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ABSTRACT: Surface-enhanced Raman spectroscopy (SERS) is a
precise and noninvasive analytical technique to identify vibrational
fingerprints of trace analytes with sensitivity down to the single-
molecule level. However, substrates can influence this capability,
and current SERS techniques lack uniform, reproducible, and
stable substrates to control plasma hot spots over a wide spectral
range. Herein, we demonstrate a flexible SERS substrate via
longitudinal stretching of a polydimethylsiloxane (PDMS) film.
This substrate, after stretching and shrinking, exhibits an irregular
wrinkled structure with abundant gaps and grooves that function as
hot spots, thereby improving the hydrophobic properties of the
material. To investigate the enhancement effect of Raman signals,
silver nanoparticles (AgNPs) were mixed with Rhodamine 6G
(R6G) solution, and the obtained blend was dropped onto the PDMS film to form a coffee ring pattern. According to the results, the
hydrophobicity of the substrate increases with the degree of PDMS stretching, achieving the optimal level at 150% stretching.
Moreover, the increase in hydrophobicity makes the measured molecules more aggregated, which enhances the Raman signal. The
stretching and shrinkage of the PDMS film lead to a much higher density of nanogaps among nanoparticles and nanogrooves, which
serve as multiple hot spots. Being highly localized regions of intense local fields, these hot spots make a significant contribution to
SERS performance, improving the sensitivity and reproducibility of the method. In particular, the relative standard deviation (RSD)
was found to be 2.5544%, and the detection limit was 1 × 10−7 M. Therefore, SERS using stretchable and flexible micro−nano
substrates is a promising way for detecting dyes in wastewater.

1. INTRODUCTION
Surface-enhanced Raman spectroscopy (SERS) is one of the
most powerful techniques in bioanalysis, which benefits from
the molecular “fingerprints” of conventional Raman spectros-
copy and the enormous enhancement of the signal by plasma
nanomaterials (down to the single-molecule level).1−5 The
intensity of the Raman scattering signal absorbed on a rough
metal surface is a million times stronger than that generated by
an unabsorbed analyte molecule.6−8 Compared with traditional
chromatographic and spectroscopic tools, SERS possesses high
sensitivity, nondestructivity, high molecular specificity, finger-
print recognition, and single molecule detection.9−17 These
advantages make SERS suitable for various applications,
including bioassays, biomolecular testing, and clinical diag-
nostics.18−22 Besides, SERS has good prospects in detecting
organic dyes.23−25

However, the use of SERS is often influenced by the unique
structure of the substrate. SERS substrates are commonly made
of metallic nanomaterials that form plasma hot spots to amplify
the excitation and emission radiation.26 Meanwhile, the
production of conventional rigid supporting SERS substrates
is laborious and time-consuming, often lacking biocompati-

bility and requiring high raw material and fabrication costs.26,27

These issues affect the flexibility and conformability of SERS
substrates for sensing applications toward complex surfaces in
practice.28 Therefore, flexible substrates have been gradually
explored as SERS platforms.29 SERS substrates composed of
flexible and stretchable materials, such as polyethylene
terephthalate (PET), polydimethylsiloxane (PDMS),30 and
sodium carboxymethyl cellulose (NaCMC),31 are advanta-
geous in terms of mechanical flexibility and stretchabil-
ity28,32−34 but also possess stability, flexibility, and cost-
effectiveness along with high optical transparency35 and easy
preparability.

The formation of wrinkle structures on flexible substrates is
an effective way to improve SERS performance. Traditionally,
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e-beam lithography36 and reactive ion etching37 have been
used to prepare SERS substrates with wrinkled structures, but
these methods are complex and expensive.38 In turn,
mechanical stretching/release has been considered a simple
and effective approach, which can transform the two-
dimensional flat films into three-dimensional ones along with
multiple nanostructures as effective plasmonic substrates.39

When plasmonic nanostructures are embedded in wrinkled
structures, a tightly packed nanostructure array can be
produced, resulting in the generation and enhancement of
strong electromagnetic fields upon light irradiation.28,39,40

Along with the formation of wrinkled structures, the material
surface induces the emergence of nanogaps and V-shaped
nanogrooves, which resemble nanocavities to converge the
incident photons and function as plenty of hot spots.41

In addition, the formation of wrinkle structures can also
change the hydrophobic properties of the material, which is
also one of the factors affecting the effectiveness of SERS. In
particular, materials with good hydrophilic properties easily
absorb the sample solution, which randomly spreads over a
large area of the surface and thus reduces the Raman signal.42

On the contrary, the hydrophobic compounds can effectively
accumulate the molecules to be detected within a unit area,
thereby enhancing the Raman signal and improving the
substrate’s detection sensitivity for low-concentration solu-
tions.43,44 In that regard, flexible materials with hydrophobic
properties are selected as the substrates and stretched to
increase their surface roughness. This enhances the degree of
hydrophobicity, making the substrate more effective in
aggregating the detectable substance molecules and further
amplifying the SERS effect.

In this study, silver nanoparticles (AgNPs) were synthesized
through the Lee−Meisel method using sodium citrate as the
reducing and stabilizing agent. The nanoparticles were mixed
with Rhodamine 6G (R6G) to achieve the coffee ring45 pattern
for investigating the enhanced Raman signal. The substrate
hydrophobicity was changed by the formation of a wrinkled
surface structure by stretching the PDMS film to explore the
effect of the substrate on the Raman signal. A simple and cost-
effective technique, consisting in stretching PDMS films to
accomplish the purpose of this study, is expected to open up
new prospects for reliable in situ SERS detection of trace
organic pollutants in the ecological environment.

2. RESULTS AND DISCUSSION
2.1. Characterization of AgNPs. The gray−green AgNPs

were prepared via the Lee−Meisel method using sodium
citrate as the reducing and stabilizing agent. Figure 1 displays
the UV−vis spectra of the prepared AgNPs, revealing the
surface ion absorption peak at 445 nm. The large width of this
peak indicated the presence of coarse AgNPs and their wide
distribution in the solution. To explore the stability of
nanoparticles, the AgNPs were stored in brown glass vials
and then in a cool place. After 15 days, they were re-exposed to
UV−vis spectroscopic analysis, revealing no significant changes
in the spectrogram, which indicated that the products had
good stability.

2.2. Transmission Electron Microscopy of AgNPs. To
confirm the synthesis of AgNPs and observe their shapes,
transmission electron microscopy (TEM) was conducted. The
results in Figure 2 depict that the AgNPs had various shapes,
spherical, triangular, rod-shaped, etc. The TEM image
indicated that the AgNPs synthesized by the Lee−Meisel

method were morphologically diverse, and their sizes varied in
a wide range (30−200 nm).

2.3. Characterization of Different Hydrophobic
PDMS. Stretching can change the surface roughness of
PDMS films, thereby altering their hydrophobicity. The
increase in surface roughness allows the surface of hydrophilic
substances to become more hydrophilic while that of
hydrophobic substances to be more hydrophobic.

According to Figure 3, the greater is the degree of PDMS
stretching, the higher is the surface contact angle, indicating
the increase in surface hydrophobicity. However, due to the
stretch limits of PDMS itself, the fracture will occur when the
stretching degree exceeds 150%. Therefore, in the subsequent
experimental process, the PDMS at 150% elongation was used.

The contact angle in Figure 4a shows that the stretched
shrunk PDMS surface exhibits better hydrophobicity. There-
fore, the molecules to be detected are more accumulated on
the stretched shrunk PDMS. As seen in Figure 4b,c, the
distribution of AgNPs on the stretched shrunk PDMS is not
uniform, and more AgNPs will be concentrated in the areas
where surface unevenness occurs due to stretching and
shrinking.

2.4. Coffee Ring Detection Area. In the next step, 12 μL
of 1 × 10−2 mol/L R6G solution mixed with 12 μL of AgNPs
solution were dropped on the PDMS surface and subjected to
natural drying. A pattern similar to coffee rings appeared on

Figure 1. UV−vis spectra of AgNPs. The inset shows a photograph of
the AgNP solution.

Figure 2. TEM image of AgNPs.
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the substrate after drying, as seen in the photograph in Figure
5a, which exhibited a well-defined morphology with obvious
ringlike edges. To investigate the relationship between the
coffee ring detection region and the Raman signal, four
different positions were selected for Raman spectroscopy
analysis. Figure 5b displays the SERS spectra acquired at
various points. It is evident that the maximum enhancement in
the SERS signal was achieved on the edge of the ring, and the

intensities of the five characteristic peaks of R6G gradually
decreased while moving toward the central region. Therefore,
position 1 was the most optimal for the SERS analysis, and the
subsequent experiments were performed at this part of the
substrate.

2.5. Repeatability of Raman Signals in the Detection
Region. To elucidate the detection effect of position 1 on the
coffee ring, 1 × 10−2 mol/L R6G solution was used as the

Figure 3. Contact angle images of PDMS at various stretching degrees: (a) 0%, (b) 40%, (c) 80%, (d) 100%, and (e) 150%.

Figure 4. (a) Contact angle image of the stretched shrunk PDMS. SEM images of AgNPs deposited on (b) unstretched PDMS and (c) stretched
shrunk PDMS.

Figure 5. (a) Coffee ring pattern of 1 × 10−2 mol/L R6G solution. Here, 1, 2, 3, and 4 are the SERS analysis regions. (b) Raman spectra of the
AgNPs@R6G mixture solution at different points of the coffee ring pattern.

Figure 6. (a) SERS spectra and (b) intensity distribution of the R6G characteristic peak at 1510 cm−1 at position 1.
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probe molecule. After a coffee ring pattern was formed by the
evaporation of the AgNPs@R6G mixed solution, the measure-
ments were repeated four times at position 1 (see Figure 6). In
all cases, the characteristic peaks of R6G were identified at
1510 cm−1, and the relative standard deviation (RSD) of the
peak intensities was 2.5544%. This result indicated the
reproducibility of the Raman signal at position 1.

2.6. Raman Detection of R6G on Different Substrates.
To evaluate the detection sensitivity of different substrates,
various concentrations of R6G solutions (10−2−10−7 M) were
mixed with AgNPs and added dropwise onto the surfaces of
the quartz glass sheet, unstretched PDMS surface, stretched
unshrunk PDMS surface, and stretched shrunk PDMS surface.
After waiting for the formation of coffee-ring patterns by
natural evaporation of solutions, the SERS analysis was
performed on each substrate. The experiments were done
within the wavenumber range of 1000−2000 cm−1 at the laser
transmitter power of 18 mW, the integration time of 5 s, and
the cumulative number of times of 1. The Raman characteristic
peaks detected at around 1185, 1311, 1360, 1510, and 1645
cm−1 were attributed to R6G solution (Table 1).

The spectra after smoothing are shown in Figure 7, in which
the characteristic peaks of 1 × 10−2, 1 × 10−3, 1 × 10−4, 1 ×
10−5, 1 × 10−6, and 1 × 10−7 M R6G solutions could be clearly
distinguished. It is noteworthy that the R6G concentration of 1
× 10−7 M corresponds to a relatively low peak intensity
compared to the concentration of 1 × 10−2 M. Moreover, the
characteristic peak at the R6G concentration of 1 × 10−7 M
was flattened when the spectra at various R6G concentrations

Table 1. Tentative Peak Assignments Representative of R6G
SERS Vibrational Modes

standard peak
position (cm−1) tentative peak assignment

measure the peak
position (cm−1)

1187 C−C stretch vibration 1185
1312 C−N stretch vibration on the

aromatic ring
1311

1367 C−C stretch vibration on the
aromatic ring

1360

1514 C�C stretch vibration on the
benzene ring

1510

1662 C�C stretch vibration on the
benzene ring

1645

Figure 7. Raman spectra at different AgNPs@R6G concentrations on (a) the quartz glass sheet surface, (b) unstretched PDMS surface, (c)
stretched unshrunk PDMS surface, and (d) stretched shrunk PDMS surface.
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were displayed as the Y-offset graphs, making the effect less
obvious.

Figure 8 depicts the Raman spectra of the AgNPs-free R6G.
A prominent feature at 1510 cm−1 was ascribed to the
characteristic C�C stretching vibration within the benzene
ring of R6G.46 Therefore, this peak was selected for the
calculation and comparison of the SERS enhancement factor.47

Comparing the Raman bands at 1510 cm−1 in Figures 7 and 8,
the enhancement factors from AgNPs on different substrates
were calculated according to eq 1 (see Subsection 4.4 of the
Experimental Section) and varied in the descending order as
follows: stretched unshrunk PDMS (7.06 × 102) < quartz glass
sheet (7.45 × 102) < unstretched PDMS (4.41 × 103) <
stretched shrunk PDMS (2.16 × 104).

3. CONCLUSIONS
A stretchable and flexible micro−nano PDMS substrate for
rapid detection and identification of organic dyes via SERS was
demonstrated. In particular, a wrinkled structure formed on the
surface of the PDMS film provided abundant hot spots and
pronounced surface hydrophobicity. To investigate the effects
of the substrate type and hydrophobicity degree on the Raman
signal, different concentrations of R6G were mixed with
AgNPs to form the AgNPs@R6G mixed solution, which was

then dropped onto various surfaces for SERS detection. The
experimental results showed that the best hydrophobicity and
Raman enhancement within the stretchable range of PDMS
were achieved at 150% elongation. It was also found that the
detection of R6G solution was the most accurate when using
PDMS after stretching and shrinkage as a substrate. All the
characteristic peaks were clearly resolved, indicating that the
stretched and shrunk PDMS ensured a significant SERS
enhancement. Therefore, this study opens up new prospects
for the development of highly efficient stretchable SERS
substrates based on flexible materials for detecting various
organic dyes in water.

4. EXPERIMENTAL SECTION
4.1. Materials and Instruments. The 785 nm laser and

light probe were purchased from Shanghai Ruhai Optoelec-
tronics Technology Co. The grating spectrometer was
provided by Beijing Jolyhanguang Instruments Co. A CCD
camera was purchased from Andorra Technologies Ltd. UK. A
benchtop high-speed centrifuge was produced by Hangzhou
Mingyuan Instruments Co. A collector-type thermostatic
heating magnetic stirrer was purchased from Gongyi Yuhua
Instruments Co. Ultrasonic cleaners were provided by
Shenzhen Jiejun Cleaning Equipment Co. A blast drying

Figure 8. Raman spectra at different concentrations of R6G solution on (a) the quartz glass sheet surface, (b) unstretched PDMS surface, (c)
stretched unshrunk PDMS surface, and (d) stretched shrunk PDMS surface.
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oven was manufactured by Shanghai Jinghong Experimental
Equipment Co. An ultraviolet−visible spectrophotometer
(UV−vis) was purchased from Shanghai Prism Technology
Co. A TEM instrument was purchased from USA Field
Electron and Ion Co., Ltd. The micro-regional Raman system
and PDMS tensioner were self-made.

4.2. Synthesis of AgNPs. AgNO3 (36 mg) and 200 mL of
deionized water were added to a 250 mL three-neck flask and
heated to 120 °C in an oil bath. At the same time, 1% sodium
citrate solution was prepared for subsequent ultrasonic shaking
and mixing, after which 4 mL of the mixed solution was poured
into the three-neck flask. The solution was then adjusted to
115 °C and stirred for 1.5 h. As soon as the reaction triggered
by heating and stirring stopped, the obtained product exhibited
a gray−green color after cooling to room temperature. The
product was centrifuged to remove the supernatant and to
obtain the highest possible concentration of AgNPs.

4.3. Raman Detection of Organic Dyes in PDMS with
Different Stretching Degrees. The PDMS film was
clamped onto the stretcher so that the stretching and shrinking
of the film were controlled by adjusting the distance between
the ends of the stretcher. Then, a drop of the prepared R6G
solution of different concentrations (10−2−10−7 M) was mixed
with AgNPs, and the final mixtures were added dropwise onto
the PDMS film under different stretching degrees (0, 40, 80,
100, and 150%). After that, the coffee rings formed by natural
evaporation on the substrate surface were subjected to Raman
spectroscopy analysis at a laser excitation wavelength of 785
nm. The flow chart of the Raman detection of specific organic
dyes on PDMS films with different stretching degrees is shown
in Figure 9.48

4.4. SERS Enhancement Factor Calculation. The SERS
enhancement factor enables one to evaluate the enhancement
effect of the SERS substrate according to the equation below:

=EF I C I C( / )/( / )SERS SERS NRS NRS (1)

Here, ISERS and INRS are the intensities of the enhanced and
unenhanced Raman peaks, respectively; CSERS and CNRS are the
concentrations of the probe molecule after enhancement and
without enhancement, respectively.
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