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Interferons (IFNs) are a group of cytokines with antiviral, antiproliferative,

antiangiogenic, and immunomodulatory activities. Type I IFNs amplify and

propagate the antiviral response by interacting with their receptors, IFNAR1

and IFNAR2. In COVID-19, the IFNAR2 (interferon alpha and beta receptor

subunit 2) gene has been associated with the severity of the disease, but the

soluble receptor (sIFNAR2) levels have not been investigated. We aimed to

evaluate the association of IFNAR2 variants (rs2236757, rs1051393, rs3153,

rs2834158, and rs2229207) with COVID-19 mortality and to assess if there

was a relation between the genetic variants and/or the clinical outcome, with

the levels of sIFNAR2 in plasma samples from hospitalized individuals with

severe COVID-19. We included 1,202 subjects with severe COVID-19. The

genetic variants were determined by employing Taqman® assays. The levels of

sIFNAR2 were determined with ELISA in plasma samples from a subgroup of

351 individuals. The rs2236757, rs3153, rs1051393, and rs2834158 variants were

associated with mortality risk among patients with severe COVID-19. Higher

levels of sIFNAR2 were observed in survivors of COVID-19 compared to the

group of non-survivors, which was not related to the studied IFNAR2 genetic

variants. IFNAR2, both gene, and soluble protein, are relevant in the clinical

outcome of patients hospitalized with severe COVID-19.
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Introduction

Interferons (IFNs) are a group of pleiotropic cytokines based

upon the expression of thousands of interferon-stimulated genes

(ISGs), such as antiviral, antiproliferative, antiangiogenic, and

immunomodulatory activities (1). The innate IFN type I and III

(a/b and g, respectively) amplify and propagate the antiviral

response. While responses to IFN-l are limited by receptor

expression to the mucosal epithelium, all nucleated cells respond

to IFN-a/b, being this IFN essential in the antiviral defense

mechanism (2).

Type I IFN binds to the receptor complex composed of IFN-

a/b receptors 1 and 2 (IFNAR1 and IFNAR2, respectively),

associated with the Janus kinases, Tyk2 and Jak1, respectively.

The activation of these kinases produces the tyrosine

phosphorylation of STAT1 and STAT2, leading to the

formation of a heterotrimer with the IFN-stimulated gene

factor 3 (ISGF3) transcription factor and with the IRF-family

member IRF-9 (1). The IFNAR2 subunit has a soluble isoform

(sIFNAR2) that can be produced by alternative splicing of the

IFNAR2 (interferon alpha and beta receptor subunit 2) gene

through a transcript that lacks the transmembrane and

cytoplasmic domain (3) or can be cleaved by specific proteases

such as TNF-alpha converting enzyme (known as TACE or

ADAMS) and presenilins (PSEN) (4).

There are scarce studies of sIFNAR2 levels in body fluids.

However, differences in the levels of this receptor have been

reported in patients with multiple sclerosis (5), in variable

clinical response to IFN-b treatment in the same disorder (6),

as well as in cytomegalovirus-related vascular pathologies (7).

Likewise, investigations including genetic variants in IFNAR2

are limited, but rare mutations in this gene have been found in

patients with immunodeficiency after measles-mumps-rubella

vaccination (2, 8).

In coronavirus disease 2019 (COVID-19), IFNAR2 has

demonstrated relevance in the available genetic association

studies. Pairo-Castineira, in collaboration with different

consortiums, performed a GenOMICC (Genetics Of Mortality

In Critical Care) genome-wide association study in 2,244

critically ill patients with COVID-19 from 208 UK intensive

care units. They reported that the rs2236757 IFNAR2 variant is

associated with critical illness among individuals with COVID-

19 (9). The locus also showed pleiotropic association with
02
COVID-19 severity using the summary data-based Mendelian

randomization (SMR) method (10). Likewise, other studies

using different methodologies have identified IFNAR2 as an

important causal gene of COVID-19 severity (11–14),

although the levels of the soluble receptor have not

been determined.

Single-nucleotide variants (SNVs) in IFNAR2 could lead to

variation in the receptor structure, affect the binding site to IFN,

or alter the gene expression (15). Currently, IFNAR2 SNVs have

not been widely studied, but several of them have been

investigated in the susceptibility to hepatitis B virus (16), and

an utterly IFNAR2 deficiency was observed in cases of

encephalitis-induced following measles, mumps, and rubella

vaccination (2).

We aimed to evaluate the association of IFNAR2 SNVs

(rs2236757, rs1051393, rs3153, rs2834158, and rs2229207)

with COVID-19 mortality and to assess if there was a relation

between the genetic variants and/or the clinical outcome, with

the levels of sIFNAR2 in plasma samples from hospitalized

subjects with severe COVID-19.
Subjects and methods

Subjects

We included 1,202 individuals with COVID-19, hospitalized

in the Instituto Nacional de Enfermedades Respiratorias Ismael

Cosio Villegas (Mexico City, Mexico) from July 2020 to March

2021. All patients were ≥18 years old and had a SARS-CoV-2

infection confirmed by reverse transcriptase-polymerase chain

reaction (RT-PCR) test. The study protocol was approved by the

local Research Ethics Committee (C53-20) and complied with

the Helsinki Declaration statements. Each participant or

patient’s relative was informed about the study and signed

informed consent before the sample acquisition.

The patients enrolled presented a severe COVID-19 since

they had dyspnea, a respiratory rate ≥30 breaths per minute,

blood oxygen saturation ≤90%, and PaO2/FiO2 ≤300. The

clinical outcome evaluated was the in-hospital mortality;

subjects were classified as survivors if they were discharged

from the hospital once a clinical improvement was achieved

and non-survivors if they died during the hospital stay.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.949413
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fricke-Galindo et al. 10.3389/fimmu.2022.949413
Genotyping

Genomic DNA was isolated by standard techniques from a

blood sample collected in tubes with EDTA as an anticoagulant.

The IFNAR2 rs2236757, rs1051393, rs3153, rs2834158, and

rs2229207 were assessed by Taqman® assays (C__11354003_30,

C___2443247_30, C___9479908_10, C__16072683_20,

C__16172148_10), according to the supplier instructions,

employing a StepOnePlus™ Real-Time PCR System (Applied

Biosystems, Carlsbad, CA, USA). The IFNAR2 SNVs were selected

according to a review of the scientific literature, the minor allele

frequencies of the variants in Mexican, American, or Latin

American populations, and the availability of genotyping

methodologies. Hardy-Weinberg equilibrium and linkage

disequilibrium analyses were assessed in Haploview (17).

Determination of soluble IFNAR2 levels
in plasma samples

The determination of the sIFNAR2 was performed in a

subgroup of 351 individuals, chosen from a total of 1,202

according to the following criteria: a) IFNAR2 genotypes, b)

the clinical outcome, and c) the sampling time considering the

days since symptoms onset. The sIFNAR2 levels were measured

in plasma samples acquired between 0 and 15 days after the

onset of the symptoms. The plasma samples were obtained by

centrifugation of blood samples in EDTA tubes at 4500 rpm for

5 minutes and stored at -80°C until assayed. The soluble form of

the subunit receptor was determined by the Human IFN alpha/

beta R2 ELISA Kit of Invitrogen (Catalog # EH248RB, Life

Technologies Corporation, Carlsbad, CA, USA), following the

manufacturer’s protocol. A standard curve was generated for

each plate including the following concentrations: blank, 0.16

ng/mL, 0.41 ng/mL, 1.02 ng/mL, 2.56 ng/mL, 6.4 ng/mL, and 16

ng/mL. The absorbance was read at 450 nm. Data were

processed using computer software that plots the mean

absorbance (y-axis) against the protein concentration (x-axis).

The supplier’s recommended reduction method was employed

to interpolate the samples’ absorbance for the concentration

estimation. All samples were assessed by duplicate, reporting in

ng/mL the mean values of the wells.

The blood group was determined by the serological test with a

Novaclone® kit (Licon,Mexico City, Mexico) to assess the influence

of the blood groups on the sIFNAR2 plasma levels. For this analysis,

blood group data was only available for 302 individuals.
Statistical analyses

Continuous data are presented as the median and

interquartile range (IQR), and categorical data are as

frequencies in percentage. Normal distribution was assessed

employing the Kolmogorov-Smirnov test. The association
Frontiers in Immunology 03
study of IFNAR2 variants was performed in PLINK v1.07 (18).

As required, the sIFNAR2 values were compared with Mann-

Whitney U, Kruskal-Wallis, or Spearman’s rank correlation

tests. The results were evaluated for multiple comparisons with

the Benjamini-Hochberg method. The statistical analysis was

performed in R/Rstudio (19).
Results

Clinical and demographic data of
individuals with severe COVID-19

Four-hundred and twenty-six (35.4%) individuals with severe

COVID-19 died during their hospital stay. Non-survivors were

older (63 vs. 56 years old) and more frequently male than

survivors (OR=1.36, CI 95%=1.05-1.75). Comorbidities were

more frequent among non-survivors, but we observed

significant differences for pre-existing chronic respiratory

(OR=1.66, CI 95%=1.10-2.52) and ischemic heart (OR=2.33, CI

95%=1.30-4.20) diseases. A tendency was observed for systemic

arterial hypertension (p=0.06). Meanwhile, most individuals in

the non-survivor group required invasive mechanical ventilation

(IMV), and their hospital stay was longer for this group.

Dyspnea, cough, and fever were the most common

symptoms reported for individuals with severe COVID-19 in

both groups, while anosmia and emesis were the least frequent

clinical manifestations. We observed significant differences in

fever, myalgia, ageusia, chest pain, and anosmia, and these

symptoms were more frequent among the survivors’ group

than among non-survivors (Table 1).
IFNAR2 single-nucleotide variants are
associated with clinical outcomes among
individuals with severe COVID-19

The allele and genotype frequencies of IFNAR2 SNVs are

presented in Table 2. The genotypic frequencies of IFNAR2

single-nucleotide variants accomplish with Hardy-Weinberg

equilibrium, except for the rs2236757. The minor alleles of the

rs2834158, rs3153, and rs1051393 were more frequent in the

non-survivor group than in survivors. For the rs2229207 variant,

there were no significant differences in the allele and genetic

frequencies among the studied groups.

The genotype frequencies of rs2834158, rs2236757, and

rs3153 differed between the studied groups, although the

statistical significance did not remain after correction for

multiple comparisons. However, these two same variants were

associated with mortality risk in the analysis of the dominant

model (Table 3). Regarding the recessive model, there were no

significant differences in the genotype frequencies between the

study groups (Supplementary Table 1).
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In addition, we performed a linkage disequilibrium (LD)

analysis for the IFNAR2 variants included in the study. High D’

values (D’>0.80) were observed for the four variants included in

the analysis (the rs2236757 was excluded due to deviation to

Hardy-Weinberg equilibrium) (Supplementary Figure 1a);

however, a low r2 was observed for the rs2229207 with the

rs3153, rs1051393, and rs2834158 (r2 = 0.12) (Supplementary

Figure 1b). The solid spine method formed one block including

the four variants (rs3153/rs2229207/rs1051393/rs2834158).

According to the allele combinations, the haplotypes ATGT

and GTGC were associated with low and high mortality risk,

respectively (Table 4).
The levels of soluble IFNAR2 are related
to the clinical outcome of COVID-19

The sIFNAR2 levels were determined in 351 subjects with

severe COVID-19. Low values of sIFNAR2 (<1 ng/mL) were
Frontiers in Immunology 04
observed in 297 individuals, the median was 0 ng/mL (IQR 0 -

0.33 ng/mL), while the highest level was 55.89 ng/mL. We found

significantly higher sIFNAR2 levels among survivors than non-

survivors (p=0.027) (Supplementary Figure 2). Four individuals

exhibited high receptor levels, observed as outliers in the graph

(>30 ng/mL). The clinical and demographic data were revised

for each individual. However, we did not observe a striking

similarity: two of them survived, three were females, age range

55-66 years, they were no smokers, mostly without the studied

comorbidities, one was overweight, and three presented obesity,

the days since symptoms onset vary 2-11 days, and all presented

PaO2/FiO2 <200. We performed the analysis again, excluding the

outliers, and the significant difference in the sIFNAR2 levels

among groups remained (p=0.015, Figure 1). The subsequent

analyses were carried out without the outliers (n=347)

In addition, higher sIFNAR2 levels were found among

patients that did not use invasive mechanical ventilation when

compared to those ventilated (0.05 ng/ml [0.00-0.82 ng/mL] vs.

0.00 ng/mL [0.00-0.15 ng/mL]). A Spearman’s correlation test
TABLE 1 Demographic and clinical data of patients with severe COVID-19.

Non-survivors, n = 426 (%)a Survivors, n = 776 (%)a pb

Age, years 63 (55-71) 56 (48-64) <0.001

Sex (n,%)
Male
Female

301 (70.7)
125 (29.3)

496 (63.9)
280 (36.1)

0.018

Smoking 128 (30.0) 217 (28.0) 0.460

T2DM 134 (31.5) 203 (26.3) 0.060

Pre-existing Respiratory disease 46 (10.8) 53 (6.9) 0.020

Ischemic heart disease 26 (6.1) 21 (2.7) 0.005

SAH 162 (38.2) 254 (32.7) 0.060

IMV 395 (92.7) 468 (60.3) <0.001

Length IMV, days 18.8 (11-28) 7 (0-16) <0.001

BMI, kg/m2 28.74 (25.7-33.1) 29.7 (26.6-33.3) 0.025

Symptoms onset, days 8 (4-8) 8 (5-9) 0.122

Hospital stay, days 20 (13-29) 18 (11-28) 0.020

Symptoms (n,%)

Dyspnea 361 (84.7) 651 (84.2) 0.860

Cough 289 (68.0) 526 (68.0) 1.000

Fever 285 (67.1) 575 (74.3) 0.010

Myalgia 253 (59.5) 511 (66.1) 0.020

Arthralgia 248 (58.2) 485 (62.7) 0.130

Headache 183 (43.1) 353 (45.6) 0.420

Odynophagia 97 (22.8) 203 (26.3) 0.180

Rhinorrhea 73 (17.1) 118 (15.3) 0.410

Ageusia 41 (9.6) 116 (15.0) 0.010

Diarrhea 38 (8.9) 82 (10.6) 0.360a

Chest pain 31 (7.3) 88 (11.4) 0.026

Anosmia 14 (3.3) 68 (8.8) <0.001

Emesis 11 (2.6) 25 (3.2) 0.730
frontiers
Continuous data are presented as median (interquartile range, IQR) and categorical data as n and frequency in percentage (%). aClinical data were not available for some individuals.
bStatistical tests employed for the comparisons: Mann-Whitney U and Fisher’s Exact Test. BMI, body mass index; IMV, invasive mechanical ventilation; SAH, systemic arterial
hypertension; T2DM, Type 2 diabetes mellitus.
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showed a low correlation between sIFNAR2 levels and the length

(days) of invasive mechanical ventilation (p=0.004, rho= -0.160).

Nevertheless, this information should be cautiously considered

since some patients requiring invasive mechanical ventilation

did not accept the procedure, implying a possible bias in

the study.
Frontiers in Immunology 05
We evaluated if non-genetic factors influenced the sIFNAR2

values. Differences were observed when systemic arterial

hypertension was considered (Mann-Whitney U Test, p=0.003)

(Figure 2), and a weak correlation was found between sIFNAR2

levels and age or BMI (p<0.001, r=-0.253; p=0.012, r=0.135).
Meanwhile, no differences in the receptor levels were observed
TABLE 2 Genetic association study of IFNAR2 variants with mortality in patients with severe COVID-19.

IFNAR2 single-
nucleotide variant

All, n = 1202 Non-survivors, n = 426 Survivors, n = 776 p OR (CI 95%) FDRb

rs2834158

TT
TC
CC

412 (0.343)
563 (0.468)
227 (0.189)

126 (0.296)
209 (0.490)
91 (0.214)

286 (0.368)
354 (0.456)
136 (0.175)

0.029 1 (reference)
1.34 (1.02-1.75)
1.51 (1.08-2.13)

0.072

T
C

1,387 (0.577)
1,017 (0.423)

461 (0.541)
391 (0.459)

926 (0.597)
626 (0.403)

0.008 1.25 (1.06-1.48) 0.029

rs2236757a

AA
AG
GG

396 (0.330)
541 (0.450)
265 (0.220

119 (0.280)
205 (0.481)
102 (0.239)

277 (0.356)
336 (0.433)
163 (0.210)

0.023 1 (reference)
1.42 (1.07-1.87)
1.45 (1.04-2.02)

0.116

A
G

1,333 (0.554)
1,071 (0.446)

443 (0.520)
409 (0.480)

890 (0.573)
662 (0.427)

0.012 1.24 (1.05-1.47) 0.029

rs3153

AA
AG
GG

400 (0.333)
564 (0.469)
238 (0.198)

122 (0.286)
212 (0.498))
92 (0.216)

278 (0.358)
352 (0.454)
146 (0.188)

0.039 1 (reference)
1.37 (1.04-1.80)
1.43 (1.02-2.01)

0.065

A
G

1,364 (0.567)
1,040 (0.433)

456 (0.535)
396 (0.465)

908 (0.585)
644 (0.415)

0.018 1.22 (1.03-1.45) 0.030

rs1051393

GG
GT
TT

389 (0.324)
578 (0.481)
235 (0.195)

122 (0.286)
212 (0.498)
92 (0.216)

267 (0.344)
366 (0.472)
143 (0.184)

0.099 NA 0.124

G
T

1,356 (0.564)
1,048 (0.436)

456(0.535)
396 (0.465)

900 (0.580)
652 (0.420)

0.035 1.20 (1.01-1.42) 0.043

rs2229207

TT
TC
CC

811 (0.675)
348 (0.289)
43 (0.036)

286 (0.671)
125 (0.293)
15 (0.035)

525 (0.677)
223 (0.287)
28 (0.036)

0.974 NA 0.974

T
C

1,970 (0.819)
434 (0.181)

697 (0.818)
155 (0.182)

1,273 (0.820)
279 (0.180)

0.895 NA 0.895
frontier
aDeviation from Hardy-Weinberg Equilibrium p<0.01; bBenjamini-Hochberg method. CI, confidence interval; FDR, false discovery rate; NA, does not apply; OR, odds ratio.
TABLE 3 Dominant model analyses for IFNAR2 genetic variants were included in the study.

IFNAR2 single-nucleotide variant Genotypes Non-survivors
n = 426

Survivors
n = 776

p OR (CI 95%) FDRb

rs2834158 TT
TC + CC

126 (0.296)
300 (0.704)

286 (0.369)
490 (0.631)

0.011 1.38 (1.07-1.79) 0.027

rs2236757a AA
AG +GG

119 (0.279)
307 (0.721)

277 (0.357)
499 (0.643)

0.006 1.43 (1.10-1.85) 0.030

rs3153 AA
AG + GG

122 (0.286)
304 (0.714)

278 (0.358)
498 (0.642)

0.011 1.39 (1.07-1.79) 0.019

rs1051393 GG
GT + TT

122 (0.286)
304 (0.714)

267 (0.344)
509 (0.656)

0.041 1.3 (1.01-1.69) 0.061

rs2229207 TT
TC + CC

286 (0.671)
140 (0.329)

525 (0.677)
251 (0.323)

0.854 NA 0.854
s

aDeviation from Hardy Weinberg Equilibrium p<0.01; bBenjamini-Hochberg method. CI, confidence interval; FDR, false discovery rate; NA, it does not apply; OR, odds ratio.
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according to sex, respiratory and ischemic heart diseases, or

diabetes, although higher sIFNAR2 levels were observed in

patients without the comorbidities (Supplementary Figures 3-5).

Moreover, the plasma levels of sIFNAR2 were compared

according to the blood type as a previous report has suggested

that cytokines’ levels are different for the O and A/B/AB

individuals (20). We found a marginal difference in sIFNAR2

values according to the blood groups (p=0.048), but the

difference was lost when the outliers were excluded (p=0.112)

(Supplementary Figure 6).

Moreover, we evaluated whether the sIFNAR2 levels were

influenced by the sampling time. We did not find a correlation

between the sIFNAR2 levels and the sampling day after

symptoms onset (p=0.857, r=0.010, Spearman’s correlation

test), and no difference in the sampling day after symptoms

onset was observed among the survivor and non-survivor groups

(9 [6-9 days] vs. 8 [5-9 days], p=0.122, Mann-Whitney U test).

Finally, we neither observed any influence of the IFNAR2

rs2236757, rs1051393, rs3153, rs2834158, and rs2229207 on

the sIFNAR2 plasma levels in individuals with severe COVID-

19 (Supplementary Figures 7-11).
Frontiers in Immunology frontiersin.org06
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Discussion

The dynamics of cytokines have been crucial in individuals’

progress with COVID-19. Variability in the cytokines and their

receptors levels are related to the severity and clinical outcome of

COVID-19. To the best of our knowledge, this is the first study

reporting the plasma levels of sIFNAR2 in patients with COVID-

19 and their association with the mortality risk of individuals

with severe disease.

The association of IFNAR2 locus with COVID-19 severity

has been reported in different GWAS and multi-omic analyses

(9, 10, 13, 14), as well as in a transcriptome-wide association

study (21). In the present study, the IFNAR2 rs2236757,

rs2834158, rs3153, and rs1051393 were associated with

mortality risk.

The rs2236757 was associated in a GWAS including

individuals with critical illness in COVID-19 (9); herein, we

also found an association with mortality in individuals with

severe COVID-19. The departure from the Hardy-Weinberg

equilibrium limits the magnitude of the finding, but, on the other

hand, this probably highlights the relevance of the locus in the
TABLE 4 Association analysis of IFNAR2 haplotypes (rs3153/rs2229207/rs1051393/rs2834158) with mortality risk among patients with severe
COVID-19.

Haplotypes Frequencies p OR

Non-survivors
n = 426

Survivors
n = 776

GTTC 0.421 0.383 0.068 NA

ATGT 0.334 0.391 0.005 0.78 (0.65-0.93

ACGT 0.166 0.161 0.740 NA

ATTT 0.025 0.024 0.840 NA

GTGC 0.020 0.010 0.040 2.08 (1.03-4.19

GTGT 0.010 0.013 0.600 NA
Linkage disequilibrium analysis performed in Haploview, Block studied through the solid spine method. OR, odds ratio; NA, it does not apply.
FIGURE 1

Soluble IFNAR2 (sIFNAR2) plasma levels of severe COVID-19 patients (n = 347) divided into non-survivor (n = 108, yellow dots) and survivor
(n = 239, purple dots). sIFNAR2 level was evaluated by ELISA. Statistical comparison was performed using Mann-Whitney U Test, p < 0.05.
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severity and mortality of the disease. Unfortunately, there is

insufficient available data to compare the frequencies with other

Mexican reports and drive additional conclusions.

The rs2236757, rs3153, and rs2834158 are intron variants

previously explored in response to pegylated interferon-2a plus

ribavirin to treat chronic hepatitis C virus infection (22). The

frequencies of these IFNAR2 variants present a relevant

interethnic variability (23) that warrants further studies in

different populations and elucidates the impact of these

variants on the structure and/or function of the receptor IFN

a/b. Nevertheless, the present report confirms the relevance of

the IFNAR2 locus in the severity and mortality of COVID-19.

The rs1051393 is a missense variant leading to a change of

phenylalanine to valine in the 10th amino acid, and it is located

in the signal peptide region affecting the IFNAR2 protein

trafficking the membrane. This variant has been previously

associated with chronic Hepatitis B virus infection, including

3,128 subjects of Han Chinese (24). According to their results,

the authors suggested that the IFNAR2 variants affect the

receptor’s expression, limiting the antiviral effects of the IFN

a/b. The rs1051393 has also been studied in colorectal cancer

susceptibility and survival (25) and radiation-induced toxicity

following the treatment of non-small cell lung cancer (26).

Although conclusions are controversial, several cytokines’

plasma levels have been related to COVID-19 severity and the

clinical outcome. The IFN I and III levels have been related to

COVID-19 susceptibility and severity (27, 28). Although the plasma

levels of sIFNAR2 have not been previously reported, a reduced

expression of IFNAR2 was associated with COVID-19 severity (21).

In agreement, we observed lower levels of the soluble receptor in the

non-survivors group. Therefore, the relevance of the interferon

pathway, mainly IFNAR2, in the COVID-19 severity has been
Frontiers in Immunology 07
evidenced at the genetic and transcription level and now with the

amount of the soluble protein in plasma samples.

We observed extremely low plasma levels of the sIFNAR2 in

most patients. The ELISA kit employed in this study presents a

low limit detection (0.16 ng/mL), but the determination with

lower quantification systems may be required. However, the

decreased concentration of sIFNAR2 found in our study agrees

with previous studies describing that the SARS-CoV-2 proteins

inhibit the IFN-I pathway (29–31), resulting in a decline of IFN-

a and -b among patients with COVID-19 (28, 32). Moreover,

the higher sIFNAR2 levels observed among the survivor group

compared to non-survivors match with the enhanced IFN

antiviral activity due to the stability of the cytokine conferred

by the sIFNAR2 at moderate concentrations (approximately 12

ng/mL) (33). This finding suggests that the sIFNAR2 could be

implicated in the stability of the remaining IFN after infection

with SARS-CoV-2.

Unfortunately, we could not assess the sIFNAR2 levels in

uninfected individuals. However, a previous investigation

reported sIFNAR2 levels in serum samples from healthy

controls above those found in our study (median 134.3 ng/mL

[IQR 76.10–179.21 ng/ml]) (34). In addition, this study reported

the stability of the sIFNAR2 stored at -20°C and after four cycles

of freezing/thawing, which shows the low risk of receptor

degradation during the sample storage.

Regarding the blood group, we did not find significant

differences in the sIFNAR2 plasma levels according to the ABO

blood group of individuals with COVID-19, contrary to the

previously reported for other cytokines and such as TNF-a, IFN-
a, and several other cytokines and interleukins (20). Although

higher receptor values were observed among individuals with A/B/

AB groups compared to the O group, additional studies are
FIGURE 2

Soluble IFNAR2 (sIFNAR2) plasma levels of severe COVID-19 patients (n = 347) divided according to the comorbidity systemic arterial
hypertension (SAH) (Yes: n = 121, yellow dots; No: n = 226, purple dots). sIFNAR2 level was evaluated by ELISA. Statistical comparison was
performed using Mann-Whitney U Test, p < 0.01.
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required to clarify the relevance of the blood group in the prognosis

of COVID-19.

The plasma levels of the receptor were also different

considering the comorbidity of systemic arterial hypertension.

The lower sIFNAR2 levels observed in individuals with

hypertension could contribute to the critical and mortality risk

of COVID-19; although, only a marginal p-value was observed

for this variable in Table 1 (p=0.06). In the scientific literature,

only cases of pulmonary arterial hypertension related to IFN-b
treatment have been reported (35, 36). Therefore, further studies

could be required to clarify this difference in the sIFNAR2 levels

according to the hypertension condition and if this is related to

the severity of COVID-19.

The levels of several circulating cytokines have been found

disturbed in COVID-19 and other infectious diseases, which is

related to the disease severity and clinical outcome. The

involvement of particular cytokines gives a clue about the

pathophysiologic mechanisms involved in the diseases and the

main immune pathways involved in the severity of the disease.

Our findings highlight the relevance of the IFNAR2 pathway in

the severe COVID-19, so this could be considered for the clinical

management of the diseases or the therapeutic design.

Our study is not exempt from limitations. We could not

recruit individuals with mild or moderate COVID-19 since the

study center is a tertiary-care hospital; therefore, the relevance of

IFNAR2 in less severe COVID-19 or asymptomatic individuals

requires further investigation. In addition, the determination of

sIFNAR2 plasma levels in healthy subjects, with evidence of no

current or prior SARS-CoV-2 infection, would be interesting.

Nevertheless, this report contributes to the severe COVID-19

insight and provides information for the design of further studies

and the target of new and repurposed drugs.
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35. Ledinek AH, Jazbec SŠ, Drinovec I, Rot U. Pulmonary arterial hypertension
associated with interferon beta treatment for multiple sclerosis: a case report.Mult
Scler (2009) 15:885–6. doi: 10.1177/1352458509104593

36. Raza F, Kozitza C, Chybowski A, Goss KN, Berei T, Runo J, et al.
Interferon-b–induced pulmonary arterial hypertension: Approach to diagnosis
and clinical monitoring. JACC Case Rep (2021) 3:1038. doi: 10.1016/
J.JACCAS.2021.02.005

COPYRIGHT
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