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Abstract: Hypertrophic scarring (HTS) is a common fibro-
proliferative disorder that typically follows thermal and
other injuries involving the deep dermis. The underlying
pathogenic mechanisms are regulated by transforming
growth factor-β (TGF-β); however, the exact mechanisms
in HTS have not been elucidated. We conducted this
study to explore the cellular signaling mechanisms for
expression of Sar1a, a coat protein complex II-associated
small GTPase, in HTS fibroblasts (HTSF). We found that
Sar1a was upregulated in HTSF as compared to that in
normal fibroblasts. Furthermore, stimulation of TGF-β1
increased the expression of Sar1a in HTSF, and small
interfering RNA for Sar1a suppressed procollagen-I (PC-I)
secretion. Next we investigated the signaling mechanism
from TGF-β1 to Sar1a expression and its association with
PC-I secretion. In the presence of TGF-β-activated kinase 1
(TAK1), c-Jun N-terminal kinase, or p38 inhibitors, the
effect of TGF-β1 on Sar1a expression and PC-I secretion
significantly decreased; however, it had no effect on col-
lagen-1A (Col-1A) expression. Further, the inhibitors of
Smad3 or extracellular signal-regulated kinases inhibited
TGF-β1-induced Col-1A expression but had no effect on
PC-I secretion and Sar1a expression. Taken together, our
results suggested that TGF-β1 induces Sar1a expression
through TAK1 signaling and this signaling event regulates
PC-I secretion in HTSF.
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1 Introduction

Hypertrophic scarring (HTS) is a common fibroprolifera-
tive disorder of the human dermis characterized by erythe-
matous, raised, pruritic lesions of healing skin, which
usually follows thermal and other injuries that involve
the deep dermis [1]. Some hypertrophic scars, particularly
those associated with thermal injuries, are associated with
contractures [2,3]. During wound healing for tissue remo-
deling, complicated interactions take place within a com-
plex network of profibrotic and antifibrotic molecules such
as growth factors, proteolytic enzymes, and extracellular
matrix (ECM) proteins [4].

Transforming growth factor-β1 (TGF-β1) contributes
to wound healing via stimulation of angiogenesis, prolif-
eration of fibroblasts, differentiation of myofibroblasts,
synthesis of collagen (Col), and deposition of ECM pro-
teins [5,6]. In burn patients with HTS, serum TGF-β1 level
is upregulated locally and systemically [7]. The abnormal
intracellular signaling of TGF-β1 is thought to initiate HTS
by inducing the fibroblasts to excessively synthesize ECM
and regulate connective tissue growth factor (CTGF), a
downstreammediator of TGF-β1 [8–10]. As the main com-
ponent of TGF-β1 signaling pathway, activation of Smad
proteins leads to an increased expression of Col-1, -3,
and -4 [11]. Although, non-Smad signaling pathways
such as the mitogen-activated protein kinase (MAPK),
extracellular signal-regulated kinase (ERK), and c-Jun
N-terminal kinase (JNK) pathways have been associated
with TGF-β signaling [12,13], their exact mechanisms in
HTS have not been elucidated.

Collagen is essential for cell-cell interactions and cell
attachment to the basement membrane. It is indispen-
sable for skin formation, organization of cells into tis-
sues, and tissue function [14]. Especially, myofibroblasts
actively express Col and mediate fibrogenesis [15]. The
expression levels of Col-1 or -3 are higher in HTS fibro-
blasts (HTSF) than in normal fibroblasts (NF) [10,16,17].
Excessive expression of Col is secreted and accumulated
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in pulmonary fibrosis, cirrhosis, cardiovascular diseases,
and scars [15].

Type 1 Col is encoded by two genes, Col-1A1 and Col-
1A2, their transcription rates are tightly coordinated [18].
Their promoter has various transcription factors binding
sites such as specificity protein 1 (Sp1), Sp3, CCAAT-
binding factor (CBF), collagen-Kruppel box, nuclear factor
1, activating protein-1 (AP-1), and AP-2 [19–21]. Although
most studies have demonstrated that the transcriptional
activation of Col-1A1 and Col-1A2 by TGF-β is regulated
by Smad-dependent signaling [22], a clear understanding
of the transcriptional mechanisms is still lacking.

Translated peptides from Col mRNA are transported
into the endoplasmic reticulum (ER) to form triple helix
procollagen (PC). The newly formed trimer is packaged
in a coat protein complex II (COPII) cage in the ER.
However, normal COPII cages are typically less than
90 nm in diameter, making it difficult to maintain trimer-
ized Col up to 300 nm in cage [23]. Trimerized Col is
associated with the TANGO1 complex responsible for
the assembly of bulky COPII cages and the loading of
Col into the cage from the ER exit site [24]. Collagen is
delivered to the Golgi apparatus for final transformation.
The end product is secreted out of the cells of the secre-
tory granule through a plasmamembrane protrusion [14].

In the present study, we analyzed the alteration of
Sar1a, a protein involved in the formation of COPII vesi-
cles between NF and HTSF. Furthermore, we explored the
role of Sar1a expression in PC-I secretion and cellular
signaling mechanisms for Sar1a expression in HTSF.

2 Materials and methods

2.1 Primary cell culture

Human skin biopsies were obtained from the tissue bio-
bank of Hangang Sacred Heart Hospital. NFs used in
this study were derived from skin biopsy, while HTSFs
were isolated from burn-injured HTS tissues derived
from surgical procedures, and the NFs and HTSFs were
matched from four patients. The scars ranged in age from
1 to 2 years. The study was approved by the National
University of Transportation Institutional Review Board
(KNUT IRB 2022-17). Briefly, skin and scar tissues were
cut into small pieces, soaked in dispase II (Gibco,
Waltham, MA, USA) solution, and maintained at 4°C
overnight. The next day, the epidermis was separated
from the dermis, and the dermis was digested with col-
lagenase type IV solution (500 U/mL) at 37°C for 30 min

(Gibco, Waltham, MA, USA). The samples were inacti-
vated with complete medium (DMEM) containing 10%
fetal bovine serum (FBS) and 1% antibiotic-antimycotic
containing penicillin, streptomycin, and amphotericin B
(Gibco, Waltham, MA, USA), filtered, and centrifuged at
300×g for 5min. The pellet was resuspended in complete
medium, followed by culture at 37°C in 5% CO2. HTSFs
at passage 2 were used for all the experiments

2.2 Reagents

Recombinant TGF-β1, TGF-β inhibitor (LY2109761), selec-
tive Smad3 inhibitor (SIS3), TGF-β activated kinase 1
(TAK1) inhibitor (EDHS-206), JNK inhibitor (SP600125),
ERK inhibitor (PD98059), and p38 inhibitor (SB203580)
were purchased from Sigma-Aldrich (St. Louis, MO, USA).
FITC-conjugated secondary antibody and diamidino-2-
phenylindole solution were purchased from Invitrogen
(Carlsbad, CA, USA). Antibodies against CTGF, Sar1a,
Sar1b, Sec13, Sec31a (Santa Cruz, Dallas, TX, USA), Sec23a,
Sec24a (Abcam, Cambridge, UK), JNK, p-JNK, ERK, p-ERK, p38,
p-p38 (Cell Signaling, Danvers, MA, USA), Col-1A, and GAPDH
(Millipore, Billerica, MA, USA) antibodies were obtained.

2.3 Immunoblotting

Skin dermal fibroblasts cultured in 6-well plates were serum-
starved for 16 h, pre-treated with an inhibitor (10 μM
LY2109761, 10 μM SIS3, 10 μM EDHS-206, 10 μM SP600125,
30 μM PD98059, or 10 μM SB203580) for 30min, and then
treated with 10 ng/mL TGF-β1 for 24 h at 37°C. si-RNA for
Sar1a was transfected into the HTSF for 24 h before serum
starvation. The cells were lysed in RIPA buffer and then
cleared lysate proteins were analyzed by SDS-PAGE and
immunoblotting.

2.4 Immunofluorescence

Cells grown on slides were rinsed with phosphate-buf-
fered saline (PBS), fixed with 4% paraformaldehyde for
15 min, and permeabilized in 0.2% Triton X-100 in PBS.
Slides were incubated overnight at 4°C with the primary
antibody. Slides were then incubated for 1 h with the
appropriate fluorescence-labeled secondary antibody. All
images were collected using an IX73 inverted fluorescence
microscope (Olympus, Tokyo, JP). Fluorescence images
were analyzed using ImageJ software (http://rsb.info.nih.
gov/ij/).
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2.5 Sar1a siRNA

The Sar1a siRNA was purchased from Bioneer Co. (Daejeon,
South Korea). The control or target sequence of the Sar1a
siRNA was human Sar1a. Sequences were as follows: Sense
5′-GAA CAG AUG CAA UCA GUG A-3′; Antisense 5′-CCA
GUA UAU UGA CUG AUG U-3′. Poly ethylene glycol (PEG)
conjugates, siRNA-s-s-PEG (siRNA-PEG) were prepared as
described previously [10]. Briefly, the 3′-end hexylamine-
modified siRNAwas activatedwith the disulfide cross-linker,
N-succinimidyl-3-(2-pyridyldithio) propionate and then coupled
with PEG-SH to produce siRNA-PEG. To prepare siRNA poly-
electrolyte complex micelles, the siRNA-PEG conjugate
was simply mixed with polyethylenimine at a N/P ratio
of 16 and incubated at room temperature for 15min.

2.6 ELISA of PC-I

The cells were cultured until near confluence was reached,
and then starved for 24 h in serum-free DMEM. After the
experimental treatment was performed, the supernatants
were collected from the cell cultures. PC type I α1/Col-1A
secretion in the culture supernatants of NF or HTSF was
determined via ELISA by using commercially available kits
according to the manufacturer’s instructions (DuoSet kit,
R&D system, Minneapolis, MN, USA).

2.7 Statistical analysis

Statistical significance between experimental groups was
determined with student t-test or two-way analysis of
variance with Sidak multiple comparisons test (Prism
software, v7.0d; GraphPad Software, La Jolla, CA).

3 Results

3.1 Sar1a expression differs between NF and
HTSF isolated from burn scar tissues

Studies have reported that various ECM proteins are over-
expressed in HTSF and secreted from the cell, leading to
abnormal wound healing or tissue remodeling [4,25]. It is
hypothesized that the protein secretion system must be
activated for this; however, only a few studies have inves-
tigated this. To verify this hypothesis, we used immuno-
blotting to investigate changes in the expression level of
COPII-coat proteins.

HTSF markers, Col-1A, α-SMA, and CTGF genes were
highly expressed in HTSF isolated from burn patients
than in NF (Figure 1a and b), consistent with previous
results [10]. Interestingly, Sar1a expression levels were
significantly higher in HTSF than in NF; however, the
expression levels of other COPII-coat proteins did not
change significantly (Figure 1a and b). The expression
level of Sar1a showed a similar trend to that of secreted
PC-I in HTSFs (Figure 1b and c). Additionally, immuno-
cytochemistry revealed a high Sar1a expression in HTSF
(Figure 1d and e). In contrast to NF, the expression of
Sar1a in HTSF was generally high, especially in the ER
region. These results suggested that Sar1a upregulation
was associated with increased PC-I secretion as part of
HTSF hallmarks.

3.2 Sar1a is induced by TGF-β1

TGF-β1 was upregulated in HTSF [26], which promoted
the proliferation, Col formation, and differentiation of
dermal fibroblasts through the intracellular Smad pathway
[27]. We hypothesized that the altered expression of Sar1a in
HTSF cells can be regulated via TGF-β1. To test this, we
examined Sar1a expression in the presence of TGF-β1.
HTSFs were treated with TGF-β1, and Sar1a expression level
was detected via immunoblotting. The results revealed that
Sar1a was induced in HTSF using TGF-β1 (Figure 2a and b).
We also tested whether this effect was a receptor-dependent
response with TGF-β1. We used LY2109761, a TGF-β receptor
I kinase inhibitor, and we observed that LY2109761 not
only inhibited Col-1A expression and PC-I secretion in the
presence of TGF-β1 but also significantly inhibited Sar1a
expression levels in HTSFs (Figure 2a–c). Additionally, we
examined the effects of Sar1a depletion on Col-1A expres-
sion and PC-I secretion using a specific si-RNA for Sar1a.We
observed no change in the expression of Col-1A induced by
TGF-β1 in Sar1a-depleted cells (Figure 2d and e); however,
the secretion of PC-I increased by TGF-β1 stimulation sig-
nificantly decreased (Figure 2f). These results suggested
that TGF-β1 signaling requires Sar1a expression in HTSF
and upregulated Sar1a promotes PC-I secretion.

3.3 TGF-β1 induces Sar1a expression via
TAK1 signaling

TGF-β induces multiple intracellular signaling pathways.
Among them, the most important one is the Smad-depen-
dent pathway through the Smad family of proteins, and it
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is a target for HTS treatment [27,28]. Smad-independent
pathways via TAK1, RhoGTPase, and phosphatidylino-
sitol-4,5-bisphosphate 3-kinase have also been extensively
studied, and they have been reported to be involved in
fibrotic disorders [29]. TAK1 is particularly involved in pro-
duction of ECM and pathogenesis of fibrosis [29]. TGF-β-
induced fibronectin expression is mediated by TAK1 through

MKK4-JNK signaling cascade in fibroblasts [30], and TAK1-
deficient fibroblasts exhibit a decreased profibrotic response
to TGF-β1 stimulation [31].

To determine the signaling mechanisms for Sar1a
expression induced by TGF-β1, we used specific inhibitors
to investigate the signaling molecules required for TGF-β1-
induced Sar1a expression, SIS3, and EDHS-206 (selective

Figure 1: Differential expression of Sar1a between NF and HTSF. Isolated NFs or HTSFs were cultured in 6-well plates. The cell culture
supernatant was collected for PC-I ELISA (c), and cell lysates were immunoblotted with antibodies against the indicated proteins (a).
(a) Immunoblots of Col-1A, α-SMA, CTGF, Sar1a, Sar1b, Sec23, Sec24, Sec13, Sec31, Sec12p, and the loading control GAPDH. (b) Fold change
of Sar1a was calculated (n = 3, ±SD); ** p < 0.01 vs NF 1. (c) NF or HTSF were cultured until near confluence, and they were then starved
in serum-free DMEM for 24 h. Secreted PC-I was determined via ELISA (n = 3, ±SD); ** p < 0.01 and *** p < 0.001 vs NF 1. (d) Cultured
cells were stained with anti-Sar1a (FITC, green) and DAPI (blue), and images were obtained using a fluorescence microscope (Scale bar:
10 μm). (e) Images were captured, and the fluorescence intensity was quantitated using ImageJ software (n = 3, ±SD); * p < 0.05 and
**p < 0.01 vs NF 1.
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TAK1 inhibitor). Smad3 inhibitors display significant nega-
tive effects on TGF-β1-induced Col-1A expression or PC-I secre-
tion but not on Sar1a expression in HTSF (Figure 3a–c). While
TAK1 inhibitor did not significantly affect Col-1A expression,

it significantly inhibited Sar1a expression or PC-I secretion
(Figure 3d–f). These results suggested that TGF-β1 induced
Sar1a expression via the TAK1 signaling pathway and it is
involved in PC-I secretion.

Figure 2: TGF-β1 stimulates induction of Sar1a. HTSF and Sar1a siRNA- or a control siRNA (si-con)-transfected HTSF were cultured in 6-well
plates, serum-starved for 16 h, and then treated with or without 10 ng/mL TGF-β1 or TGF-β1 + 10 μM TGF-β inhibitor (LY2109761) for 24 h. The
cell culture supernatant was collected for PC-I ELISA (c and f), and cell lysates were immunoblotted with antibodies against the indicated
proteins (a and d). (a) Immunoblots of Col-1A, Sar1a, and the loading control GAPDH. (b) Fold change of Col-1A or Sar1a was calculated
(n = 3, ±SD). None vs TGF-β1; ** p < 0.01. TGF-β1 vs TGF-β1 + TGF-β-i; ## p < 0.01. (c) Secreted PC-I was determined via ELISA (n = 3, ±SD).
None vs TGF-β; ** p < 0.01. TGF-β1 vs TGF-β1 + TGF-β-i; ## p < 0.01. (d) Immunoblots of Col-1A, Sar1a, and the loading control GAPDH. (e) Fold
change of Col-1A or Sar1a was calculated (n = 3, ±SD). None vs TGF-β1; ** p < 0.01. TGF-β1 vs TGF-β1 + TGF-β-i; ## p < 0.01. (f) Secreted PC-I
was determined via ELISA (n = 3, ±SD). None vs TGF-β; ** p < 0.01. TGF-β1 vs TGF-β1 + si-Sar1a; ## p < 0.01.
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3.4 JNK and p38 participate in TGF-β1-
induced Sar1a expression

JNK and p38 are downstream targets of TAK1 activation in
tissue injury response and fibrosis [30]. ERK and JNK inhi-
bitors significantly suppressed CTGF-induced expression
of α-SMA and Col-1A in HTSF of rabbit ear model [32].

Next we investigated whether MAPKs (JNK, ERK, and
p38) are involved in TGF-β1-induced Sar1a expression in
HTSFs. The expression level of Sar1a decreased following
treatment with JNK or p38 inhibitor (Figure 4a,b,g, and h)
while it did not significantly change with ERK inhibitor in
HTSF (Figure 4d and e). Additionally, JNK or p38 inhib-
itor interrupted TGF-β1-induced PC-I secretion but not

Figure 3: TAK1 is involved in TGF-β1-induced Sar1a expression. HTSF cultured in 6-well plates were serum-starved for 16 h, and they were
then treated with or without 10 ng/mL TGF-β1, TGF-β1 + 10 μM SIS3, or TGF-β1 + 10 μM TAK1 inhibitor (EDHS-206) for 24 h. The cell culture
supernatant was collected for PC-I ELISA (c and f), and cell lysates were immunoblotted with antibodies against the indicated proteins
(a and d). (a) Immunoblots of Col-1A, Sar1a, phosphor-Smad3, Smad3, and GAPDH. (b) Fold change of Col-1A or Sar1a was calculated (n = 3,
±SD). None vs TGF-β1, ** p < 0.01. TGF-β1 vs TGF-β1 + Smad3-I; ## p < 0.01. (c) Secreted PC-I was determined via ELISA (n = 3, ±SD). None vs
TGF-β1; ** p < 0.01. TGF-β1 vs TGF-β1 + Smad3-I; ## p < 0.01. (d) Immunoblots of Col-1A, Sar1a, phosphor-TAK1, TAK1, and GAPDH as the
loading control. (e) Fold change of Col-1A or Sar1a was calculated (n = 3, ±SD). None vs TGF-β1; ** p < 0.01. TGF-β1 vs TGF-β1 + TAK1-I;
## p < 0.01. (f) Secreted PC-I was determined via ELISA (n = 3, ±SD). None vs TGF-β1; ** p < 0.01. TGF-β1 vs TGF-β1 + TAK1-i; ## p < 0.01.
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Figure 4: JNK and p38 are involved in TGF-β1-induced Sar1a expression. HTSF were cultured in 6-well plates, serum-starved for 16 h, and
then treated with or without 10 ng/mL TGF-β1, TGF-β1 + 10 μM JNK inhibitor (SP600125), 50 μM ERK inhibitor (PD98059), or TGF-β1 + 10 μM
p38 inhibitor (SB203580) for 24 h. The cell culture supernatant was collected for PC-I ELISA (c, f, and i), and cell lysates were immunoblotted
with antibodies against the indicated proteins (a, d, and g). (a) Immunoblots of Col-1A, Sar1a, phosphor-JNK, JNK, and GAPDH as the loading
control. (b) Fold change of Col-1A or Sar1a was calculated (n = 3, ±SD). None vs TGF-β1; ** p < 0.01. TGF-β1 vs TGF-β1 + JNK-i; ## p < 0.01.
(c) Secreted PC-I was determined via ELISA (n = 3, ±SD). None vs TGF-β1; ** p < 0.01. TGF-β1 vs TGF-β1 + JNK-i; ## p < 0.01. (d) Immunoblots
of Col-1A, Sar1a, phosphor-ERK, ERK, and GAPDH as the loading control. (e) Fold change of Col-1A or Sar1a was calculated (n = 3, ±SD).
None vs TGF-β1; ** p < 0.01. TGF-β1 vs TGF-β1 + ERK-I; # p < 0.05. (f) Secreted PC-I was determined via ELISA (n = 3, ±SD). None vs TGF-β1;
** p < 0.01. (g) Immunoblots of Col-1A, Sar1a, phosphor-p38, p38, and GAPDH as the loading control. (h) Fold change of Col-1A or Sar1a
was calculated (n = 3, ±SD). None vs TGF-β1; ** p < 0.01. TGF-β1 vs TGF-β1 + p38-I; ## p < 0.01. (i) Secreted PC-I was determined via ELISA
(n = 3, ±SD). None vs TGF-β1; ** p < 0.01. TGF-β1 vs TGF-β1 + p38-i; ## p < 0.01.
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Col-1A expression (Figure 4a–c and g–i), while ERK inhib-
itor slightly decreased Col-1A expression but had not
significant effect on PC-I secretion (Figure 4a–i). These
results indicated that Sar1a upregulation is a positive
regulator for PC-I secretion via the TGF-β1-mediated TAK1-
JNK and TAK1-p38 pathways in HTSF.

4 Discussion

Development of HTS involves a complex interplay between
cells and cytokines as well as local and systemic factors
exerted on dermal fibroblasts, resulting in a distinctive
HTSF phenotype [33]. Particularly, TGF-β is the most
important key to regulate the expression of genes such
as Col-1, -3, fibronectin, α-SMA, and CTGF, which are
major markers of HTSF [34]. In this study, we observed
that the expression of Sar1a as well as other HTSF marker
genes was higher in HTSF than in NF cells (Figure 1). As
Sar1 is responsible for COPII vesicle trafficking, altered
expression of Sar1a in HTSF may enable rapid transport
of PC out of the cell. Our data showed that TGF-β1-induced
Col-1A expression was not affected in sar1a-deficient HTSF;
however, PC-I secretion was impaired (Figure 2).

Many studies have shown that PC secretion is depen-
dent on COPII; however, the mechanism remains unclear
and controversial. A key question is whether COPII vesi-
cles are flexible enough to accommodate large cargoes as
they are approximately 60–90 nm in size and PC-I bundle
is 300 nm [35]. It has been reported that deficiency of
Sar1a and Sar1b inhibits the export of PC-I [36], and local
concentration of Sar1-GTP determines the timing of mem-
brane cleavage and COPII vesicle size [37]. Further, COPII
proteins and GTPase activity of Sar1 form large COPII-
coated membrane vesicles that transport PC-I out of the
ER [38]. Concomitantly, our findings indicate that altera-
tion of HTSF upregulated Sar1a protein, thereby promoting
PC-I secretion. Recently, new PC-I secretion models using
super-resolution light microscopy have been proposed
[39], but no definitive conclusions have been reached. It
is likely that new developments in super-resolution light
microscopy and correlative light-electron microscopy will
drive new understanding here.

We demonstrated that TGF-β1 induced Sar1a and Col-1A
expression, whichwere TGF-β receptor-dependent (Figure 2).
These findings suggested a novel role of TGF-β1 in HTSF.
Next we investigated the cellular mechanism from TGF-β1
to Sar1a expression and PC-I secretion. The Smad3 inhibitor
effectively decreased TGF-β1-induced Col-1A expression in
HTSF but had no effect on Sar1a expression (Figure 3a and b)
whereas TAK1 inhibitor significantly inhibited Sar1a

expression but had no effect on Col-1A expression
(Figure 3d and e). However, both inhibitors decreased
PC-I secretion. Furthermore, we showed that both JNK and
p38 participated in TGF-β1-induced Sar1a expression, but
ERK did not (Figure 4). Taken together, these results sug-
gested that TGF-β1 induced Sar1a expression through TAK1
signaling and excessive PC-1 secretion required both Smad3-
and TAK1-mediated signaling in HTSF.

Contrary to our results (Figure 4a and b), it was
reported that CTGF-induced JNK activation was involved
in Col-1A expression in HTSF of a rabbit model [32]. This
difference may be due to differences in the pathogenic
processes of HTS between humans and animals [40], as
well as other stimuli used for Col-1A expression. How-
ever, study using cDNA microarrays suggested that the
JNK pathway did not affect the TGF-β-induced transcrip-
tional activity of Col-1A in human dermal fibroblasts [41].
Even activated by cytokines such as TNF-α or pharmacolo-
gical molecules such as 5-fluoro-uracil, JNK induces c-Jun
phosphorylation, interfering with Smad3-dependent tran-
scription via the TGF-β/Smad3 signaling pathway [42–44].

There are microRNA (miR) studies targeting Sar1a.
One is a study that miR-34c suppresses the expression
of Sar1a to reduce proinsulin secretion [45], and the other
is a study that miR-34 family members in early- to mid-
gestational fetal keratinocytes contribute to scarless wound
healing by targeting the TGF-β pathway [46]. In the latter
study, the authors seem to confuse Sar1a with Smad anchor
for receptor activation, but the miR-34 family could be con-
sidered a very promising candidate for HTS research and
therapy. Their study showed that TGF-β receptor-I, -II,
Smad3, and Smad4 as well as Sar1a are potential target
genes of the miR-34 family. However, it is necessary to
study whether the miR-34 family members could suppress
the expression of target genes and HTS marker genes
in HTSF.

In conclusion, we proposed that Sar1a expression
was high in HTSF cells, which efficiently modulated
COPII vesicle traffic, leading to an increased PC-I secre-
tion via TGF-β1-mediated signaling. These insights may
aid the development of novel anti-scar or fibrosis drugs.
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