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Abstract

Masai (Giraffa tippelskirchi), Reticulated (G. reticulata) and Rothschild’s (G. camelopardalis) giraffe lineages in East Africa are
morphologically and genetically distinct, yet in Kenya their ranges abut. This raises the question of how divergence is
maintained among populations of a large mammal capable of long-distance travel, and which readily hybridize in zoos.
Here we test four hypotheses concerning the maintenance of the phylogeographic boundaries among the three taxa: 1)
isolation-by-distance; 2) physical barriers to dispersal; 3) general habitat differences resulting in habitat segregation; or 4)
regional differences in the seasonal timing of rainfall, and resultant timing of browse availability. We used satellite remotely
sensed and climate data to characterize the environment at the locations of genotyped giraffes. Canonical variate analysis,
random forest algorithms, and generalized dissimilarity modelling were employed in a landscape genetics framework to
identify the predictor variables that best explained giraffes’ genetic divergence. We found that regional differences in the
timing of precipitation, and resulting green-up associated with the abundance of browse, effectively discriminate between
taxa. Local habitat conditions, topographic and human-induced barriers, and geographic distance did not aid in
discriminating among lineages. Our results suggest that selection associated with regional timing of events in the annual
climatic cycle may help maintain genetic and phenotypic divergence in giraffes. We discuss potential mechanisms of
maintaining divergence, and suggest that synchronization of reproduction with seasonal rainfall cycles that are
geographically distinct may contribute to reproductive isolation. Coordination of weaning with green-up cycles could
minimize the costs of lactation and predation on the young. Our findings are consistent with theory and empirical results
demonstrating the efficacy of seasonal or phenologically dictated selection pressures in contributing to the reproductive
isolation of parapatric populations.
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Introduction

Population divergence and speciation can result from genetic

drift in geographic isolation, or from spatially variable natural

selection [1,2], even when gene flow is not completely restricted

[3,4]. Most studies of population differentiation focus on a single

evolutionary mechanism, testing whether it has a significant effect

on divergence. However, in order to assess the relative importance

of neutral and adaptive processes, it is crucial to also consider the

alternatives in a multi-model comparison. Here, we examine

evolutionary processes that may maintain divergence in repro-

ductively isolated East African giraffe taxa with abutting distribu-

tions. We will first introduce the problem of genetically distinct

parapatric giraffe species, and then discuss four scenarios that

might contribute to the maintenance of divergence, which we

compared in this study.

Giraffes range from the Sahel to South Africa, living in scrub

and savannah habitat in loose social groups with home range sizes

between 5 and 992 km2 [5,6]. They are highly mobile, capable of

long-distance movements of 50–300 km [5]. Despite their

mobility, giraffes are characterized by extreme genetic divergence

amongst parapatric lineages [7]. Across Africa, at least six distinct

groups can be identified, with little evidence of hybridization [7].

Recently, Groves and Grubb [8] treated these taxa as distinct

species, and we will do the same in this paper. In addition,

according to Groves and Grubb [8], there is little evidence to

support a distinction between Giraffa camelopardalis and Giraffa

rothschildi, and we will thus follow their suggestion by treating

Rothschild’s giraffe as G. camelopardalis. In East Africa, divergence

between Masai (G. tippelskirchi), Reticulated (G. reticulata), and

Rothschild’s (G. camelopardalis) giraffe lineages is supported by
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strong genetic structure in mtDNA and microsatellites [7], and

occurs despite the facts that these taxa have parapatric distribu-

tions [9], they are able to travel long distances [5], and they live in

continuous acacia woodland habitat where barriers that could

prevent movements among their respective ranges were seemingly

absent in historic times, prior to anthropogenic habitat fragmen-

tation [10]. Even though the species have different pelage patterns,

with the potential for pre-mating isolation due to pelage-based

mate recognition, individuals of these taxa hybridize readily in

zoos [11,12]. In contrast, cases of hybridization in the wild are

rarely reported. The genetic evidence from mtDNA sequences

indicates that the Masai giraffe has been separated from the

Rothschild’s and Reticulated giraffes since the early to middle

Pleistocene (1.62 mya–0.54 mya) and the Rothschild’s from the

Reticulated giraffe since the middle Pleistocene (0.54 mya–

0.18 mya), with minimal subsequent gene flow [7]. Consequently,

it was suggested that the three giraffe taxa represent different

species rather than subspecies [7]. In addition to clear genetic

breaks between species, strong genetic subdivisions are also evident

within species, particularly within the Masai giraffe [7].

Given the apparent absence of geographical barriers to

dispersal, the striking genetic differentiation among these giraffes

suggests that environmental or behavioural mechanisms limit gene

flow. Here we consider four scenarios for the maintenance of

divergence among the East African giraffe taxa, focusing on

geographic and environmental parameters in a first-order

assessment of their relative importance in discriminating between

the three taxa. We make no claims concerning the environmental,

orographic, or other conditions that initiated divergence among

these taxa in the Pleistocene. Rather, we restrict our assessment to

late Holocene to modern processes that contribute to the

maintenance of the current, nearly complete reproductive isolation

among the giraffe lineages. To this end, we conduct multivariate

and spatially non-explicit as well as spatially explicit analyses to

evaluate four hypothesized isolating scenarios: 1) isolation-by-

distance; 2) the presence of barriers to dispersal, limiting gene flow;

3) spatial habitat differences that do not represent differences in

timing of the seasons; and 4) differences in the seasonal timing of

precipitation in relation to green-up.

Hypothesis I – Isolation-by-distance is the effect of diminishing

genetic relatedness with increasing distance, and could potentially

be important when dispersal is limited relative to the overall size of

the range. Even though isolation-by-distance appears to be an

unlikely force maintaining divergence between parapatric taxa,

simulations suggest that under some circumstances parapatric

speciation is possible solely due to limited dispersal distances and

the accumulation of genetic incompatibilities [13,14].

Hypothesis II – Geographic barriers to dispersal – and as a

result gene flow – between the three giraffe species are not obvious,

but they have been implicated – most notably the Rift Valley – in

the divergence of other large mammals, including wildebeest

(Connochaetes taurinus) [15] and impala (Aepyceros melampus) [16].

Thus, even though the ranges of giraffe species abut, dispersal

might be limited by the steep topographical gradients of the Rift

Valley and other habitat discontinuities associated with steep

terrain. Dispersal limitation might be particularly strong among

populations in the periphery of their distributions, and be present

under either current or paleo-climate conditions. Given the

mobility of giraffes, isolation-by-distance and geographic barriers

are not strong candidates for the maintenance of divergence

between the three giraffe species. For the sake of completeness,

and to avoid bias by a priori ruling out any potential evolutionary

process, we have nevertheless included both hypotheses in our

analyses.

Hypothesis III – A third mechanism that might maintain

reproductive isolation is divergent natural selection. Adaptation to

local environmental conditions is increasingly viewed as a

significant contributor to speciation (e.g., [2]). Habitat differences

may reduce the fitness of dispersing individuals adapted to the

habitat of the source population, resulting in population

divergence, and ultimately leading to and maintaining reproduc-

tive isolation. Such divergence, often referred to as ecological

speciation, may occur even in the face of ongoing gene flow

[3,4,13,17,18]. Our third hypothesis focuses on spatially divergent

general habitat conditions, but not differences in the timing of

seasonal events. The latter is the focus of hypothesis IV.

Hypothesis IV – Finally, divergent natural selection can involve

differential timing of reproduction [19,20]. Most known cases

entailing temporal isolation are restricted to narrow biological

interactions, such as evolutionary divergence through disparate

timing of host plant phenology (e.g., [19]). It was previously

hypothesized that temporally distinct regional rainfall cycles,

which coincide with the availability of high-quality browse, impose

divergent selection regimes on reproductive timing in giraffes [7].

The synchronization of weaning with the availability of fresh

browse represents a possible means by which temporal reproduc-

tive isolation could be favoured. Such synchronization could

benefit both offspring and mother by increasing growth rates,

hastening weaning, limiting exposure of calves to predation, and

offsetting the female’s energy debt as a result of lactation.

In East Africa, three regionally distinct seasonal cycles of

precipitation correlate with the timing of green-up [21] (Fig. 1),

when fresh browse becomes available. Peaks in precipitation in this

region follow the season(s) of maximal insolation, shifting

latitudinally during the year with the intertropical convergence,

and producing regionally distinct rainfall patterns [21,22]: 1) north

of the equator, from northwestern Kenya through Uganda, July

and August are the wettest months following the northern

hemisphere summer solstice; 2) south of the equator, from

southwestern Kenya through Tanzania, the rainy season occurs

during southern hemisphere summer (December-March); 3)

eastern Kenya, Somalia and Ethiopia experience bimodal

precipitation, with maxima in spring (April-May) and fall

(October-November), following maximal equatorial solar heating

during the equinoxes. These regions generally correspond with the

ranges of Rothschild’s, Masai, and Reticulated giraffes respectively

(Fig. 1). The Rothschild’s giraffe was historically found in Uganda

and Western Kenya [12]. The range of the Masai giraffe extends

north through the Serengeti Plains and Masai lands up into

Kenya, east to Mount Kilimanjaro, south to the Rufizi River, and

west to Lake Rukwa and Lake Tanganyika. Finally, Reticulated

giraffes occur from the Loroghi Mountains, the Barta Steppes, and

Lake Turkana in the west to the Webi Shelbi River and the

mountains of Ethiopia in the north, the dry coastal regions of

Somalia in the east, and the Tana River in the south.

We tested how well each of the above hypotheses distinguishes

between the three giraffe taxa using both non-spatially explicit and

spatially explicit approaches. Because the more traditional

methods to investigate associations between group membership

and explanatory variables are non-spatial in nature, we start by

focusing on environmental differences and differences in the

timing of the seasons in a non-spatial context. Subsequently, we

use more complex models that can specifically take into account

the spatial relationships of populations as well as population

connectivity.

Phenology Correlated with Giraffe Distributions
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Materials and Methods

Environmental variables
To capture the spatial distribution of parameters that are

potentially useful in describing the giraffes’ local habitat condi-

tions, including those that relate to vegetation phenology,

vegetation density, surface moisture, and topography, we used

WorldClim climate data [23] as well as a suite of optical and

microwave remote sensing data and derived products (Table 1).

WorldClim bioclimatic metrics (WorldClim version 1.4 [23]) are

derived from monthly temperature and rainfall climatologies [24]

and are commonly used in characterizing habitat. They included

eleven temperature and eight precipitation metrics, expressing

spatial variations in annual means, standard deviations and

extreme or limiting climatic factors. We checked for covariance

among variables in our study area, and only included those with

Pearson’s correlations smaller than 0.9, resulting in a set of nine

climate variables that were used in subsequent analyses (Table 1).

We used this relatively high cutoff in order not to a priori rule out

potential small but significant additive effects of correlated

variables. To study the effect of temporal differences in rainfall

patterns in more detail, we used the monthly climatologies from

the WorldClim database [23], and calculated monthly rainfall as

percentages of total annual precipitation, which will be referred to

by ‘monthly rainfall’ and the name of the month in the remainder

of this paper.

Based on Moderate Resolution Imaging Spectroradiometer

(MODIS) measurements on board of NASA’s TERRA and

AQUA satellites, we used the vegetation continuous field (VCF)

product as a measure of the percentage of tree canopy cover [25],

the Global Land Cover Dynamics product for vegetation

phenology [21] and the leaf area index (LAI) product for

vegetation density [26]. The spatial resolutions of these products

based on optical passive measurements are 1km for leaf area index

and vegetation phenology and 500 m for tree cover. To facilitate

analysis, we aggregated the 500m native tree cover data to 1 km.

The phenology fields capture the dates of onsets of green-up and

dormancy of vegetation growing season cycles, and the algorithm

was provided with the MODIS-based 16-day enhanced vegetation

index (EVI) time series of the year 2001 to extract the respective

dates [21]. To reduce processing and computation time, only one

year of MODIS data was used. As a result, the vegetation

phenology product has a considerable number of missing data

points due to residual cloud cover. LAI is defined as the one-sided

green leaf area per unit ground area. We averaged monthly LAI

fields (Version 4) from the years 2000 to 2004 in order to reduce

effects of residual cloud contamination [26] along with any natural

inter-annual variability present in the data. The climatological

monthly LAI composites were then used to generate three metrics:

LAI annual maximum (LAImax), LAI annual minimum (LAImin), and

LAI annual range (difference of maximum and minimum; LAIr-

ange). These LAI metrics provide spatial information on

vegetation density.

In addition to these optical remote sensing products, we

included microwave QSCAT data available in three-day compos-

ites at 2.25 km resolution [27]. Data of the year 2001 were used to

create average monthly composites at 1 km resolution and then

further processed to produce two metrics that included annual

mean and standard deviation of radar backscatter at horizontal

polarizations. The QSCAT radar measurements, at wavelengths

of ,2 cm, are sensitive to surface canopy roughness, surface

canopy moisture, and other seasonal attributes, such as decidu-

ousness of vegetation [28]. For low density vegetation cover, such

as woodlands, shrublands, and grassland savannas, the radar

backscatter increases with increasing vegetation biomass and

surface moisture [29]. Finally, for topography we used the Shuttle

Radar Topography Mission (SRTM; http://www2.jpl.nasa.gov/

srtm/) digital elevation data, aggregated from the native 90 m

resolution to 1 km (available from the WorldClim group [23] at

http://www.worldclim.org).

Giraffe genetic and locality data
Giraffes (n = 429) from 51 locations throughout the ranges of

the three focal species (Fig. 1) were collected and genetically typed

for 14 microsatellite loci for a previously published study [7].

Sample collection, DNA extraction, and microsatellite analyses are

fully described in [7]. Briefly, DNA was extracted from skin

biopsies for microsatellite typing on an ABI 377 or 3100 (Applied

Biosystems, Inc; Foster City, CA, USA). Fragment lengths were

scored using GeneScan and checked for errors using MICRO-

CHECKER 2.2.3 [30] and MSA 4.0 [31]. Nei’s D and Fst

between sampling sites were computed in Genalex 6 [32]. Genetic

clusters were identified using Nei’s D in POPULATIONS 1.2.28

Figure 1. Spatial distribution of the day of the year (DOY) that
green-up starts and giraffe point localities. Colors represent the
day of the year that green-up starts. In some areas there are two
seasonal cycles of rainfall and associated green-up. The start of the first
cycle is shown in panel (A), and of the second cycle in panel (B). Point
localities of genotyped giraffe samples are plotted in triangles
(Rothschild’s), asterisks (Reticulated), and pluses (Masai).
doi:10.1371/journal.pone.0077191.g001

Phenology Correlated with Giraffe Distributions
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(http://bioinformatics.org/̃typhon/populations) and Bayesian

clustering in STRUCTURE [33].

Canonical variate analysis
To test the hypothesis that the giraffe taxa occupy different

habitats, a canonical variate analysis (CVA) was performed with

CANOCO 4.5 [34]. We used genetic cluster membership (see also

Figs. 2–3 for samples typed in [7]) to define the corresponding

species at each sampling locality. For each species, a site was coded

0 if the species was absent and 1 if it was present. We then

performed a canonical correspondence analysis (CCA), which is

effectively a CVA with our data design [35]. A permutation test-

based forward selection procedure was implemented to identify

from the candidate set of environmental variables from World-

Clim [23] and satellite remote sensing, those variables that best

described habitat differences between the three taxa. We

performed the forward selection procedure iteratively in order to

exclude environmental variables that were highly correlated [36].

For a given iteration of the procedure, when a variable that was

selected had a correlation coefficient r .0.75 with any of the

previously entered variables, we excluded that variable, and re-ran

the CVA. We re-ran the forward selection procedure in this

manner until additional variables did not provide a significant

improvement to the model. Bivariate correlations used to exclude

variables were computed at 1000 random points throughout the

study area. Significance tests on variables and on ordination axes

employed 5,000 permutations each.

Random forest models
To further test whether differences in the timing of rainfall could

effectively differentiate among the three giraffe taxa as defined by

genetic cluster membership, and to assess their importance relative

to environmental variables that do not represent timing of seasons,

we used random forest algorithms (randomForest v.4.5–30 [37]) as

implemented in the R statistical framework (R Development Core

2009).

Table 1. Overview of the predictor variables used in this study.

Data Record Instrument Variables derived Ecological attributes

Leaf Area Index (LAI) ` Satellite-MODIS Vegetation density; net primary productivity

LAImax Annual maximum

LAImin Annual minimum

LAIrange Annual range (LAImax – LAImin)

Percent Tree Cover 1 Satellite-MODIS Treecover Forest cover

Scatterometer-Backscatter { Satellite-QSCAT QScatMean Annual mean surface moisture

QScatsd Standard deviation of surface moisture within a
year

DEM SpaceShuttle-SRTM SRTM Elevation

SRTMsd Elevation standard deviation (ruggedness)

cost distances
(CD)*

Permeability of habitat matrix based on elevation
and ruggedness of the terrain

WorldClim " Station-network Bio1 Annual mean temperature

Bio2 Mean diurnal temperature range

Bio4 Temperature seasonality (standard deviation)

Bio5 Maximum temperature of warmest month

Bio6 Minimum temperature of coldest month

Bio12 Annual mean rainfall

Bio15 Rainfall seasonality (coefficient of variation)

Bio16 Rainfall of driest quarter

Bio17 Rainfall of wettest quarter

Jan-Dec Monthly rainfall as percentage of yearly total

NDVI ** Satellite-AVHRR NDVImean Annual mean vegetation greenness

NDVIgreen Greenness during greenest season

Green-up Day of year green-up starts

Distance Geographic distance among sampling sites

Human population
density

LandScan
Global Population
Database

Cost distances
(CD)*

Permeability of habitat matrix based on human
disturbance

Data at native resolutions smaller or larger than 1km have been aggregated to 1km.
{QSCAT annual mean and standard deviation are based on monthly data from the year 2001 with complete data coverage.
`LAImax, LAImin, and LAIrange are derived from monthly mean values based on the first 5 year of MODIS data (2000–2004 [26]).
1Percent Tree Cover is based on MODIS data from 2001 [25].
"WorldClim data are based on monthly climatologies from 1950–2000 [23].
*Cost distances are computed either as Leas-Cost-Paths [48] or resistance distances [49].
**See [21].
doi:10.1371/journal.pone.0077191.t001
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Classification tree models [38] implement binary recursive

partitioning procedures to measure the amount of variation in a

response explained by each predictor used in the model. No a priori

assumptions are made about the relationship between predictor

and response variables, allowing for the possibility of non-linear

relationships with complex interactions. Homogeneity is measured

by the Gini index [39], and splitting continues until further

partitioning does not reduce the Gini index. Random forest

methods incorporate a large number of these tree regressions, and

for each tree constructed, use a random subset of the samples – the

so-called bagging. Those samples not used in tree construction (the

out-of-bag samples) are then tested against the random forest

model, and error rates are computed across all runs to produce an

estimate of classification error for the entire model [40]. Variable

importance in random forest models is assessed by random sub-

sampling of the variables and construction of new trees based on

these predictor variable subsets.

First, we computed a random forest model using all predictor

variables, including monthly rainfall (Jan-Dec) and bioclimatic and

remote sensing variables. After verification that only monthly

rainfall data were important contributors to the model, we

computed a random forest model with only monthly rainfall

variables, which was used in the subsequent predictive step.

Random forest models were run with 20,000 trees (ntree

= 20,000), variable importance was computed (importance =

TRUE), and default settings for the remaining parameters were

used.

An imbalance in the number of records within a class (here, the

number of sites where each species was identified) can bias random

forest predictions, and cause high error rates in the classification of

the rare class (e.g., [41,42]). This phenomenon can be seen most

frequently when imbalances of several orders of magnitude exist.

Our dataset is imbalanced at a 1:1.1:3 (Reticulated: Rothschild’s:

Masai) ratio, but we nevertheless explored the iterative down-

sampling approach developed by Evans and Cushman [41]. We

generated 1000 random forest models with random subsamples of

the largest class to a sample size of 10 and compared the average

out-of-bag error rate and variable importance scores to the model

run without subsampling.

Although random forests can be used with a large number of

predictor variables, the out-of-bag error rate can be increased

when many variables are included that do not contribute to

explaining the response variable. To minimize the out-of-bag error

rate while at the same time minimizing the number of predictor

variables included, Murphy et al. [43] developed a new variable

selection procedure that uses the variable importance scores (I)

given as an output from random forests. For each variable n, its

variable importance score In is divided by the maximum variable

importance score Imax, resulting in a model improvement ratio

(MIR) ranging between 0 and 1. In subsequent random forest

models, variables with MIR smaller than a set threshold are

withheld from the predictor variable set, and the resulting out-of-

bag error rate is compared to that of the full model. We iteratively

removed variables below MIR thresholds of 0-1at increments of

0.1.

Highly correlated predictor variables can potentially bias

random forest results (e.g., [44–46]). To evaluate whether such a

bias might be present in our results using the randomForest

package, we confirmed variable importance using a conditional

inference random forest algorithm implemented in the R package

‘party v. 1.0–6’. Conditional variable importance randomly

shuffles the values of the predictor variable and computes a new

model with the shuffled values. This new model is then compared

to the one where the values were not shuffled. The difference in

accuracy of the two models is indicative of the variable

importance. Conditional random forest runs were run for 20,000

trees; remaining parameters were left at their default values.

To create a spatially explicit prediction of taxon distributions

based on our random forest model, we extracted the values of the

twelve monthly rainfall variables for 10,000 random points in a

wide range of our study area. We used these points and our

random forest model for only monthly rainfall data to predict

(‘predict’ function in randomForest package) which taxon would

be present at each of the 10,000 randomly drawn locations. The

results were plotted on a map of the study area and compared

visually to species distribution maps of the three taxa to evaluate

the concordance between predicted and observed ranges. Because

the available species distribution maps are rather crude approx-

imations of the true ranges, we did not compute a percent overlap

between predicted and observed ranges.

Generalized dissimilarity models
A priori assignment of populations into one of the three study

taxa would appear justified, because genetic evidence suggests

clear divergence among those groups [7]. However, to further

assess a potential bias of such an approach, and to explicitly assess

the effects of isolation-by-distance or dispersal barriers as well as

those of environmental heterogeneity, we also implemented a

distance-based methodology using generalized dissimilarity mod-

elling (GDM [47]). GDM is an expansion on matrix regression

techniques to relate dissimilarities in predictor variables to

dissimilarities in response variables, and make spatially explicit

predictions of the predictor-response relationship into areas that

have not been sampled. An advantage of GDM over other

modelling methodologies is that it can explicitly take into account

the influence of geographic distance and dispersal barriers on

Figure 2. CVA ordination plot. Taxon centroids are in red; crosses =
Masai; asterisks = Reticulated; triangles = Rothschild’s; and vectors of
environmental variables. Longer arrows indicate stronger contributions
to the model, and their directions indicate degree of correlation with an
axis. The first two axes explain 76.8% of taxon variation in environment.
Bio6 = minimum temperature of the coldest month; Bio12 = annual
precipitation; Bio15 = rainfall seasonality (coefficient of variation);
green-up = the day of the year of the onset of green-up; QScatMean =
surface moisture (QSCAT); QScatsd = QSCAT standard deviation. See
Table 1 and Methods for a full description of the environmental
variables.
doi:10.1371/journal.pone.0077191.g002

Phenology Correlated with Giraffe Distributions
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explaining biological variation, and allows for modelling variables

that are difficult to define at individual sampling locations, such as

genetic markers [47]. It can fit non-linear relationships of

environmental variables to biological variation through the use

of I-spline basis functions [47]. It is a two-step method: first,

dissimilarities of a set of predictor variables are fitted to the genetic

or phenotypic dissimilarities (the response variables). In an

iterative process, predictor variables are added to and removed

from the model, and only the variables that significantly improve

the model are retained. Specifically, predictor variables are

introduced to the model in random order and the variation in

the response variable explained by the inclusion of that variable is

compared to that without the variable (DD). Next, over many

iterations the predictor variable is added again, but with the values

randomized among sampling sites, resulting in a random

distribution of DDrand. DD is compared to DDrand, based on

which the predictor variable is either retained or dropped.

Generalized dissimilarity models were run using an Avenue script

in ArcView v 3.2 in conjunction with a SPlus v 4 script obtained

from the authors of GDM [47].

To assess the level of population divergence, we used genetic

distances (both Fst and Nei’s D values) among the sixteen

populations from our study taxa that were typed for fourteen

microsatellite loci [7]. To characterize the regional timing of

rainfall, we used the dissimilarity in monthly rainfall variables

among sampling sites. In addition, to test for the influence of

isolation-by-distance and dispersal barriers, we included geograph-

ic distance and least-cost-paths [48] or resistance distances [49].

Least-cost distances take into account spatial heterogeneity in

permeability of habitats for dispersal. Least-cost-path and resis-

tance distances were computed in Pathmatrix 1.1 [48] and

Circuitscape 2.2 [49] respectively from friction surfaces that

represented two types of barriers. First, giraffes generally do not

occur higher than 2000 m above sea level [9], or in steep terrain.

A friction surface representing potential ancient barriers was,

therefore, based upon altitude and ruggedness (SRTM and

SRTMsd respectively; see Table 1) of the terrain, which captured

potential dispersal barriers formed by mountainous areas (e.g.

regions in and along the Rift Valley). Values for SRTMsd ranged

between ,1 and ,400, and were directly used as friction values in

computations of cost distances. We similarly coded areas above

2000 m in altitude as 400, and those below as 1. Cost distances

were then computed for altitude and ruggedness separately. We

also added the values of the two friction surfaces for computation

of a single cost distance matrix. Thus, areas above 2000 m in

altitude, with the maximum level of ruggedness were ,400 times

as difficult for dispersal by giraffes as level areas below 2000 m.

Because the assignment of costs is relatively arbitrary, we also

computed cost surfaces for altitude and altitude+ruggedness where

all values .1 (i.e. the minimum cost assigned to a grid cell) were

divided by 10 and where those values were multiplied by 10. Thus,

we computed the following cost distances: 1) ruggedness (untrans-

Figure 3. Results for random forest prediction. A random forest model based on taxon discrimination by monthly rainfall (Jan-Dec) was used to
predict which taxon occurs at each of 10,000 randomly selected locations in the study area (coloured dots). Observed localities of the giraffe taxa are
plotted in triangles (Rothschild’s), asterisks (Reticulated), and pluses (Masai). Predicted taxon localities are indicated in red (Rothschild’s), blue
(Reticulated), and green (Masai). Approximate species ranges are indicated by dashed lines and their respective names (after [56]).
doi:10.1371/journal.pone.0077191.g003
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formed cost surface); and 2) altitude and altitude+ruggedness for

cost surfaces where the difference between the minimum and

maximum cost was one, two, or three orders of magnitude.

The second friction surface represents more recent habitat

changes by humans, and was computed directly from human

population densities in East Africa (LandScan
TM

Global Population

Database. Oak Ridge, TN: Oak Ridge National Laboratory.

Available from http://www.ornl.gov/landscan). Although the

relation between human population density and anthropogenic

pressure varies from one region to the other (e.g., [50]), expanding

human populations and increasing population densities may be

proxies for land use changes (e.g., [51]) and other human-wildlife

conflicts, such as cattle grazing (e.g., [52]), that affect the dispersal

ability of giraffes. Because microsatellites evolve relatively rapidly,

they may contain a signal of population divergence mediated by

potential recent dispersal barriers resulting from anthropogenic

land-use changes under the assumption of a generation time of

approximately four years [7].

As a means to contrast the hypotheses regarding seasonal timing

of rainfall, dispersal barriers, and geographic distance, we ran six

models with different sets of predictor variables for both Fst and

Nei’s D. In two of these models all predictor variables were

entered (full model), with cost distances based on either altitude or

population density. Importance of any of those variables in a

model would implicate its role in maintaining divergence among

the three giraffe taxa. To evaluate cross-correlations among

predictor variables, in the remaining four models the following

subsets of the predictor variables were entered: only monthly

precipitation variables, only geographic distance, or only one of

the two cost distances. The percentages of the variation explained

by each model were compared to assess which parameter set best

explained the observed genetic variation.

Frequency of giraffe births
To further investigate hypothesis IV (regional differences in the

timing of rainfall), we assessed whether regional differences in the

timing of green-up are related to reproductive timing in giraffes.

Unfortunately, data on calving times in giraffes is largely lacking

for our study taxa, and only available for two distinct genetic

groups of Masai giraffe [7]: those in Nairobi National Park [53]

and those in the Serengeti [54]. We first tested whether calving

times conformed to a uniform distribution in each area, using

Shapiro Wilks and Anderson-Darling tests. In addition, we tested

whether the timing of births differs between these two regions

using an autocorrelation analysis (acf function in the R Statistical

Package), and compared this to the timing of maximum rainfall in

each region.

Results

Tests of associations between predictor variables and
giraffe divergence

We first assessed the roles of differences in the timing of green-

up as well as general habitat differences in differentiating the three

giraffe taxa in East Africa, by means of a canonical variate analysis

(CVA) on a set of environmental variables pertaining to 51

locations where giraffe samples have been genetically typed (Fig. 1)

[7]. The regional differences in rainfall maxima result in opposing

seasons of green-up in the north and south of the region (Fig. 1a)

and a second green-up in October/November in the north-eastern

Kenya, eastern Ethiopia, and Somalia (Fig. 1b). Timing of first

green-up, climate variables (Bio1-Bio17), and a number of

satellite-derived ecological variables were included in the analysis

(see Material and Methods and Table 2). The first and second

CVA axes explained 47.4% and 29.4% of the variation among

taxa respectively (F = 24.315, p = 0.0002). The first axis discrim-

inated the Masai giraffe on the basis of first green-up (axis 1 vs.

green-up, weighted r = 20.97; Table 3; Fig. 2). The second axis

differentiated the Rothschild’s and Reticulated giraffes, and was

positively correlated with annual precipitation, and negatively

correlated with Bio15 (precipitation seasonality not indicating

timing, i.e. coefficient of variation; Table 3). This result strongly

implicated the first green-up in differentiating the Masai giraffe.

However, missing satellite data (Fig. 1) precluded analysis of the

second/autumn green-up in much of Somalia, Ethiopia, and

Kenya where we predicted it should differentiate the Reticulated

giraffe.

To extend the analysis to the second green-up, and to further

investigate the timing component of the annual precipitation cycle

that drives green-up in the three regions, we generated a monthly

precipitation dataset, and used these variables (Jan-Dec) in

addition to the satellite remote sensing and climate variables that

capture general habitat characteristics to construct a random forest

model [40,55] (Table 1 and 2). Under this random forest model,

most sampling localities were classified in their expected

taxonomic group. The out-of-bag error rate was 3.8%, meaning

that on average ,1 locality showed a mismatch between observed

and predicted taxonomic grouping. Out-of-bag error rate

increased to 6.45% when we applied down-sampling of the largest

class (Masai giraffe), where all Masai sites were correctly classified,

and one Rothschild’s and one Reticulated site were misclassified.

However, after applying MIR to select the smallest set of variables

that minimized the out-of-bag error rate, all sites were correctly

classified (out-of-bag error rate = 0%). The most important

variables in explaining differentiation among taxa were qualita-

tively similar between runs where we did and did not apply down-

sampling, and consisted of monthly rainfall in February and

October, followed by March, August, July, and April (Table 4).

These were also the variables retained after applying MIR.

Moreover, the first five of those variables (February, October,

March, August, July) were also the most important variables under

the conditional inference variable importance criterion (Table 4).

Rainfall measures in February and March, and in July and August

are highly correlated (R2 ,0.95), but this is of little to no influence

on our random forest models. In each regression tree only one of

the two correlated variables is picked as the most important

variable. The presented importance scores are a summary of many

tree regressions, and are an indication of how often each variable

is used in a regression tree. Months known to be important in

discriminating regional climate proved to be informative in the

random forest model: February is associated with maximum

precipitation in southern Kenya and Tanzania; July and August

with maximum precipitation in north-western Kenya and

Uganda; and March and October correspond to the post-

equinoxal precipitation in north-eastern Kenya, Somalia, and

eastern Ethiopia. Remote sensing and climate variables that do not

capture the timing of seasons were relatively unimportant in the

random forest model (Table 4), suggesting that general habitat

differences alone cannot explain the observed taxonomic differ-

entiation among giraffes in East Africa. A predictive map of the

spatial distribution of our study taxa based on our random forest

model corresponds with known taxon distributions [56] (Fig. 3).

The one major inaccuracy is a prediction of Masai further north,

in between Reticulated and Rothschild’s predictions. This is an

area in which many species distribution maps show a gap in giraffe

occurrence (e.g., [56]). In an additional random forest model, we

also considered the subdivision of Masai giraffe into two distinct

units in the region, as suggested by molecular data [7], totalling

Phenology Correlated with Giraffe Distributions
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four genetic entities in East Africa. The results of this model are

comparable to that for the three giraffe taxa: an out-of-bag error

rate of 3.7% and high importance of monthly rainfall variables,

suggesting that seasonal timing of rainfall can also distinguish

between smaller genetic entities.

To explicitly assess the effects of isolation-by-distance or

dispersal barriers as well as those of environmental heterogeneity,

we also implemented a distance-based methodology using

generalized dissimilarity modeling (GDM [47]). The full models

for Fst values explained about 60% of the total observed variation,

and those for Nei’s D approximately 80% (Table 5). Monthly

precipitation variables, in particular July and February, were

consistently the most important in our models (Table 5; Fig. S1).

The cost distances and geographic distance were also significant,

but generally contributed far less to explaining the observed

variation than precipitation variables. The only exception to this

was observed in the model for Fst values with the cost distance

based on human population density. Here, the cost distance was

the second most important variable in the model, after July

(Table 5; Fig. S1). In addition, models based only on geographic

distance or the cost distances explained approximately 22%–78%

less of the total genetic variation than the full models (Table 5).

Whether the models with altitude or altitude+ruggedness cost

distances were based on friction surfaces with one, two, or three

orders of magnitude difference between low and high cost grid

cells, made only negligible difference for the full models. However,

for the cost-distance-only models (CD), the total variation

explained ranged between 0.3% and 31.7%, the latter approxi-

mating that of the geographic-distance-only model (D) (Table 5).

In comparison, models based only on precipitation variables

performed nearly as well as the full models (Table 5). While

rainfall values in some subsequent months are correlated, cross-

correlated months are only included in the models if they have

additive explanatory power. The interpretation of the selected

months should, however, be general with respect to the timing of

seasons, without assignment of any individual weight to cross-

correlated months. The results from generalized dissimilarity

models suggest that: 1) differences in timing of rainfall are

important in discriminating among the three studied taxa; 2)

dispersal barriers –in particular those imposed by human

habitation- may have resulted in recent differentiation; and 3)

isolation-by-distance played a relatively minor role in divergence

among taxa.

Frequency of giraffe births
For differences in the timing of seasons to have biological

meaning with respect to reproduction, calving times should also

show differences between taxa. Tests of the null model of a

uniform distribution of births across the year using the frequency

of calving times from two distinct genetic groups within Masai

giraffe [7] in Nairobi National Park [53] and the Serengeti [54]

rejected a uniform distribution in both areas (Nairobi NP birth

peak in August, September and one in January: Shapiro Wilks test,

p = 0.0019; Anderson-Darling test, p = 0.0026; Serengeti birth

peak in May-July: Shapiro Wilks test, p = 0.0205; Anderson-

Darling test, p = 0.0191). In addition, an autocorrelation analysis

(acf function in the R Statistical Package), testing the lag time

Table 2. Overview of analyses conducted and hypotheses tested.

Analysis Response variable Predictor variables entered Hypotheses tested

CVA Taxon membership LAI, Treecover, QSCAT, SRTM, Bio1-17, NDVI, Green-up General habitat vs timing of green-up

RF Taxon membership Step 1: Same as CVA plus Jan-Dec Step 2: Jan-Dec General habitat vs timing of rainfall Timing of rainfall

GDM F Genetic distance 1 Jan-Dec, cost distances*, distance Timing of rainfall vs barriers vs distance

GDM E Genetic distance 1 Jan-Dec Timing of rainfall

GDM D Genetic distance 1 Distance Distance

GDM CD Genetic distance 1 Cost distances* Barriers

1Genetic distances were computed as Fst and Nei’s D from microsatellite data.
*Cost distances include those based on elevation+ruggedness and human population density (see Table 1 and Material and Methods).
doi:10.1371/journal.pone.0077191.t002

Table 3. Correlations between environmental variables used in the CVA analysis and the first two taxon ordination axes.

Ax 1 Ax 2 Green-up Bio6 Bio12 Bio15 QScatMean QScatsd

Ax 1 1

Ax 2 0 1

Green-up 20.97 0.01 1

Bio6 0.34 0.14 20.38 1

Bio12 20.18 0.56 0.17 20.20 1

Bio15 20.15 20.49 0.19 0.13 20.50 1

QScatMean 0.16 0.19 20.16 20.00 0.39 20.04 1

QScatsd 20.06 0.28 0.13 0.14 0.09 0.20 20.42 1

Bio6 = minimum temperature of the coldest month; Bio12 = annual precipitation; Bio15 = rainfall seasonality (coefficient of variation); Green-up = day of the year of
the onset of green-up; QScatMean = surface moisture (QSCAT); QScatsd = QSCAT standard deviation. See Table 1 and Materials and Methods for a full description of
the environmental variables.
doi:10.1371/journal.pone.0077191.t003
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where maximum correlation is observed between the frequency

distribution of calving times in populations in Nairobi National

Park and the Serengeti, showed that the highest correlation was

observed at a lag time of 2–3 months, suggesting that these genetic

units show differences in the timing of births. This corresponds to a

similar lag time in peak rainfall and green-up in these areas.

Discussion

We have investigated the potential current geographic and

environmental factors that may contribute to maintaining

divergence between giraffe taxa in East Africa. The results of

our simultaneous tests of hypotheses presented here suggest that,

among the factors investigated, regional differences in timing of

maximum rainfall are of primary importance. Even though

general habitat differences, dispersal barriers, and isolation-by-

distance also appear to contribute to inter-taxon differentiation,

our analyses suggest they play less important roles.

Previous studies have shown that parapatric speciation is

possible when dispersal distances are limited and genetic

incompatibilities accumulate, resulting in reproductive isolation

of parapatric populations [13,14]. Indeed, even though giraffes are

able to travel large distances [5], dispersal may be limited due to

small home range sizes and responses to limited resource

availability [54]. Moreover, genetic structure is apparent not only

between, but also within species [7]. Nevertheless, generalized

dissimilarity models in which geographic distance was entered as a

predictor variable suggested that it did not play a major role in

explaining genetic variation in a spatial context (Table 5).

Studies using a resistance surface to compute cost distances are

often subject to an oversimplification of the relation between the

habitat matrix and gene flow, and our study is no exception. To

obtain a better model of gene flow as a function of the habitat

matrix, Shirk et al. [57] developed a novel approach in which the

functional relationship between habitat characteristics and resis-

tance are varied, resulting in a series of cost distances that are

correlated to a measure of gene flow. For multiple habitat

characteristics, this is first done in a univariate procedure.

Subsequently, the univariate optimal functions are used to start

a multivariate optimization procedure to find the resistance

surface best describing the observed genetic divergence between

Table 4. Random forest model results.

Predictor variable Mean decrease in accuracy Mean decrease in Gini index Conditional variable importance

Feb 16.14 4.2127 0.0219*

Oct 15.87 4.2656 0.0719*

Mar 14.58 3.4089 0.0273*

Aug 12.78 2.0622 0.0422*

Jul 12.43 2.0542 0.0422*

Apr 11.45 1.4400 0.0124

Dec 11.07 1.6265 0.0129

Jan 11.02 1.6585 0.0182

Nov 9.19 0.9415 0.0056

Jun 8.42 0.9905 0.0209

LAIrange 8.13 1.0316 0.0143

Sep 8.03 0.8364 0.0084

NDVIgreen 7.13 0.7951 0.0158

Bio12 6.84 0.6681 0.0031

Bio16 6.18 0.6359 0.0048

NDVImean 5.44 0.5143 0.0051

Bio15 5.29 0.3559 0.0006

LAImax 4.91 0.4031 0.0065

Bio5 4.19 0.2783 0.0018

Bio4 2.26 0.0801 0.0000

May 1.74 0.1258 0.0000

Bio1 1.64 0.1204 0.0002

LAImin 1.39 0.1287 0.0065

Bio6 1.37 0.1285 0.0000

Bio17 0.89 0.0621 0.0000

QScatsd 0.82 0.1080 0.0001

QScatMean 0.42 0.0443 0.0000

Higher values of the ‘‘mean decrease in accuracy’’ and the ‘‘mean decrease in Gini index’’ indicate higher predictor variable importance. Variables in bold are the ones
included in the random forest model that minimizes the number of variables used as well as the out-of-bag error rate after applying the model improvement ratio
approach (see Material and Methods). Conditional inference variable importance is shown for a conditional inference random forest model, which corrects for potential
biases due to correlations between predictor variables. Variables marked by ‘*’ are the five most important variables according to the conditional inference. The
variables Jan-Dec represent the seasonal timing of rainfall; the remaining variables are representative of spatial differences in habitat. Also see Tables 1 and 2.
doi:10.1371/journal.pone.0077191.t004
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populations. Even though the approach proposed by Shirk et al.

[57] is a major improvement over approaches assigning arbitrary

costs to certain habitat conditions, it depends heavily on detailed

expert knowledge. First, the starting parameters in the optimiza-

tion procedure are set based on expert knowledge, and second, the

optimized parameter values should be evaluated to what extent

they are biologically meaningful. Unfortunately, such expert

knowledge is sparse for giraffes, which is why we chose not to

follow the procedure outlined by Shirk et al. [57]. Our analyses of

dispersal barriers resulting in a reduction of gene flow are,

therefore, subject to limitations. Yet, our results are in line with

those of Arctander et al. [15], who found low levels of divergence

for several species across the Rift Valley, suggesting that the Rift

Valley may not be a major topographical barrier to large

mammals in general. It remains unclear to what extent human-

induced barriers may influence divergence among giraffe popu-

lations and species. Generalized dissimilarity models of Fst values

where human population density was included as a cost distance

suggest that dispersal might be limited across areas with high

human population densities. However, similar models for Nei’s D

were less conclusive in this respect. Given that human disturbance

of the magnitude currently seen is a recent phenomenon, and

giraffes have long generation times, the microsatellite data may not

show a signature of reduced gene flow yet. Nevertheless, human

occupancy does not appear to be related to habitat characteristics

unfavourable to giraffe dispersal over longer evolutionary times.

Locally adaptive responses to divergent habitat could provide

selective pressures favouring endemic populations over migrants or

hybrids. The most significant habitat variables that are not related

to the timing of the seasons in canonical variate analyses were

Bio12 (annual precipitation) and Bio15 (coefficient of variation in

annual rainfall). Rothschild’s giraffe occupy habitat that generally

gets more rainfall during the year than the regions occupied by

Masai (medium levels of rainfall) and Reticulated giraffe (lowest

levels of rainfall). Similarly, Rothschild’s giraffe habitat is

characterized by smaller seasonal differences in rainfall than that

of Reticulated and Masai giraffe. The low levels of rainfall in

Reticulated habitat result in the lowest observed vegetation cover

during the greenest time of the year (NDVIgreen), as well as small

differences in greenness between the seasons (LAIrange). Never-

theless, there is large overlap in these variables between the three

giraffe species, and they are therefore not effective predictors of

genetic divergence.

Although the association between patterns of green-up and

giraffe taxa suggests a role for geographic differences in the

seasonal timing of rainfall in the maintenance of differentiation,

the historical processes of initial giraffe divergence remain an open

question. The , 23,000 year precession cycle and associated ,
100,000 year climate cycle strongly influence African precipitation

and is known to have resulted in changes in precipitation intensity

multiple times in the region since the early to middle Pleistocene

[58–60]. This corresponds to the approximate time of the first split

Table 5. Generalized dissimilarity modelling results.

Genetic
distance Model

Cost distance entered
in model

Percent of total variation explained
(1/2/3 orders
of magn.)* Variables included in full model

Fst F alt+ruggedness 58.8/59.3/59.3 Jul, Feb, Jun, May, D, Oct, Sept, CD,
Nov, Aug

altitude 58.7/58.7/58.7

ruggedness 59.4

pop dens 60.9 Jul, CD, Feb, May, D, Aug, Oct, Nov

E 58.6

D 21.3

CD alt+ruggedness 9.9/2.5/0.8

altitude 22.7/22.7/22.1

ruggedness 3.0

pop dens 38.8

Nei’s D F alt+ruggedness 79.7/80.1/79.8 Jul, Feb, Oct, CD, Nov, May, D, Aug

altitude 79.6/79.5/79.5

ruggedness 79.9

pop dens 79.9 Jul, Feb, Oct, CD, Aug, D, Nov, May

E 79.3

D 31.2

CD alt+ruggedness 13.4/2.1/0.3

altitude 31.7/30.1/30.0

ruggedness 2.7

pop dens 38.6

Results shown are for six different models each on Fst and Nei’s D genetic distances with monthly precipitation variables and geographic distance or cost-distances
based on either altitude + ruggedness of the terrain or human population density. Variables entered in the six models were: full model (F: environment + distance + cost
distance; E/D/CD); environment only (E); distance only (D); cost distance only (CD). Variables included in the models are only shown for the full models. CD = cost
distance; D = geographic distance; E = environmental variables (i.e. monthly precipitation); pop dens = human population density.
*For models where altitude and/or ruggedness of the terrain were entered, results are shown for cost distances based on one, two, or three orders of magnitude
difference between suitable and unsuitable habitat. See Material and Methods for further details.
doi:10.1371/journal.pone.0077191.t005
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between these giraffe taxa, that of the Masai and Reticulate-

d+Rothschild’s giraffes [7]. Discrete rainfall regimes with compa-

rable seasonal attributes likely persisted throughout the late

Pleistocene and early Holocene, albeit with significant variation

in precipitation intensity and geographic extents [61]. Spatially

and temporally differentiated, these rainfall patterns could have

contributed to initial divergence of the three giraffe taxa.

Alternatively, as a result of the precession cycles, savannah habitat

has repeatedly expanded and contracted [62,63], a process that

has been hypothesized to be the primary cause of divergence in

several savannah mammals [9,64–71]. Under the hypothesis of

periodic isolation in savannah refugia, followed by range

expansions tracking the expansion of savannah during more

favourable arid periods, it is plausible that the three giraffe taxa in

East Africa initially diverged in allopatry, and remained distinct

through one of the mechanisms described above. Studies of

paleoclimatic conditions and habitat suitability, as well as detailed

genetic and demographic studies should provide insight into the

causal mechanisms of initial divergence of giraffes as well as other

African savannah species. Finally, even though least-cost-path

analyses that consider orographic features suggest that they do not

impose significant dispersal barriers causing reduced gene flow

under current conditions, they may have contributed to initial

giraffe divergence under historical conditions, when these features

may have been more severe, or – combined with paleo-climate

conditions – may have harboured less suitable habitat conditions.

The striking correlation between seasonal timing of rainfall and

genetic divergence among giraffe taxa might be explained by

different, but not necessarily mutually exclusive mechanisms. First,

genetic divergence might be related to a synchronization of the

reproductive cycle with regional timing of rainfall. For available

data, a uniform distribution of births across the year was rejected,

which is supported by independent data from the Serengeti [72].

This suggests that calving times in giraffes display seasonality. This

is substantiated by observations of seasonal peaks in births among

various giraffe taxa throughout Africa [73–78]. For East Africa,

data is only available for Masai giraffe in the two above mentioned

areas. These areas represent genetically distinct entities within the

Masai giraffe [7] that also experience distinctly different rainfall

regimes. Our finding that populations in Nairobi National Park

and the Serengeti show differences in birth timing, is consistent

with their unique signatures of seasonal timing of rainfall, the latter

of which was confirmed by the random forest model on the four

genetically distinct groups. Similar differences in seasonal timing of

births between Masai, Reticulated, and Rothschild’s giraffe seem

to be supported: the preponderance of births appears to occur in

the dry season (Fig. 2 in [54], [79]) (Fig. S2), which is January

through March for Rothschild’s [9] and May through August for

Masai giraffes [54,79].

Synchronization of the reproductive cycle with the timing of

rainfall may involve selective advantages related to the condition

of the female at the time of conception, increased growth rates and

predation avoidance for calves, and quick recovery of the female at

time of weaning. As a result of births peaking late in the dry

season, weaning of giraffe young occurs at a time that fresh browse

becomes available [80,81]. This synchronization may be beneficial

to both offspring and mother. First, consumption of high-quality

browse by weaning calves during green-up may result in increased

growth rates, hasten weaning and thus limit exposure of calves to

predation, which is a major cause of mortality in wild giraffes [80];

lion and hyena predation on calves can approach 50% [54,82–84].

Second, lactating females experience substantial costs minimizing

predation risk [54], which could be offset by the abundance of

browse. Females with young prefer open settings [85], sacrificing

foraging opportunities for lowered predation risk to their calves

[54]. This form of predation avoidance likely contributes to the

maternal energy debt experienced by lactating females late in the

dry season [86]. This energy debt does not occur in non-lactating

adults [79]. Hastened weaning of offspring should reduce these

energetic costs for females, and the availability of high-quality

browse for females during and following the most demanding

phase of reproduction could mitigate the impact of reduced

foraging time. The importance of the availability of high-quality

browse is consistent with observations that lactating females show

stronger preferences for tannin-free, high-protein-level browse

associated with green-up than adult males or non-lactating females

[72,79,81].

Peaking birth rates during the dry season [9,54,72,79] suggest

that conception, or possibly implantation, may be most frequent

during a narrow time interval [78]. Conception may be influenced

by female condition at the time of mating, and related to resource

availability, yet is probably also under some form of genetic or

clocklike control, as is often the case in mammalian reproduction

[87]. In giraffes, gestation time is roughly 14–16 months (e.g., [88–

91]). Whereas giraffes reportedly mate throughout the year, based

on the limited data available on births, the bulk of conceptions

probably occur late in the wet season [78]. This may also be the

time of optimal female condition due to the abundance of browse

during the preceding period [78,92], allowing reproductive

females to recover from the energy deficit generated during

gestation and lactation. Thus, reproductive timing may provide

benefits with regard to parturition and subsequent weaning, but

also with respect to conception, and maximizes the condition of

both female and offspring. This notion is supported by the fact that

giraffe calf recruitment is positively correlated with late dry season

precipitation (i.e. earlier than normal green-up) over the preceding

five-year period [93]. Similar situations seem to occur in elephants

[94] and African buffalo [95], where conception is tightly linked to

higher levels of NDVI – a measure of vegetation greenness

indicating the availability of browse (Table 1).

An alternative mechanism that might explain the relation

between genetic divergence and seasonal timing of rainfall could

involve seasonal variation in habitat use as a response to

differences in the timing of maximum rainfall and the associated

availability of browse. Resource tracking has clear selective

advantages and is one of the likely underlying causes of migration

on both small and large scales. Although giraffes are capable of

travelling large distances [5], they often have small ranges and

exhibit localized responses to seasonal variation in resource

availability [54]. For instance, when rainfall peaks in one area,

giraffes in that area may be able to travel large distances because of

the widespread availability of browse. However, this will coincide

with a dry period in the adjacent regions, where giraffes may be

confined to small patches of habitat with sufficient resources. Such

an effect could render populations geographically isolated. In

addition, habitat preferences – which are suggested to be different

among males and females [85] – may limit the effective ranges of

individual giraffes or populations in a given season. Thus, small

home ranges that track the availability of browse associated with

local to regional differences in maximum rainfall could facilitate

the isolation of giraffe populations through neutral evolutionary

processes. Finally, exposure to specific rainfall regimes could

increase a given individual’s preference for those natal cues

through natal habitat preference induction (NHPI; e.g., [96] and

references therein). Dispersing individuals might preferentially

disperse to areas with habitat characteristics similar to those in the

natal habitat. Such a scenario is independent of selection, but relies

on imprinting of habitat cues during early stages of development.
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In our hypothesis of ecologically mediated maintenance of

population divergence, differences in reproductive timing need not

act alone. For instance, mate recognition mechanisms may also

contribute to isolation. In this context, differences in pelage

pattern may serve as visual cues in mate choice, possibly through

imprinting on the conspecific pelage pattern during the early

stages of life [7]. However, to our knowledge no field data exist on

the use of pelage patterns in mate recognition. To better

understand the detailed mechanisms of isolation in contact zones,

further studies of mate choice and habitat use are needed.

Conclusions

We have shown that among the predictive variables considered,

regional differences in the seasonal timing of rainfall and the

associated timing of green-up best discriminate among the three

East African giraffe taxa, and that general habitat differences,

dispersal barriers, and geographic distance do so less effectively.

One explanation for this striking relation may be related to

reproductive asynchrony, suggesting regional adaptation of the

reproductive cycle to the differential timing of green-up. This

scenario might represent a form of ecologically-mediated repro-

ductive isolation consistent with a growing body of work that

suggests that selection can produce or maintain the divergence

between ecologically distinct groups [2,97]. Theory shows the

efficacy of differential timing of the seasons or phenology on

driving reproductive isolation of parapatric and sympatric

populations [98], and studies of natural systems suggest that

selection on timing of host plant flowering can lead to sympatric or

micro-allopatric speciation of insects [19]. Similarly, our results

might be explained by selection associated with timing of annual

events, facilitating the maintenance of genetic and phenotypic

divergence on regional scales in large, highly mobile animals.

However, alternative mechanisms are also plausible. These might

be related to differences in seasonal timing of rainfall, such as

resource tracking and resulting seasonal allopatry, or to other

factors, such as mate recognition based on pelage patterns. We

have described a striking correlation between spatially divergent

timing of maximum rainfall and giraffe divergence, warranting

further research to better understand the exact nature of the

relation and its potential role in maintaining giraffe population

divergence.

Supporting Information

Figure S1 Response curves for variables entered in
generalized dissimilarity models that were selected in
the model as important in explaining the observed
variation. The maximum value of each variable is indicative of

its importance in the model. Response curves are shown for

models of Nei’s D (A, B) and Fst (C, D) genetic distances with a set

of predictor variables consisting of monthly precipitation,

geographic distance, and a cost distance based on either altitude

and ruggedness (A, C) or human population density (B, D).

(TIF)

Figure S2 Monthly calving frequencies of giraffe in the
Serengeti (solid line) and Nairobi National Parks
(broken line). Adapted from [54].

(TIF)
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