were
then performed by incubating the cells for 30 s with reaction mixtures (130 mM tetramethylammonium
chloride, 1 mM MgSO4, 2 mM CaCl2, 20 mM HEPES, 5 mM mannitol and 86Rb+ (~1 µCi/ well)
containing different concentrations (0.05–2 mM) of RbCl added to the basolateral side of the membrane,
in the presence and absence of ouabain (1 mM).

For both uptake and kinetics experiment, the reaction was then stopped by the addition of ice-cold
MgCl2. The cells were then washed three times with MgCl2 and lysed with 800 µL of 1N NaOH by
incubating them for 30 min at 70 ◦C. The lysed cells from each well were then mixed with 5 mL of
Ecoscint A (National Diagnostics, Atlanta, GA, USA). The vials were kept in darkness overnight and
radioactivity retained by the cells was determined in a Beckman Coulter 6500 scintillation counter.
The net Na-K-ATPase activity was calculated by subtracting 86Rb+ uptake in the presence of ouabain
from that in the absence of ouabain.

4.7. RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

RNA was isolated from 0–4 days post-confluent cells by using the RNeasy mini kit obtained
from Qiagen Inc. (Germantown, MD, USA). qRT-PCR was performed using isolated total RNA by a
two-step method. First, total RNA was used to synthesize cDNA using SuperScript III (Invitrogen Life
Technologies, Carlsbad, CA, USA). Then, newly synthesized cDNA was used as a template to perform
real-time PCR using TaqMan universal PCR master mix from Applied Biosystems (Foster City, CA,
USA) according to the manufacturer’s protocol. Rat-specific Na-K-ATPase α1 and Na-K-ATPase β1
primers and probes were used for the qRT-PCR studies. Also, the rat-specific β-actin primer was used
to normalize the expression levels of mRNA in the samples.

4.8. Immunoprecipitation

Immunoprecipitation (IP) assays were conducted to investigate the phosphorylation level of
Na-K-ATPase α1 present in the plasma membrane. Cells were first rinsed with PBS, scraped and
collected in PBS, and pelleted by brief low-speed centrifugation (800 rpm). Then collected pellet was
further used for plasma membrane isolation as mentioned above. The prepared plasma membrane
fraction was sonicated and dissolved in 200 uL of lysis buffer (T-per Buffer; Thermo Fisher Scientific
Inc., Waltham, MA, USA) with protease inhibitors (Thermo Fisher Scientific Inc., Waltham, MA,
USA). Plasma membrane protein was further diluted to 1 µg/µL in a microcentrifuge tube with T-per
buffer and placed on a rocking shaker at 4 ◦C with 2 µg of Anti-Na-K-ATPase α1 antibody overnight.
Antibody-protein complexes formed were captured by adding 50 µL of washed protein G agarose bead
slurry (Catalog # 16-266; Thermo Fisher Scientific Inc., Waltham, MA, USA) with rotation at 4 ◦C for
2 h. The agarose beads with the protein–antibody complex were collected by centrifugation (14,000× g)
and washed three times with ice-cold lysis buffer. The agarose beads were resuspended in 2× sample
loading buffer and incubated at 37 ◦C for 15 min. The beads in sample loading buffer were vortexed,
and the supernatant was used for Western blot analysis.

4.9. Western Blot Analysis

Western blot analysis was performed in whole cell lysate and plasma membrane preparations.
Equal amounts of protein (20 µg) were denatured in sample buffer (Laemmli sample buffer, BIO-RAD
#3100010639; Bio-Rad Laboratories, Hercules, CA, USA) and separated by electrophoresis on an
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8%–12% gradient gel. Proteins on the gel were transferred to a polyvinylidene fluoride membrane
which was blocked with 5% dry milk or BSA in TBS (20 mM Tris pH 7.5, 150 mM NaCl) with
0.1% Tween-20 and then incubated with one of the following primary antibodies overnight at 4 ◦C:
Na-K-ATPase α1 (Millipore, # 05-369); Na-K-ATPase β1 (ab2873; Abcam PLC, Cambridge, MA,
USA); p-Serine (ab9332; Abcam PLC, Cambridge, MA, USA); p-Threonine (ab179530; Abcam PLC,
Cambridge, MA, US); p-Tyrosine (ab9337; Abcam PLC, Cambridge, MA, US); p-Na-K-ATPase α1-Ser23

(Cell Signaling Technology, #4006) and p-Na-K-ATPase α1-Ser16 (Cell Signaling Technology, #4020).
The membrane was washed three times with Tris Buffered Saline with Tween 20 (TBST) followed by TBS.
The membrane was then incubated with secondary antibody for 1hr. ECL western blotting detection
reagent (GE Healthcare Bio-Sciences, Piscataway, NJ, USA) was used to detect the immobilized protein.
The chemiluminescence was detected using a FluorChem M instrument (Alpha Innotech, San Leandro,
CA, USA) and its software analyzed the intensity of the bands. β-actin was used to normalize the
expression levels in cellular homogenate.

4.10. Protein Determination

Total protein was measured by the Lowry method using the Bio-Rad protein assay kit (Hercules,
CA, USA). BSA was used as a standard.

4.11. Statistical Analysis

All groups presented have at least n = 3 per group repeated with a different passage. The values
are presented as mean ± standard error of the mean (SEM), and significant values of p < 0.05 or less
were taken to indicate statistical significance. All of the data were analyzed using one-way or two-way
analysis of variance (ANOVA) using GraphPad Prism 7 (GraphPad Software Inc., San Diego, CA, USA).

5. Conclusions

In summary, this study demonstrated that as epithelial cells mature from secretory crypt-like to
absorptive villus-like cells, the Na-K-ATPase activity increases to support the increasing absorptive
capacity of the enterocytes. Na-K-ATPase activity increased secondary to increases in affinity rather
than an increase in transporter numbers as cells matured from crypt to villus. Specifically, altered
affinity was found to be likely due to increased phosphorylation of α1 subunit of Na-K-ATPase.
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