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INTRODUCTION

Artificial intelligence (AI) is increasingly being integrated into every-
day life and swiftly progressing in the healthcare sector. Its benefits
are evident in various clinical applications, including diagnosis, per-
sonalized treatment guidance, risk assessment, and the reduction of
medical errors.[1] Due to the extensive use of endoscopic and radio-
logical imaging, Gastroenterology has evolved into a compelling
field for AI applications. Endoscopic ultrasound (EUS) is exten-
sively applied in detecting various gastrointestinal issues, including
subepithelial lesions (SEL), early gastric cancer (EGC), and pan-
creatic diseases. It also allows for solid masses and lymph node
sampling. Yoshida et al. used EUS to detect pancreatic lesions
and detected a median sensitivity of 93% to 94%, compared to
53% with CT scans and 67% with MRI.[2] However, the accu-
racy of diagnosis and sampling using EUS is subjective and de-
pends on the endoscopist's skill, experience, and precision.

With the advent of large language models (LLM), machine learning
(ML), and deep learning (DL), AI holds the potential to transformpa-
tient experiences through improved patient selection, counseling, and
education. Furthermore, these novel technologies can enhance the ef-
ficiency of EUS by enabling the prediction of patterns and providing
more profound insights. In our editorial, we aim to discuss the poten-
tial of AI-enhanced EUS as well as the various challenges it faces.

BENEFITS OF USING AI IN EUS

AI can be employed in various facets of EUS, from preoperative
counseling to intraoperative and postoperative guidance.

Pre-endoscopy planning

Pre-EUS planning requires automation, accuracy, speed, and pri-
vacy but is complicated by patient diversity, multimodal inputs,
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and imprecise diagnostic criteria. Large Language Models (LLMs)
can be utilized to generate and interpret structured data in elec-
tronic health records, supporting clinical decision support (CDS)
systems that predict EUS outcomes.[3] Additionally, the computa-
tional abilities of LLMs can streamline the generation of clinical
notes, facilitate the assignment of billing codes, and enable smooth
transitions between endoscopists.

LLMs can also analyze unstructured data, such as clinical notes from
electronic records and communications, integrating this information
with relevant literature to identify patterns and predict potential com-
plications that might be overlooked through traditional methods.[2,4]

Moreover, LLMs can potentially create personalized educationalma-
terials for patients scheduled for EUS. Various educational chatbots
and current-generation LLMs can deliver dynamic, tailored patient
education based on an individual's medical history, laboratory, and
imaging findings. These tools can also respond to patients' messages,
providing an additional resource for endoscopists to save time.[5]

Education

AI can be used to provide training and education to endoscopists.
In a study conducted byZhang et al., a system named BPMASTER
(pancreaticobiliary master) was created for this purpose.[6] The
classification model played a pivotal role in identifying the current
scan site and guiding subsequent operations, and the segmentation
model continuously monitored the abdominal aorta, pancreas, and
portal. If the critical blood vessels and pancreaswere no longer visible,
the recommendation was to rescan at the previous station. During
internal and external verification, the classification model exhibited
accuracies of 94.2% and 82.4%, respectively. In the study, there
was a significant improvement in trainees' ability to recognize EUS
videos from 67.2% to 78.4% (95% CI, 0.058–1.663; P < 0.01).[6]

Similarly, Medranda et al. deemed EUS as a highly skilled proce-
dure with a learning curve and only a limited number of facilities
available for such training that requires resources and high patient
volume. They also concurred that AI could improve the training
process by overcoming the above limitations by recognizing the an-
atomical landmarks and thus reducing the learning curve. AI added
recognition of anatomical structures, which improved the training
process.[7] Anothermodel created byYao et al. achieved an accuracy
of 93.3% in the image set and 90.1% in the video set. When com-
pared to a man-machine contest, the AI model was comparable to
an expert. On further analysis, with AI trainee's accuracy had im-
proved from 60.8% to 76.3% (P < 0.01; 95% CI, 20.9–27.2).[8]

Intraprocedural guidance

AI-enhanced EUS can help improve EUS outcomes by offering
intraprocedural guidance requiring precision, real-time guidance,
and high resolution. AI can reduce human error by providing con-
sistent readings and highlighting areas of concern that require closer
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examination. AI algorithms can also analyze images much faster than
humancounterparts, leading toquicker diagnosis and the ability to con-
duct more examinations in less time. It can integrate EUS data with
other medical records to provide a better assessment of a patient's
condition, potentially leading to better personalized treatment plans.

AI-guided visualization during EUS

Its integration is being used for the following:

A. Gastrointestinal stromal tumors (GIST): AI-enhanced EUS
seems promising for diagnosing SELs with Convoluted Neural
Network (CNN)–driven AI models having high sensitivities, spec-
ificity and overall accuracy for diagnosing GISTs.[9,10] AI model
has been reported to successfully diagnose GIST ≥20 mm and dis-
tinguish GIST and non-GIST patients from nongastric SELs. A
study based on theDLmodel reported a sensitivity of 90.5%, spec-
ificity of 90.9%, and accuracy of 90.6% in recognizing GIST.[9] A
meta-analysis study reported pooled sensitivity and specificity of
EUS-AI by CNN in diagnosing GISTs 0.92 (95% CI, 0.89–0.95)
and 0.82 (95%CI, 0.75–0.87), respectively. These results were su-
perior to those of endoscopists, and themodel was also found to be
robust in accurately predicting the malignant potential of GIST.[10]

B. Early gastric cancer (EGC): Accurate preoperative CT scan and
EUS are key imaging modalities for staging EGC. The stage of
EGC helps to decide whether the patient should undergo endo-
scopic submucosal dissection versus endoscopic mucosal resection
and surgery. AnAI-based EUS system has been found to be compa-
rable to that of experts in diagnosing invasion depth of EGC.[11]

Chen et al. also reported that AI could potentially substitute EUS
and CT in staging EGC with an average validation accuracy of
86.1% compared to 70% with EUS and CT scans.[12]

C. Pancreatic diseases: Pancreatic cystic lesions (PCL) of themucinous
type can progress to malignancy. EUS imaging alone is inaccurate
in differentiating mucinous from nonmucinous cystic lesions.
When an EUS imaging-based Convoluted Neural Network (CNN)
model was used to differentiate mucinous and serous cystic neo-
plasms, it achieved an overall accuracy of 82.7.[13] Another CNN-
based high-precision algorithm developed to aim at the automatic
identification of mucinous pancreatic cysts achieved a sensitivity
and specificity of 98.3% and 98.9% with an overall accuracy of
98.5%.[14] AI models have successfully detected intraductal papil-
lary mucinous neoplasm (IPMN) with an accuracy of 94% com-
pared to 40%–60% by conventional EUS and 56% by endoscopists'
diagnosis.[15] CNN/computer-aided diagnosis (CAD) algorithms have
enhanced the ability of endoscopic ultrasound–guided needle-based
confocal laser endomicroscopy (EUS-nCLE) to differentiate the
types of PCL and have been shown to diagnose advanced tumors
in IPMN more accurately.[16]

AI-based models have been used for intrapancreatic mucinous neo-
plasm, with few models reporting a sensitivity of nearly 100%.[14–17]

A systematic review looking at the role of EUS-AI for the diagnosis
of PC reported overall sensitivity and specificity in the range of
83%–100% and 50%–99%, respectively, with an overall accu-
racy of 80%–97.5%.[17] Classification and segmentation models
can also be used for intraprocedural guidance.

AI-assisted EUS-FNA and FNB

EUS allows rapid on-site evaluation (ROSE) by endoscopic
ultrasound-guided fine-needle aspiration (EUS-FNA) and ultrasound-
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guided fine-needle biopsy (EUS-FNB) to predict and characterize
pathology. The accuracy of obtaining samples using EUS-FNA de-
pends on the availability of ROSE as well as the diagnostic experi-
ence of the cytopathologists.[18] Using new-generation needles for
EUA FNB allows histological examination by preserving tissue
structure. AI has the potential to aid in endoscopic ultrasound–
guided fine-needle aspiration/biopsy (EUS-FNA/FNB) by offering
real-time feedback to endoscopists throughout the procedure. This
assistance involves selecting the suitable size as well as the type of
puncture needle, directing both the depth and location of the punc-
ture, and also helps in evaluating the sample's quality. Conse-
quently, AI holds promise in reducing the number of punctures
needed to acquire a sufficient sample, enhancing puncture precision,
and mitigating the risk of complications.[19,20] Thus, AI can poten-
tially be used to guide EUS-FNA/FNB through intraprocedure
real-time navigation feedback that can guide selecting the right size
and type of puncture needle, location as well as depth of puncture,
and quality of sample procured.

AI-assisted cytopathologic diagnosis from EUS-FNB
sample

An AI-based approach is being explored to assess specimens from
EUS-FNB, leveraging deep and contrastive learning techniques.
Ishikawa et al. utilized steromicroscopic images from EUS-FNB
specimens using deep learning methods. They reported macro-
scopic on-site evaluation (MOSE) to have an accuracy of 81.6%
when compared to AI-based methods, which achieved an accuracy
of 71.8. However, the application of contrastive learning to EUS-
FNB specimen after hematoxylin and eosin staining led to an en-
hanced performance with AI-based diagnostic methods yielding
90.3%, 53.5%, and 84.3% sensitivity, specificity, and accuracy, re-
spectively, compared to 88.9%, 53.5% and 83.4% by MOSE.[21]

Postprocedural applications

LLMs have the potential to generate procedural notes with hyperre-
alistic images that may save endoscopists time. As with preoperative
counseling, LLMs can be utilized for postprocedural instructions,
answering patients' questions, reminding them of the next appoint-
ment, and patient education. To improve the diagnostic efficiency in
pancreatic cancer using EUS-FNA biopsy, a segmentation deep
learning–based model called rapid on-site cytopathology evaluation
(ROSE) has developed. A DCNN system was created to segment
and identify cancer cell clusters from cytopathology slides. Testing
acrossmultiple hospitals validated its accuracy, showing an F1 score
of 0.929 and an area under the curve (AUC) above 0.900 for cancer
detection. The system's performance was comparable to that of
cytopathologists, demonstrating its potential clinical utility.[18]

Challenges and limitations with AI in EUS

AI-enhanced endoscopic ultrasound (EUS) offers diagnostic capa-
bilities and accuracy comparable to or surpassing those of
endoscopists. This is primarily due to AI's independence from fac-
tors like experience, knowledge reserves, training background, inat-
tention, fatigue, and subjectivity. AI-enhanced EUS-FNA/FNB holds
promise by enabling precise localization and reducing the required
punctures to obtain samples. Additionally, EUS-AI segmentation
and classification models facilitate real-time navigation and quality
control, helping to identify any missed pathology in blind spots.

However, while the field of AI inmedicine is evolving and exciting,
it is essential to acknowledge its limitations. The reproducibility of
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AImodels continues to remain uncertain at this stage. AI's applica-
tion in EUS is still in its early stages of development and needsmore
massive and high-quality data to develop high-accuracy machine
learning models.[22] Gathering such a high volume of data can be
not only difficult but also expensive. Another issue that is faced
with AI is overfitting, which develops from a low-volume dataset.
This impairs generalization and affects the overall results.[22] Bias
can also develop if the dataset is not representative of the intended
population. To mitigate these challenges, robust AI models and a
variety of datasets are required. Additionally, we need more pro-
spective studies and studies to further test real-world applications
prior to integration into clinical practice.[22] Additionally, there is
always a risk of misdiagnosis as we still do not fully understand
the reason behind the decisions made by AI.[23] This could be mit-
igated by conducting quality assessments prior to using these
models in clinical practice and avoiding being overly dependent
on AI.

Other factors that limit the development of AI includes using of
graphic processing unit for algorithm's operation, which has lim-
ited storage capacity andmakes it difficult for using all of the infor-
mation in images; and lack of standardization of input data, which
is used to train AI models.[23] Standardization of data includes the
uniformity in collecting, processing, storing, reproducing, and an-
alyzing the data. There is also limitation in AI trained in a specific
environment to produce similar results in different environments
or devices, which contributes to lack of standardization. Addi-
tional factors affecting the standardization include staining quality
interference due to difference in smear thickness, distribution, con-
centration, and observation based on cytotechnologists. This can
be improved by ensuring that the cells are fully coated with dye
and the stain is timely dried.[23]

Use of AI in guiding puncture sites during EUS/FNA has several
limitations and shortcomings, with most important being the chal-
lenge in dynamic image recognition as EUS images are influenced
by external elements like patient's heartbeat or breathing. There
needs to be an addition of real-time corrections to compensate
for these discrepancies.

Despite the apprehensions, AI appears to be a permanent fixture,
and the medical community must harness its potential to assist in
managing physicians' increasing workloads, ensuring that it re-
mains a helpful tool rather than becoming dominant.
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