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Abstract: The heme oxygenase (HO) system is believed to be a crucial mechanism for the nervous
system under stress conditions. HO degrades heme to carbon monoxide, iron, and biliverdin.
These heme degradation products are involved in modulating cellular redox homeostasis. The
first identified isoform of the HO system, HO-1, is an inducible protein that is highly expressed in
peripheral organs and barely detectable in the brain under normal conditions, whereas HO-2 is a
constitutive protein that is highly expressed in the brain. Several lines of evidence indicate that HO-1
dysregulation is associated with brain inflammation and neurodegeneration, including Parkinson’s
and Alzheimer’s diseases. In this review, we summarize the essential roles that the HO system
plays in ensuring brain health and the molecular mechanism through which HO-1 dysfunction leads
to neurodegenerative diseases and disruption of nervous system homeostasis. We also provide a
summary of the herbal medicines involved in the regulation of HO-1 expression and explore the
current situation regarding herbal remedies and brain disorders.
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1. Introduction

Heme oxygenase (HO) is an evolutionarily conserved enzyme and is involved in many
different diseases. HO plays the role of a rate-limiting enzyme in degrading endogenous
iron protoporphyrin heme by release of carbon monoxide (CO), biliverdin (BV), and ferrous
ions (Fe2+), which could be recycled for heme homeostasis.
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1. Introduction 
Heme oxygenase (HO) is an evolutionarily conserved enzyme and is involved in 

many different diseases. HO plays the role of a rate-limiting enzyme in degrading en-
dogenous iron protoporphyrin heme by release of carbon monoxide (CO), biliverdin 
(BV), and ferrous ions (Fe2+), which could be recycled for heme homeostasis. 

 
There are three isoforms of the HO system: HO-1, HO-2, and HO-3. Interestingly, 

HO-3, a pseudogene discovered in rat, is a splice-variant of HO-2 and remains elusive 
and poorly understood [1,2]. The amino acid alignments of HO-1 and HO-2 are shown in 
Figure 1A; they demonstrate a 43% homology the amino acid sequence of humans. HO-1, 
encoded by a gene called HMOX1, is a well-known inducible isoform and can be tran-
scriptionally upregulated as much as 100-fold as a result of stimuli, such as radiation, 
toxins, infections, and injuries [3]. HO-2, encoded by a gene called HMOX2, is a consti-
tutively expressed protein and is present in high levels in the brain [4]. 
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There are three isoforms of the HO system: HO-1, HO-2, and HO-3. Interestingly, HO-3,
a pseudogene discovered in rat, is a splice-variant of HO-2 and remains elusive and poorly
understood [1,2]. The amino acid alignments of HO-1 and HO-2 are shown in Figure 1A;
they demonstrate a 43% homology the amino acid sequence of humans. HO-1, encoded
by a gene called HMOX1, is a well-known inducible isoform and can be transcriptionally
upregulated as much as 100-fold as a result of stimuli, such as radiation, toxins, infections,
and injuries [3]. HO-2, encoded by a gene called HMOX2, is a constitutively expressed
protein and is present in high levels in the brain [4].
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Figure 1. The amino acid alignment of HO. (A) Amino acid alignment of HO-1 and HO-2 in hu-
man. (B) The amino acid homology of HO-1 in humans, rat, and mice. Asterisks indicate common 
retention regions, meaning that the amino acids here are identical. 

HO is the rate-limiting enzyme of heme degradation, and the end-products, which 
include CO, Fe2+, and BV (converted into bilirubin (BR) by biliverdin reductase), play 
important roles in regulating cellular homeostasis. BR is more electrophilic than BV and 
thereby comparatively increases the reactivity of Kelch-like erythroid cell-derived pro-
tein with CNC homology-associated protein 1 (Keap1) to release Nrf2 [5]. The Keap1–
Nrf2 system has been well studied in mammalian cells, especially its protection role 
against oxidative stress in organisms. CO is well-known for its antioxidant, vasodilator, 
anti-inflammatory, and anti-apoptotic effects, among others. Therefore, HO and its heme 
degradation products are potent protective modulators under oxidative stress condi-
tions. 

The controversial role of HO-1 is explored in several studies, e.g., they both deline-
ate the importance of its antioxidant activity and also demonstrate its function in the 
development of diseases. In this review, we summarize the essential roles of HO-1 and its 
end-products for ensuring brain health and further discuss how HO-1 dysfunction leads 
to several neural disorders, such as Parkinson’s disease (PD) and Alzheimer’s disease 
(AD). We also review the ongoing clinical herbal trials aimed at exploring the therapeutic 
targets derived from HO-1 regulation for the treatment of neural disorders. 

2. The Functions of HO-1 in Brain Physiology 
2.1. Overview 

Figure 1. The amino acid alignment of HO. (A) Amino acid alignment of HO-1 and HO-2 in human.
(B) The amino acid homology of HO-1 in humans, rat, and mice. Asterisks indicate common retention
regions, meaning that the amino acids here are identical.

HO is the rate-limiting enzyme of heme degradation, and the end-products, which
include CO, Fe2+, and BV (converted into bilirubin (BR) by biliverdin reductase), play
important roles in regulating cellular homeostasis. BR is more electrophilic than BV and
thereby comparatively increases the reactivity of Kelch-like erythroid cell-derived protein
with CNC homology-associated protein 1 (Keap1) to release Nrf2 [5]. The Keap1–Nrf2
system has been well studied in mammalian cells, especially its protection role against
oxidative stress in organisms. CO is well-known for its antioxidant, vasodilator, anti-
inflammatory, and anti-apoptotic effects, among others. Therefore, HO and its heme
degradation products are potent protective modulators under oxidative stress conditions.

The controversial role of HO-1 is explored in several studies, e.g., they both delin-
eate the importance of its antioxidant activity and also demonstrate its function in the
development of diseases. In this review, we summarize the essential roles of HO-1 and its
end-products for ensuring brain health and further discuss how HO-1 dysfunction leads to
several neural disorders, such as Parkinson’s disease (PD) and Alzheimer’s disease (AD).
We also review the ongoing clinical herbal trials aimed at exploring the therapeutic targets
derived from HO-1 regulation for the treatment of neural disorders.

2. The Functions of HO-1 in Brain Physiology
2.1. Overview

The brain is the most important organ in the human body and requires sufficient
oxygen to maintain its functions, i.e., it needs to consume 20% of the total basal oxygen to
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support intensive neuronal activity [6]. As a result of the transport and storage of oxygen,
heme is necessary for the survival of most organisms. Moreover, in the central nervous sys-
tem (CNS), redox homeostasis is involved in development, aging, and neural diseases [7].
Since HO is the rate-limiting enzyme in heme degradation and can be modulated by redox
status, the role of the HO system is important for maintaining brain function. Current stud-
ies demonstrate that dysregulation of the HO system is associated with the pathogenesis of
neurodegenerative diseases, such as AD, PD, and multiple sclerosis (MS) [8,9], and is even
involved in neurotoxicity and neuroinflammation.

HO-1 was first identified in 1968, and many studies focused on the regulation and
function of this protein in heme metabolism [10]. There is a high amino acid homology of
HO-1 in humans, mice, and rats (Figure 1B). However, increasingly, amounts of evidence
over in recent decades demonstrate that HO-1 could be induced by a variety of induc-
ers other than heme [11,12], such as heat shock, heavy metals, endotoxin, inflammatory
cytokines, and even oxidative stress, indicating that HO-1 plays a vital role in modulat-
ing cellular homeostasis. Interestingly, HO-1 induction with increased heme degradation
products confers antiviral activity by interferon activation against a wide range of viruses,
such as HIV, influenza, respiratory syncytial virus, enterovirus 71, human herpes simplex
virus, and respiratory syndrome virus, etc. [3]. A current study also indicates that HO-1
activation may be a possible therapeutic strategy against COVID-19-associated compli-
cations [3,13]. All these investigations indicate that HO-1 plays a vital role in regulating
human physiopathology.

2.2. The Canonical and Non-Canonical Effects of HO-1 in Brain

The by-products of heme degradation by HO-1 include BV, CO, and Fe2+, and the
canonical effects of HO in the brain include antioxidant, anti-apoptosis, vasodilation, and
anti-inflammatory responses [14–17]. Due to the direct antioxidant property [18], BV
administration in rats can ameliorate damage to the brain by reducing oxidative DNA
damage [19]. Furthermore, BV alleviates pro-inflammatory responses through the NF-κB
pathway [20] and inhibits toll-like receptor 4 (TLR4) signaling [21], which is the main
contributor to neurological disorders [22,23]. Moreover, CO in the brain is an activator
of guanylyl cyclase and functions as a neurotransmitter [24,25]. Astrocytic mitochondrial
biogenesis can be stimulated by CO through L-type Ca2+ channel-mediated PGC-1α/ERRα
signaling [26]. Although it does not directly influence the brain tissue, CO exhibits anti-
apoptosis and anti-inflammatory effects in the lungs of brain-dead rats through p38-MAPK
signaling [27]. CORM-A1 supplements, i.e., a carbon monoxide donor, offer a novel
and effective therapeutic agent against cerebrovascular dysfunction caused by neonatal
seizures [28] and experimental allergic encephalomyelitis [29].

Interestingly, aside from the canonical effect, recent studies demonstrate that HO-
1 also possesses other physiological functions, which are not correlated with their own
enzymatic functions; these are termed “non-canonical functions”. Those non-canonical
functions contain protein–protein interaction, intracellular compartmentalization, and
extracellular secretion [30]. The protein–protein interaction of HO isoforms was first
observed in 1977 [31]. An interaction between HO-1 and HO-2 proteins serves to limit HO
activity [32], indicating a possible cytoprotective range of HO expression in brain tissues.

The second non-canonical effect of HO-1 is intracellular compartmentalization. Al-
though studies demonstrated that HO isoforms were localized in the endoplasmic reticu-
lum, HO-1 was also found to be compartmentalized in nuclei, mitochondria, and caveo-
lae [33]. Bioinformatic analysis demonstrates that HO-1 has a nuclear import amino acidic
sequence. In the primary astroglial culture system, HO-1 can be induced by excitotoxic
injury with concomitant nuclear translocation [34]. HO-1 can translocate into the nucleus
under hypoxia or stress conditions with a reduction in HO activity [35]. This nuclear
localization of HO-1 may activate certain oxidant-response transcription factors, such as
activator protein-1 and NF-κB, and then promote cytoprotection, including cellular prolif-
eration and DNA repair [36,37]. Other subcellular localizations described for HO-1 include
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mitochondria and caveolae. The localization of HO-1 protein in mitochondria plays an
important role in the modulation of mitochondrial heme protein turnover and in protection
against pathophysiological condition such as neurodegenerative diseases [38]. Finally,
HO-1 has been observed in caveolae exerting a vesicular transport function and involved
in receptor signal transduction [39].

Aside from the intracellular compartments, the presence of HO-1 in extracellular com-
partments and biological fluids has been evaluated. Serum HO-1 is increased in Alzheimer’s
disease and exhibits a positive correlation with cognition impairment grade [40]. Schip-
per HM et al. showed that HO-1 is decreased in the cerebrospinal fluid of patients with
AD [41]. HO-1 is increased in the cerebrospinal fluid of children after severe traumatic
brain injury [42,43] and patients with Fisher Grade III aneurysmal subarachnoid hem-
orrhage [44]. These observations demonstrate that HO isoforms, especially HO-1, may
influence the physiological functions of the brain via non-canonical effects and serve as
a possible biomarker for these diseases. However, there are limited data to this end, and
the possible release mechanism(s) of HO-1 in serum or the cerebrospinal fluid remain to be
elucidated. In summary, HO-1 is considered to be a survival factor in the brain in response
to stress-induced ROS increase.

2.3. HO-1 in Brain Physiology

HO-1 is the inducible isoform of heme oxygenase. Under normal conditions, the ex-
pression of HO-1 protein in the brain is low and restricted to localized parts [45]. However,
rat model studies indicated that HO-1 mRNA is detectable at high levels in the hippocam-
pus and cerebellum, indicating a cellular reserve of HO-1 for quick protein synthesis [46].
Although HO-1 is present at low levels in most mammalian tissues, it can be upregulated by
a number of stimuli [47]. In order to study the effect of the enzyme on human physiology,
a gene-knockout animal model or a study of human HO-1 deficiency would represent a
good way to delineate the role of this protein in various organs.

The important role of HO-1 has been demonstrated in studies on HMOX1 knockout
(HO-1-null) mice. The first HO-1-null mice were established by Poss and Tonegawa in
1997 [48,49]. HO-1-null mice are characterized as an animal model of human hemochro-
matosis and present with several similar symptoms, such as splenomegaly, iron deposition
in tissues, fibrosis and hepatic injury, a mobility decrease, and premature mortality. As
compared to cells from wild-type embryos, the embryonic fibroblasts from HO-1-null mice
exhibited an increased production of free radicals and reduced survival rate under exposure
to several oxidants [49]. Moreover, the first human case of HO-1 deficiency was described
in a 6-year-old boy in 1999 by Yachie et al. [50,51] and the second in 2009 by Radhakrishnan
et al. [52]. The symptoms in these cases were far more severe under oxidative stress than in
HO-1 knockout mice (comparison data in [52] and [50]). The symptoms observed in HO-1-
deficiency patients include abnormalities of the fibrinolysis/coagulation system, enhanced
systemic inflammation, iron-deficiency anemia/intravascular hemolysis, nephropathy,
vascular endothelial injury, and developmental failure [52]. These data demonstrate that
HO-1 deficiency is associated with many dangerous side effects, and this accounts for the
early death of patients with severe HO-1 deficiency. Interestingly, amyloid deposition, the
central neuropathological abnormality in AD and in many neurodegenerative diseases [53],
was also observed in severe HO-1 deficiency. These observations indicate that the HO-1
signal plays a crucial anti-oxidative and anti-inflammatory function in modulating human
physiology. Thus, how to modulate the HO-1 activity in the brain and what the role of HO-1
is in the development of neurodegenerative diseases are critical to brain pathophysiology.

3. Epigenetic Regulation of HO-1
3.1. Polymorphisms of HO-1 Promoter

Since HO-1 is an inducible isoform of the HO system, the epigenetic regulations need
to be discussed. To date, there are three important polymorphisms of the HMOX1 promoter
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to have been identified, including a (GT)n dinucleotide length polymorphism and two
single-nucleotide polymorphisms, G(−1135)A and T(−413)A [54].

The current data demonstrate that the lengths of the (GT)n repeat sequence in the
HO-1 gene promoter could range from 12 to 40 [55], where <25 (GT)n repeats increase the
transcriptional activity of HMOX1 as compared with >25 (GT)n repeats [56]. In studies on
lymphoblastic cell lines, HMOX1 expression was enhanced in cells with shorter repeats
concomitant with higher HO-1 activity upon oxidative stress resulting in oxidant-induced
apoptosis as compared with cells with longer (GT)n repeats [56]. However, the length of
the HO-1 (GT)n promoter varies between different ethnic groups [56]. These observations
indicate that the repeat of the (GT)n sequence has a modulating effect on the transcriptional
activity of HMOX1.

Two single-nucleotide polymorphisms, G(−1135)A and T(−413)A, were discovered
using the PCR method. They were then confirmed by transfection into bovine aortic en-
dothelial cells [57]. The major allele of T(−413)A-(GT)30 polymorphism was shown to have
greater promoter activity as compared with another major allele, A(−143)A-(GT)23 [57].
However, the function of the G(−1135)A polymorphism is still not known [58]. Some
evidence indicates that the promoter polymorphisms of HMOX1 are associated with certain
clinical diseases, such as emphysema in smokers [59], hypertension in women [57], and
renal transplantation [60,61]. However, microsatellite polymorphism data do not indicate
any association between HMOX1 promoter polymorphism and the development of AD
and PD [62].

3.2. Post-Transcriptional Modification by MicroRNA (miRNA)

MiRNAs are a large pool of small non-coding RNAs (approximately 21–23 nucleotides
long) for post-transcriptional regulation in animals and plants [63]. In mammals, miRNAs
are known to control approximately 30% of all protein-coding genes by mediating mRNA
degradation or translational repression. Several studies show that miRNAs are involved in
the development of neurological diseases, such as miR-142-5p [64], miR-146a, miR-155 [65],
and miR-144 [66]. Furthermore, HO-1 targeting miRNAs were also documented in in vitro
and in vivo studies, as is summarized in Table 1.

Senescence-accelerated mouse-prone 8 (SAMP8) is an ideal AD model which is char-
acterized by several behavior disorders, including cognitive function impairment and
Aβ accumulation with increased oxidative stress [67]. In SAMP8 mice, the expression of
Hmox1 is increased concomitant with decreased expression of miR-873-5p, and a luciferase
reporter assay indicated that miR-873-5p directly targets the Hmox1 gene [68]. Through an
in silico analysis of the 3′UTR sequence, miR-377 and miR-217 were shown to be the miRNA
candidates of HMOX1. Co-transfection of miR-377 and miR-217 into mammalian cells
decreases the expression of HMOX1-3′UTR luciferase reporter activity as compared with
controls [69,70], indicating that miR-217 together with miR-377 could modulate HMOX1
expression. Moreover, in a rodent model, HO-1 was shown to be a specific target of miR-155,
which promoted T-cell-driven inflammation [71]. In C. carpio, miR-155 and miR-181a are
involved in regulating immune-cytotoxicity of cadmium by targeting HO-1 [72]. However,
miR-218-5p was demonstrated to have a cytotoxic effect in septic mice resulting from HO-1
downregulation [73]. Furthermore, the replication of porcine reproductive and respiratory
syndrome virus may also be enhanced by miR-24-3p through the downregulation of HO-1
expression [74].
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Table 1. HO-1 targeting miRNAs and their functions.

miRNA Species Functions Reference

miR-24-3p Porcine
Promote Porcine Reproductive and

Respiratory Syndrome
Virus Replication

[74]

miR-155 Carp
Rodent

Regulate the immunotoxicity of
cadmium in the kidneys

Promote T-cell-driven
inflammation

[71,72]

miR-181a Carp Regulate the immunotoxicity of
cadmium in the kidneys [72]

miR-217 & miR-377 Human Cytotoxic effect by
HO-1 downregulation [69,70]

miR-218-5p Mouse Cytotoxic effect in septic mice by
HO-1 downregulation [73]

miR-873-5p Mouse
Cytoprotective effect for
suppression of neuron

cell apoptosis
[68]

3.3. Post-Translational Modification

HO-1 was first identified with one consensus sequence for Akt phosphorylation at
Ser188 in an isotopic 32P-labeling assay [75]. In HEK293T cells, the phosphorylation level of
HO-1 is increased with Akt1 activation. Furthermore, phosphorylated HO-1(S188D) protein
showed a 1.7-fold increase in activity as compared with wild-type HO-1 [75]. Salinasa
et al. first reported that the protein kinase Akt plays a vital role in the regulation of HO-1
activity. Interestingly, in AD subjects, HO-1 protein activity was significantly increased
in the hippocampus concomitant with an increase in Ser-residue phosphorylation [76].
This Ser-residue phosphorylation seems to be correlated with oxidative post-translational
modifications in the hippocampus, indicating that HO-1 has a role in the development of
AD. These studies demonstrate that HO-1 activity could be modulated by phosphorylation
through oxidative post-translational modification.

4. The Redox-Mediated HO-1 Induction in the CNS

Aside from the epigenetic regulation of HMOX1, the promoter region of HMOX1
consists of one proximal and two or more distal enhancers [47]. The promoter region has
different binding sequences for many transcription factors, such as nuclear factor-erythroid
factor 2-related factor 2 (Nrf2), nuclear factor kappa B (NF-κB), hypoxia-inducible factor 1
(HIF-1), activator protein 1 (AP-1), etc. As described in various studies, Nrf2 plays an
important role in redox homeostasis of the brain and nervous system [77]. However, the
most well-known transactivation of HMOX1 by oxidative stress in the brain is the binding
of transcription factor Nrf2 to cis-acting antioxidant response element (ARE) enhancers [78].

Nrf2 is a redox-related transcription factor and is responsible for the activation of
several antioxidant enzymes [79]. Nrf2 is retained in the cytoplasm under a basal con-
dition by its negative regulator Keap1 (Kelch-like erythroid cell-derived protein with
CNC homology-associated protein 1) to undergo ubiquitination and proteasomal degra-
dation [80]. However, under oxidative stress, Keap-1 is modified and releases Nrf2 into
the nucleus, binding to the ARE sequences before activating HMOX1 expression [81]. As a
result of Nrf2 binding to the ARE sequence in the presence of small Maf (sMaf) proteins
in the nucleus, the BTB domain and CNC homolog 1 (Bach1) protein are other negative
regulators of HO-1 activation [82]. Bach1 is a heme-binding protein and can dimerize
with sMafs, which prevents the binding of Nrf2 to ARE sequences [83]. These studies
demonstrate that, under stress condition such as an increase in the heme group or oxidative
stress, Keap1 and Bach1 are modified and then improve Nrf2-sMafs dimerization, thus
promoting binding to ARE sequences and activating HMOX1 expression.

Interestingly, aside from Nrf2-dependent signaling, previous studies demonstrated
that there is another pathway to induce HO-1 expression in brain astrocytes [84]. Activation
of ERK/NF-κB and JNK/c-Jun cascades as the result of a Nox/ROS-dependent event
enhances c-Fos/AP-1 activity and is essential for HO-1 upregulation and the activation
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induced by bradykinin (BK) in brain astrocytes. Moreover, ROS-dependent Nrf2 activation
also contributes to HO-1 induction by BK in astrocytes [84]. Furthermore, the high-glucose-
derived oxidative stress-dependent HO-1 expression from astrocytes contributes to the
neuronal apoptosis, and the induction of HO-1 is mediated by MAPK-mediated NF-κB
and AP-1 cascades [85]. However, these studies suggest that the upregulation of HO-1 may
have neurotoxic effects in addition to its protective effects in the CNS [86].

5. The Beneficial and Detrimental Role of HO-1 Induction in
Neurodegenerative Disorders

As HO-1 is an inducible enzyme in the nervous system’s response to damage, the
effect of HO-1 induction in neurodegenerative diseases needs to be further elucidated.
Human neurodegenerative disorders are complicated and vary with many factors, such
as onset age, sex predilections, neurological and behavioral symptoms, etc. Among these
differences, the most common risk for neurodegenerative disorders is age-related factors.
There are many general neuropathological features in neurodegenerative diseases, such as
oxidative damage resulting from modification to biological molecules, excessive deposition
of non-transferrin-bound iron, and macroautophagy in affected neural regions. The evi-
dence indicates that the number of HO-1-immunoreactive neuron cells increases with age,
indicating that HO-1 plays a Janus-faced role in brain physiology. Here, we use AD and
PD to illustrate how HO-1 is involved in the pathogenesis of CNS degenerative disorders.

An extensive literature attests to the protective roles of HO-1 in the nervous system
under various oxidative stress conditions. AD is a neurodegenerative disease characterized
by a set of hallmark brain lesions, such as aggregation of the hyperphosphorylated MAPT
(tau) protein in neurofibrillary tangles, β-amyloid aggregation in fibrillary plaques, and
a neuro-inflammatory response [87]. HO-1 overexpression reduced tau expression and
β-amyloid toxicity in neuroblastoma cells and increase neuronal survival in cell and rat
models [88–91]. Furthermore, the protective role of HO-1 in AD brains may also be related
to the ability to convert heme, which has a pro-oxidant effect, into its degradation products,
which have an antioxidant effect, creating a suitable redox microenvironment [92]. PD
is a common neurodegenerative disorder with an unknown etiology. The typical clinical
features of PD involve bradykinesia, resting tremor, and rigidity, and in the later stages,
postural instability. The development of this movement disorder is due to the loss of
dopaminergic neurons in the substantia nigra pars compacta with intracellular aggrega-
tion of α-synuclein and the formation of Lewy bodies and Lewy neurites [93]. In vivo
and in vitro research indicates that HO-1 induction increases α-synuclein proteasomal
degradation [94], prevents dopaminergic neuronal death by enhancing neurotrophic factor
generation [95,96], and promotes the antioxidant response [97]. However, these types of
HO-1 induction seem to be highly associated with the Nrf2/ARE signal, demonstrating the
impact of the Nrf2/HO-1 pathway on neuroprotection function.

Although previously proposed as a protective effect in AD and PD development, the
physiological feature of HO-1 in these neurodegenerative diseases is still under debate.
Interestingly, HO-1 is overexpressed in the brain of AD patients by co-localization with
neurons, astrocytes, ependymal, corpora amylacea, neurofibrillary tangles, and senile
plaques [98,99]. It is also overexpressed in nigral astroglia and in dopaminergic neuronal
Lewy bodies of the PD brain [98,99]. HO-1 overexpression in astroglia promotes the
oxidation of cholesterol to oxysterols in humans and increases oxysterol levels with a
decrease in the intracellular cholesterol content in rat [100,101]. The status of plasma
HO-1/biliverdin reductase-A has been proposed as a potential biomarker to detect the
earliest stages of AD [102]. Moreover, high glucose-induced HO-1 expression is mediated
through the NF-κB and AP-1 pathways in brain astrocytes [85]. All these data support
the detrimental role of HO-1 induction in the development of neurodegenerative diseases,
especially via an astrocytes-mediated event.

Since HO-1 induction plays a dual role in neuropathogenesis, the function of HO-1
in neuronal cells and in astrocytes, oligodendrocytes, and microglia needs to be consid-
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ered at the stage of neurodegenerative disorders. Indeed, the role of HO-1 expression is
highly complicated and not fully elucidated. However, whether HO-1 induction plays
cytoprotective or cytotoxic effect in neuropathogenesis may be related to different signaling
pathways [103]. That is to say, Nrf2-dependent activation of HO-1 exerts a cytoprotective
effect, in which AP-1- or NF-κB-induced HO-1 activation seems to exert cytotoxic effects in
the CNS.

6. Herbal Medicine Induces HO-1 Expression

Since HO-1 induction via Nrf-2 pathway in brain plays main functions for prevent-
ing brain damage, there are several HO-1 inducers/modulators for therapy or potential
therapeutic functions, such as herbal medicine, hemin [104], edavarone [105], cobalt pro-
toporphirin [9], and adenoviral vector transferring system [106]. However, due to the
adjuvant functions of herbal compounds and easy supplement from food, we here only
summarized those herb medicines as HO-1 inducers. The herbal medicine data for this
review were obtained from the ClinicalTrials.gov (accessed on 29 March 2022) database and
include resveratrol, curcumin, coenzyme Q10, sulforaphane, niacin, propolis, atorvastatin,
and dimethyl fumarate, which could be involved in HO-1 induction.

6.1. Resveratrol

Resveratrol, 3,5,4′-trihydroxy-trans-stilbene, belongs to the phytoalexin family and
is produced by red grapes, red cherries, peanuts, and berries. It is popular as a dietary
supplement and the studies demonstrate that it has various health-promoting properties
including anti-inflammatory, antioxidant, and neuroprotective effects [107]. However,
resveratrol exhibits poor bioavailability due to its instability and poor lipophilic properties.
Resveratrol exerts therapeutic effects on neurodegenerative diseases. Resveratrol treatment
was shown to improve autonomic dysfunction and motor function in a rat model of
spinal cord injury [108]. Furthermore, resveratrol improved BBB integrity as a result of
anti-oxidation by upregulating the Nrf2/HO-1 and PI3K/Akt signaling pathways and anti-
inflammation by attenuating the activity of NF-κB and JNK/MAPK signals [109,110]. In
addition, its major neuroprotective function in AD results from its anti-protein aggregation
and anti-amyloidogenesis properties through the abolishment of neurofibrillary tau protein
tangles or Aβ protein formation and deposition; thus, it is able to improve brain cognition
function [111,112]. Resveratrol could protect dopaminergic SH-SY5Y neuron cells from
rotenone-induced cell death in a HO-1-dependent autophagy manner [113]. Although
resveratrol’s protective function for cognition is mediated by AMPK/SIRT1 signaling, the
network between those anti-inflammatory responses needs to be further elucidated. Hence,
resveratrol can improve cognitive function in patients with neurodegenerative diseases
and further clinical trials are required to delineate its neuroprotective role.

6.2. Curcumin

Curcumin, 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, is a pig-
ment and active polyphenol found in turmeric (in the ginger family) [114]. Curcumin is
the main compound contributing to the biological functions of turmeric, and it is com-
mon as a food supplement. Curcumin has many biological functions, such as antioxidant,
anti-inflammatory, anti-diabetic, anti-microbial, and neuroprotective properties, due to its
ability to pass through the BBB effectively. Curcumin is denoted as “Generally Recognized
As Safe” by the US Food and Drug Administration [115] with good safety and tolerability in
clinical trials [116,117]. The neuroprotection properties of curcumin are mediated through
improving the Nrf2/HO-1 pathway (antioxidant response) and by inhibiting the NF-κB,
TLR4/RAGE, and MAPKs (ERK, p38, and JNK) signaling pathways (anti-inflammatory
response) in microglial and astrocytes [118]. As a result of the anti-amyloidogenesis and
anti-protein aggregation/misfolding properties, curcumin has demonstrated positive ef-
fects against neurodegenerative disorders, especially AD [119]. However, like resveratrol,
curcumin exhibits poor bioavailability, and increasing curcumin’s bioavailability should be
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a focus of future research. Further trials are required concerning curcumin’s neuroprotective
functions against other neurodegenerative diseases.

6.3. Coenzyme Q10 (CoQ10)

Coenzyme Q10 (CoQ10) plays the role of an electron acceptor in energy metabolism to
produce ATP. It is found in food sources such as organ meat, fatty fish, and broccoli. As a
result of its lipophilic capacity, CoQ10 also acts as a potent antioxidant and possesses a wide
range of therapeutic effects. Moreover, it is effective against various neurodegenerative dis-
eases as it passes through the BBB [120]. Its potent neuroprotective properties are mediated
by activating the endogenous antioxidant system via the Nrf2/HO-1 signaling pathway
and attenuating the NF-κB-mediated inflammatory pathway to protect the dopaminergic
neuron system. In addition, ubiquinol-10, the reduced form of CoQ10, was shown to be
safe and improve PD by lowering total Unified Parkinson’s Disease Rating Scale (UPDRS)
scores. CoQ10 supplementation was shown to improve PD symptoms in various clinical
studies and it has potential as a complementary therapy [121].

6.4. Sulforaphane

Sulforaphane, 1-isothiocyanato-4-(methylsulfinyl) butane, is an aliphatic isothiocyanate
found in glucoraphanin in cruciferous vegetables such as broccoli, cauliflower, and cab-
bage [122]. Sulforaphane is characterized as having antioxidant, anti-inflammatory, and
anti-apoptosis properties. It was shown to inhibit oxidative stress via the Keap1/Nrf2/ARE
pathway by modulating the expression of GSH peroxidase 1, NQO-1, HO-1, and gamma-
glutamylcysteine synthetase [123]. Furthermore, sulforaphane can also reduce neuronal
damage upon microglial activation and inhibit the expression of inflammatory media-
tors, such as TNF-α, IL-1β, inducible nitric oxide synthetase (iNOS), cyclooxygenase-2
(COX-2) and macrophage migration inhibitory factor [124–130]. As a result of its good
oral bioavailability and its ease of crossing through the BBB [131], an increasing number of
studies demonstrate the efficacy of sulforaphane as a therapeutic strategy in neurodegen-
erative disease [132]. Therefore, sulforaphane could be used as a supplement for treating
neurodegenerative diseases.

6.5. Niacin

The brain is the most cholesterol-rich organ, and cholesterol content may regulate
synaptic function and neuronal cell plasticity [133]. Current studies demonstrate that there
is a significant correlation between total cholesterol and pathologically defined AD [134,135].
Niacin is the most potent agent for increasing HDL cholesterol, inhibiting inflammation, and
promoting vascular remodeling. Niacin inhibits vascular inflammation via the induction of
HO-1 by Nrf2/p38 MAPK signaling [136]. However, whether niacin could be used as a
therapy for AD needs further elucidated.

6.6. Propolis

Propolis, a mixture of bee saliva, beeswax, and substances from plants and trees, is
a natural product found in beehives that possesses a therapeutic role in PD treatment.
Several lines of evidence indicate that flavonoids in propolis demonstrate neuroprotective
properties in dopaminergic neurons through the inhibition of oxidative stress [137]. The
flavonoids in propolis include caffeic acid phenethyl ester, chrysin (5,7-dihydroxyflavone),
and pinocembrin, which easily pass through the BBB and exert antioxidant and anti-
inflammatory activities [138]. Pinocembrin treatment was shown to induce the expression of
the HO-1 by Nrf2/ARE pathway, significantly reducing MPP+-induced neurotoxicity, ROS
production, and the rate of apoptosis and neuron cell death [139,140]. Furthermore, caffeic
acid phenethyl ester also exerts protective effects in nigral dopaminergic neurons from 6-
hydroxydopamine hemiparkinsonian mice through HO-1 and brain-derived neurotrophic
factor signals.
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6.7. Atorvastatin

Statin is a common therapeutic strategy for hypercholesterolaemia; however, as pre-
vious discussed in the section describing niacin, a significant link between cholesterol
and the development of AD has been observed, thus statin therapy might be of benefit
for AD pathogenesis [141]. Cholesterol-lowering statins have several biological functions,
such as anti-inflammatory, antioxidative, anti-thrombogenic, and immunological effects.
Among these statins, atorvastatin has been demonstrated to have benefits in terms of
improving AD outcomes. It significantly improves depressive symptoms and cognitive
functions at 6 months, and improves cognitive function and psychiatric symptoms at 12
months [141,142]. Furthermore, in a dog preclinical AD model, atorvastatin treatment
induced HO-1 expression, providing neuroprotection by modulating oxidative stress [143].

6.8. Dimethyl Fumarate

Among fumaric acid esters, dimethyl fumarate, the methyl ester of fumaric acid,
has effective pharmacological functions and exerts anti-inflammatory and antioxidant
properties [144]. Dimethyl fumarate is able to cross the BBB and exhibit beneficial effects
in the brain via differing mechanisms [145]. Dimethyl fumarate plays the role of an Nrf2
inducer and exerts a neuroprotective role in several neurodegenerative diseases, such as
AD, PD, and Huntington’s disease [146].

Although the herbal medicines mentioned above may provide neuroprotective effects
through the modulation of HO-1 expression, the bioavailability and lipophilic properties
of these medicine must be explored in order to assess their stability and how affective
they are at permeating the blood brain barrier (BBB). Nanocarriers represent an interesting
solution as a potential drug delivery candidate for passing through the BBB [147]. Thus,
how these medicines can be utilized as treatments or preventatives for the development of
neurodegenerative disorders is an important issue, and further clinical trials are required.

7. Conclusions

Although HO-1 has been observed to have cytoprotective and cytotoxic effects in the
development of neurodegenerative diseases, HO-1 activity needs to be maintained in a well-
defined reaction which involves the generation and degradation of heme. Heme metabolism
or Nrf2-mediated HO-1 induction in neuronal cells exerts protective effects against many
stressors; however, excessive activation of HO-1 by the NF-κB/AP-1 pathway may produce
cytopathic effects, depending on the complex of cell–cell interactions or the type of brain
tissue. Furthermore, the dysregulation of the heme degradation pathway may alter iron
metabolism, leading to neurodegeneration in neurons and glial cells. Neurodegenerative
diseases are complex and multifactorial diseases, and interventions should be considered
during the long preclinical phase. The currently available drugs have symptomatic effects,
with the majority playing the role of an Nrf2 inducer and increasing the expression of
HO-1 in order to modulate oxidative stress, as shown in Figure 2. Taken together, these
reports indicate that HO-1 induction, especially through Nrf2 pathway, may alleviate the
brain damage and plays important therapeutic functions in neurodegenerative diseases.
However, the detail mechanism of HO-1 on the cytotoxic effect of glial cells needs to be
further elucidated.
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