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Abstract

Genomic data are increasingly being used to understand infectious disease epidemiology. Isolates from a given outbreak
are sequenced, and the patterns of shared variation are used to infer which isolates within the outbreak are most closely
related to each other. Unfortunately, the phylogenetic trees typically used to represent this variation are not directly
informative about who infected whom—a phylogenetic tree is not a transmission tree. However, a transmission tree can
be inferred from a phylogeny while accounting for within-host genetic diversity by coloring the branches of a phylogeny
according to which host those branches were in. Here we extend this approach and show that it can be applied to
partially sampled and ongoing outbreaks. This requires computing the correct probability of an observed transmission
tree and we herein demonstrate how to do this for a large class of epidemiological models. We also demonstrate how the
branch coloring approach can incorporate a variable number of unique colors to represent unsampled intermediates in
transmission chains. The resulting algorithm is a reversible jump Monte–Carlo Markov Chain, which we apply to both
simulated data and real data from an outbreak of tuberculosis. By accounting for unsampled cases and an outbreak
which may not have reached its end, our method is uniquely suited to use in a public health environment during real-
time outbreak investigations. We implemented this transmission tree inference methodology in an R package called
TransPhylo, which is freely available from https://github.com/xavierdidelot/TransPhylo.
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Introduction

Infectious disease epidemiology is increasingly incorporating
genomic data into routine public health practice, using ge-
nome sequencing for diagnosis, resistance typing, surveillance,
and outbreak reconstruction. In the latter use case, we can
draw inferences about the order and direction of transmission
based on the presence of mutations common to multiple
pathogen isolates (Croucher and Didelot 2015; Gilchrist
et al. 2015). While early works in this area assumed that
pathogen genomes from a transmission pair should be iden-
tical or near-identical, a number of genomic outbreak inves-
tigations revealed the complicating factor of within-host
evolution (Ypma et al. 2013; Romero-Severson et al. 2014;
Worby et al. 2014).

Many important bacterial pathogens have periods of la-
tency, chronic infection, or prolonged asymptomatic carriage,
all of which contribute to the generation of within-host ge-
netic diversity (Didelot et al. 2016). Staphylococcus aureus is a
canonical example, in which single hosts can harbor multiple
distinct lineages of the pathogen, each of which may be

transmitted onwards (Young et al. 2012; Golubchik et al.
2013; Harris et al. 2013; Tong et al. 2015; Paterson et al.
2015; Azarian et al. 2016). In scenarios where a single host
harbors substantial diversity, it can be difficult to infer which
other hosts they infected—different lineages may have been
transmitted at different points during the donor’s infection
and the genome sequenced from the donor may only repre-
sent a single lineage captured at the time a diagnostic sample
was taken and not the complete set of lineages present within
that individual (Didelot et al. 2012, 2013). Indeed, simulation
studies have shown that if within-host diversity is ignored,
incorrect inferences can be drawn about the transmission
events that occurred within an outbreak (Romero-Severson
et al. 2014; Worby et al. 2014; Worby and Read 2015).

We have previously introduced a framework for inferring
person-to-person transmission events from genomic data
that consider within-host genetic diversity (Didelot et al.
2014). We use the genomic data to build a time-labeled phy-
logeny, which we divide into subtrees, each of which captures
the variety of lineages that were present within each host. In
other words, the phylogeny is colored with a unique color for
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each host, with each transmission event represented as a
change in color along a branch. We originally used a simple
susceptible-infected-recovered (SIR) model to evaluate the
probability of the transmission tree, and we recently showed
we can extend our approach to incorporate other types of
epidemiological models (Hatherell et al. 2016). A similar ap-
proach, developed independently (Hall et al. 2015), couples
phylogeny construction and transmission tree inference into
a single step.

The main limitation of these previous methods is that they
assume that all outbreak cases have been sampled and se-
quenced and that the outbreak has reached its end. These
assumptions greatly simplify transmission tree inference, but
do not reflect epidemiological reality. An outbreak is rarely
completely sampled—cases may not be reported to public
health or they may not have nucleic acid available for
sequencing—and genomic epidemiology investigations are
frequently unfolding in real-time, meaning an outbreak is
being analyzed before it is ended. The few methods that
can deal with unsampled cases do so at the cost of assuming
no within-host diversity (Jombart et al. 2014; Mollentze et al.
2014). Here, we introduce a new Bayesian method for infer-
ring transmission events from a timed phylogeny that can be
applied to outbreaks that are partially sampled, ongoing, or
both. We solve two problems that arise from these sampling
issues: The complexity of calculating the probability of an
observed transmission tree under these conditions, and the
difficulty in exploring the posterior distribution of possible
transmission trees given a phylogeny. Our method also per-
mits the inference of when these transmission events oc-
curred; when coupled with the person-to-person inference,
this results in a comprehensive and epidemiologically action-
able outbreak reconstruction. We apply our new approach to
both simulated datasets and a real-world dataset from the
genomic investigation of a tuberculosis outbreak in Hamburg,
Germany.

Methods

Overview of Inference Strategy
We use a two-stage approach, first constructing a timed phy-
logenetic tree P on the observed sequences and then over-
laying transmission events (Didelot et al. 2014). Let T be the
transmission tree, P be the timed phylogenetic tree, h be the
parameters of the transmission and sampling model, and Neg

the within-host effective population size.

Pðh;Neg; T jPÞ / PðPjNeg; T ÞPðT jhÞPðhÞPðNegÞ (1)

We compute PðPjNeg; T Þ by separating P into indepen-
dent parts, each of which evolves in a different individual host
(Didelot et al. 2014; Hall et al. 2015), see below. This separa-
bility relies on the assumption of a complete transmission
bottleneck, meaning that that within-host genetic diversity is
lost at transmission, as is commonly assumed in this context.
The first challenge here is therefore to compute PðT jhÞ for a
general model of transmission: One that allows for both
unsampled cases and varying levels of infectivity throughout
the course of infection, which is representative of the

biological reality for many pathogens. We first illustrate
how to do this in a scenario where the outbreak is over;
this is a convenient assumption mathematically and makes
the derivation simpler. We then proceed to the case where
data collection ends at a fixed time before the end of the
outbreak, as is the case when analyzing an ongoing outbreak.

Basic Epidemiological Model
The epidemiological process we consider is a stochastic
branching process in which each infected individual transmits
to secondary cases called offspring (Becker 1977; Farrington
et al. 2003). The number of offspring for any infected individ-
ual is drawn from the offspring distribution aðkÞ and we
follow previous studies (Lloyd-Smith et al. 2005; Grassly and
Fraser 2008) in assuming that it is a negative binomial distri-
bution with parameters (r, p). This choice allows individuals
to have different rates at which they are in contact with
others (Gamma-distributed) combined with a Poisson distri-
bution of secondary infections given their individual rate. The
mean of this distribution is called the reproduction number
(Anderson and May 1992), which is constant and equal to
R ¼ rp=ð1� pÞ, and the probability of having k offspring is

aðkÞ ¼
kþ r � 1

k

 !
pkð1� pÞr . The time span between

the primary and any secondary infection is drawn from the
generation time distribution cðsÞ, where s is the time since
infection of the primary case. The generation time distribu-
tion can take any form (Fine 2003) but a Gamma distribution
is often used (Wallinga and Lipsitch 2007).

Finished Outbreak Scenario
We first consider the situation where an outbreak follows the
model above until there are no more infected individuals; we
refer to this as a finished outbreak and we use the star subscript
(�) to denote the mathematical quantities associated with this
scenario. In this situation, all individuals are sampled with the
same probability p and the time span from infection until
sampling has distribution denoted rðsÞ,which can in principle
take any form, but for which we will use a Gamma distribution
in practice by analogy with the generation time distribution
cðsÞ. We want to calculate the probability of a transmission
tree p�ðT Þ. This requires some preliminary quantities.

We say that an infected individual is "included" if they are
part of the transmission tree by being either sampled or by
leading through transmission to at least one sampled
descendant. Otherwise, we say that an infected individual is
"excluded". Let x� be the probability of being excluded. This
means the individual and all of their descendants are
unsampled. Considering the number of offspring k, we have
that

x� ¼ ð1� pÞ
X1
k¼0

aðkÞxk
� ¼ ð1� pÞGðx�Þ (2)

where G(z) is the probability generating function of the off-
spring distribution. We model this as a negative binomial
distribution so that GðzÞ ¼ ð1� p=1� pzÞr , but our
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approach could use other distributions. The solution x� to
Equation 2 is calculated numerically (supplementary material
S1, Supplementary Material online).

The probability that an individual has d offspring who are
included in the transmission tree is

Pðd offspring included Þ ¼
X1
k¼d

k

d

 !
aðkÞxk�d

� ð1� x�Þd

(3)

In our final expression for PðT jhÞ, arrived at by induction,
each included case will have its own term. For notational
simplicity, we define the modified offspring function to collect
the other parts of this expression:

a�ðdÞ ¼
X1
k¼d

k

d

 !
aðkÞxk�d

� (4)

A good approximation is obtained by taking the sum up to
a large value. Note that if sampling is complete then p¼ 1 so
that x� ¼ 0 and a�ðdÞ ¼ aðdÞ.

We now consider a transmission tree T generated from
the model, which is made of n nodes corresponding to the
included infected individuals, some of whom are sampled and
others not. They are indexed by i ¼ 1; . . .; n. Let si¼ 0 if i is
unsampled and si¼ 1 if i is sampled, in which case its sam-
pling time is tsam

i . Let tinf
i denote the time when i became

infected and di denote its number of included offspring who
are indexed by j ¼ 1 � � � di. The probability of T given the
parameters h can be obtained by considering the root q of
the tree, which has dq offspring, and the subtrees fT jgj¼1::dq

corresponding to each offspring. A recursive form of the prob-
ability of the transmission tree can then be written as:

p�ðT jhÞ ¼ ð1� pÞ1�sqðprðtsam
q � tinf

q ÞÞ
sq

X1
k¼dq

� k

dq

�
aðkÞxk�dq

�
Ydq

j¼1

½p�ðT jjhÞcðtinf
j � tinf

q Þ�
 !

:

(5)

The parameters h appear in the offspring distribution a,
the generation time density c and the sampling time density
r. The terms in the square brackets do not depend on k, so
that we can rearrange the equation using the modified off-
spring function a� defined in Equation 4:

p�ðT jhÞ ¼ ð1� pÞ1�sqðprðtsam
q � tinf

q ÞÞ
sqa�ðdqÞYdq

j¼1

½p�ðT jjhÞcðtinf
j � tinf

q Þ�

(6)

Finally by induction we obtain the probability of T as a
product over all nodes of the transmission tree:

p�ðT jhÞ ¼
Yn

i¼1

�
ð1� pÞ1�siðprðtsam

i � tinf
i ÞÞ

sia�ðdiÞ

Ydi

j¼1

cðtinf
j � tinf

i Þ
�

(7)

Ongoing Outbreak Scenario
We now consider the situation where an outbreak follows the
same model as previously described, until some known time
T where observation stops. Whereas individuals were previ-
ously all sampled with the same probability p, it is now nec-
essary to account for the fact that individuals who became
infected just before T have a lower probability of being sam-
pled. More formally, the probability of sampling for an indi-
vidual infected at time t is equal to:

pt ¼ p
ðT�t

0

rðsÞds (8)

Stopping observation at time T also affects the probability
of being excluded, with all individuals infected at t � T being
excluded since neither they nor any of their descendants can
be sampled.

For an individual infected at time t, let xt be the proba-
bility of being excluded. Note that where t � T; xt ¼ 1.
Before that time, xt is not constant, but we know that as
t!�1, we should have xt ! x�. We have that:

xt ¼ ð1� ptÞ
X1
k¼0

aðkÞ½
ð1

0

cðsÞxtþsds�k (9)

Let �xt ¼
Ð1

0 cðsÞxtþsds. Using the generating function
G(z) of the negative binomial distribution of aðkÞ we have
xt ¼ ð1� ptÞGð�xtÞ. We approximate �xt using a numerical
integration (supplementary material S1, Supplementary
Material online). Good agreement is found with the expected
limit x�1 ¼ x� where x� is given in Equation 2.

As before, we use the modified offspring function to sim-
plify the notation:

atðdÞ ¼
X1
k¼d

k

d

 !
aðkÞ�xk�d

t (10)

and obtain a good approximation by taking the sum up to a
large value.

With the same recursive reasoning as in the finished out-
break scenario, we have

PðT jhÞ ¼
Yn

i¼1

½ð1� ptinf
i
Þ1�si

ðptinf
i
rtðtsam

i � tinf
i ÞÞ

siatinf
i
ðdiÞ

Ydi

j¼1

ctðtinf
j � tinf

i Þ�

(11)

where rtðsÞ and ctðsÞ are, respectively, equal to rðsÞ and c
ðsÞ truncated at time s ¼ T � t.

Inference of Transmission Tree Given a Phylogeny
The models described above generate transmission trees
where each node is an infected individual, each terminal
node is a sampled infected individual, and links between
nodes represent direct transmission events (fig. 1A). Let us
now consider that transmission involves the transfer of only a
single genomic variant of the pathogen from the donor to
recipient (i.e. a complete transmission bottleneck) and that
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sampling involves sequencing a single genome, randomly se-
lected from the within-host pathogen population. The ances-
try of the sequenced genomes can then be described as a
phylogeny which is made of several subtrees, each of which
corresponds to the evolution within one of the included hosts
and describes the ancestral relationship between the ge-
nomes transmitted and/or sampled from that host (fig. 1B).
The probability PðPjT ;NegÞ of a pathogen phylogeny P
given a transmission tree T and within-host effective popu-
lation size Neg is therefore equal to the product of the subtree
likelihoods for all included hosts (Didelot et al. 2014; Hall et al.
2015), which can be calculated for example under the coa-
lescent model with constant population size Neg (Kingman
1982; Drummond et al. 2002).

Having defined both PðT jhÞ and PðPjT ;NegÞ, we can
now perform Bayesian inference of the transmission tree T
given a timed phylogeny P using the decomposition in
Equation 1. Although a timed phylogeny is not directly avail-
able, there are powerful approaches readily available to recon-
struct it from genomic data (Drummond et al. 2012;
Bouckaert et al. 2014; Biek et al. 2015; To et al. 2016). As in
our earlier work (Didelot et al. 2014), we can approach this
problem by coloring the phylogeny with one color for each
host (fig. 1B); however, since we now consider that some hosts
may not have been sampled, the number of infected hosts
and therefore the number of colors is not known. In other
words, the parameter space is not of fixed dimensionality, and
exploring it with a Monte–Carlo Markov Chain (MCMC) re-
quires that we include reversible jumps that change the num-
ber of hosts in the transmission tree (Green 1995). Our
proposal for adding new transmission events is uniformly
distributed on the edges of the phylogeny P. Our proposal
for removing transmission events is uniformly distributed on
the set of transmission events that can be removed without
invalidating the transmission tree. In a transmission tree T
with n hosts and

Pn
i¼1 si sampled hosts, there are n�

Pn
i¼1

si such removable transmission events. The Metropolis–
Hastings–Green ratio for the MCMC move from T to T 0
by adding a transmission event is therefore equal to:

aT !T 0 ¼ min 1;
PðT 0jhÞ
PðT jhÞ

PðPjT 0;NegÞ
PðPjT ;NegÞ

jPj

nþ 1�
Pn
i¼1

si

0
BB@

1
CCA

(12)

where jPj denotes the sum of the branch lengths of the
phylogeny P. Conversely, the acceptance ratio of the
MCMC update from T to T 0 by removing a transmission
event is

aT !T 0 ¼ min 1;
PðT 0jhÞ
PðT jhÞ

PðPjT 0;NegÞ
PðPjT ;NegÞ

n�
Pn

i¼1 si

jPj

� �
:

(13)

Within each MCMC iteration, additional standard
Metropolis–Hastings moves are used to estimate the first
parameter r of the Negative binomial distribution for the

number of offspring [using an Exponential(1) prior], the sec-
ond parameter p of the Negative binomial distribution of the
number of offspring (using a Uniform([0,1]) prior), the
probability of sampling p (using a Uniform([0,1]) prior),
and the within-host effective population size Neg (using an
Exponential(1) prior). We implemented our transmission tree
inference technique in an R package called TransPhylo. All
data and methods used in the study are freely available from
https://github.com/xavierdidelot/TransPhylo.

Results

Example Application to a Simulated Dataset
We simulated an outbreak in which the generation time dis-
tribution had a Gamma distribution with a mean of 1 year,
and the offspring distribution was a negative binomial with
parameters ðr ¼ 2; p ¼ 0:5Þ, such that the reproduction
number was R¼ 2. We set the sampling density at p ¼ 0:5
with a sampling time distribution identical to the generation
time distribution. The simulation was stopped after n¼ 100
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FIG. 1. (A) An illustrative example of transmission tree, with each
horizontal line representing a case, and the darkness of each point
representing their changing infectivity over time. Vertical arrows rep-
resent transmission from case to case. The red circles indicate which
individuals were sampled (1, 2, 4, 5, and 6) and when. (B) An example
of colored phylogeny which corresponds to the transmission scenario
shown in part A. Evolution within each host is shown in a unique
color for each individual, as indicated by the labels and on the right-
hand side in (A). Red stars represent transmission events and corre-
spond to the arrows shown in (A). Tips of the phylogeny represent
sampled cases as shown by the red circles in (A).
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genomes had been sampled, which happened at time T. The
corresponding phylogeny (fig. 2A) was used as input of our
transmission tree inference algorithm TransPhylo with the
date T used as described in the ongoing outbreak scenario
in the Methods section. Performing 105 MCMC iterations
took less than an hour on a standard computer. The mean
posterior of the sampling proportion p was 0.48 with a 95%
credibility interval of [0.36, 0.59]. The mean posterior of the
reproduction number R was 2.168367 with a 95% credibility
interval of [1.75, 2.65]. The estimates of these two key param-
eters of our model are therefore in excellent agreement with
the true values used to perform the simulation.

Out of the n¼ 100 sampled individuals, only 53 were in-
fected by another sampled individual; for the majority of
these links, our algorithm inferred the existence of the link
with high posterior probability, with only nine pairs being
given a probability lower than 0.2 and 15 pairs being given
a probability lower than 0.5 (fig. 2B, red curve). Conversely, for
the 9,847 pairs of sampled individuals for which a link did not
exist in the simulated data, most were given a very small
probability of a link in the posterior distribution of

transmission trees, with only nine pairs being given a proba-
bility higher than 0.5 (fig. 2B, blue curve). If we consider 0.5 as
the probability threshold for when transmission was inferred,
our method had a specificity (true negative rate) of 99.9% and
a sensitivity (true positive rate) of 72%. The area under the
receiver-operating characteristic (ROC) curve was 98.97%.
These results demonstrate that in this specific example our
algorithm was able to infer the correct transmission links with
high accuracy, in spite of having information about only a
proportion p ¼ 0:5 of infected individuals. It should be noted
that this application represents a best case scenario, since the
phylogeny is known exactly, whereas for real epidemiological
investigations it would need to be inferred from sequences,
adding noise, and uncertainty.

To test the performance of our algorithm on a smaller
dataset, we repeated the same analysis of a simulated dataset
with only n¼ 40 sampled individuals. The mean posterior of
p was 0.53 with credibility interval [0.33, 0.73] and the mean
posterior of R was 1.95 with 95% credibility interval [1.36,
2.71]. The posterior distributions of these two parameters
were therefore centered on the correct values of p ¼ 0:5
and R¼ 2, but as expected had larger variance than in the
previous example where n¼ 100. Supplementary figure S1,
Supplementary Material online shows the posterior probabil-
ities attributed to correct and incorrect transmission links in
this simulated dataset.

Evaluation of Performance Using Multiple Simulated
Datasets
We repeated the simulation described above with n¼ 100
sampled individuals for values of the sampling density p vary-
ing from 0.1 to 1 by increments of 0.01, whereas leaving the
reproduction number constant at R¼ 2. For each of the 90
simulated datasets, we applied our algorithm to estimate the
values of both p and R (fig. 3). We found that the estimate of
R remained fairly constant as it should, whereas the estimate
of p increased as the correct value of p was increased. There
was no sign of a bias in the estimates up to p ¼ 0:6, but
higher values of p were consistently underestimated, with the
value of R being slightly overestimated in compensation. We
attribute this bias to the difficulty in assessing with certainty
whether all cases have been sampled in a transmission chain,
since there always remains a possibility that an unsampled
individual may have acted as intermediate. In other words,
the data are not very informative about p when p is high, so
that datasets simulated for example with p ¼ 0:9 and p ¼
0:8 look highly similar whereas datasets with p ¼ 0:1 and p
¼ 0:2 look different. This small bias also reflects our choice of
prior for p, which was uniform between 0 and 1, and the fact
that only 100 genomes were used in each simulation.

We also performed simulations in the converse situation
where the sampling density was kept constant at p ¼ 0:5 but
the reproduction number was increased from R¼ 1 to R¼ 11
by increments of 0.1. For each of the 100 simulated datasets,
our method was applied and the inferred values of p and R
were recorded (fig. 4). Although there was once again a slight
bias toward underestimating the sampling density p, its 95%
credibility intervals always covered the correct value of

2006 2008 2010 2012
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Posterior probability of a link

Linked (n=53)
Unlinked (n=9847)

FIG. 2. (A) Timed phylogeny showing the relationship between 100
genomes sampled with density p ¼ 0:5 in a simulated outbreak. (B)
Distribution of the posterior probability of direct transmission in-
ferred by our algorithm for pairs of individuals in which a link existed
in the simulation (red) and pairs of individuals that were not linked
(blue).
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p ¼ 0:5. The inferred values of R were accordingly overall
slightly upward biased, although they followed almost linearly
the correct values used for simulation. The 95% credibility
intervals for R almost always included the correct values. We
conclude from these results that our algorithm performs well
despite being tested in difficult situations, with only 100 sam-
pled genomes, unknown proportions of unsampled cases,
uninformative priors, and simulations using very large inter-
vals of values of the sampling density p and reproduction
number R. A small outbreak with high-sampling density and a
larger outbreak with lower sampling density can often look
similar, especially in the first stages of an ongoing outbreak,
but our algorithm is able to distinguish between these two
scenarios with good accuracy.

Application to a Mycobacterium tuberculosis
Outbreak Dataset
We applied the method to a previously reported tuberculosis
outbreak (Roetzer et al. 2013). We used BEAST (Drummond
et al. 2012) to infer a timed phylogeny from the published
data, using a coalescent model with constant population size
and a strict molecular clock model. BEAST was run for 107

iterations, with the parameter state recorded every 1,000 it-
erations and the first 10% discarded as burn-in. A maximum
clade credibility tree was built to summarize the posterior
sample of trees (supplementary fig. S2, Supplementary
Material online). This phylogenetic tree was then used as
input of our algorithm TransPhylo to investigate transmission
(cf. supplementary fig. S3, Supplementary Material online for
a comparison of results when using a sample of posterior
phylogenies). In determining the best priors for the densities

of the times between becoming infected and infecting others
(the generation time) and between becoming infected and
becoming known to the health care system (sampling time),
we considered both clinical aspects of tuberculosis disease
and aspects of the epidemiological investigation. The out-
break lasted 13 years, during which active case finding was
used to identify individuals with prior exposure to known
cases. An early report on this outbreak (Diel et al. 2004) noted
that many cases were identified for reasons not connected to
their tuberculosis infection, such as presenting to health care
with other symptoms, to obtain a health certificate, or to
enter a detox program. We therefore used a Gamma distri-
bution for the sampling time density, with a shape parameter
1.1 and rate 0.4. The generation time for tuberculosis should
reflect a chance of relatively rapid progression from infection
to active disease and hence to the opportunity to infect
others, but also a possibility of infection leading to a long
latent period before progression (Barry et al. 2009). We there-
fore used a Gamma distribution with shape parameter 1.3
and rate parameter 0.3 for the generation time density. We
ran four separate chains with 105 iterations each. We com-
puted both the Gelman–Rubin (GR) diagnostic and effective
sample size (ESS) for three parameters: The basic reproduc-
tion number R, the sampling probability p and the within-
host effective population size Neg. We found that GR was
always below 1.05 and ESS always above 100, indicative of
good convergence and mixing properties of the MCMC (Kass
et al. 1998). Only the first of the four separate MCMC runs
was used for further analysis; its MCMC traces are shown in
supplementary figure S4, Supplementary Material online and
the posterior predictive distribution of the number of
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observed cases is shown in supplementary figure S5,
Supplementary Material online.

Figure 5 shows the consensus transmission tree for this
real-world tuberculosis outbreak (Roetzer et al. 2013), and
figure 6A shows the inferred numbers of unsampled cases
along with the reported cases through time. The date of in-
fection of the index case was estimated to be in June 1986,
with 95% credibility interval from June 1983 to December
1987. Although most cases were sampled, reflecting a robust
public health investigation, we estimate that early in the out-
break, several unsampled individuals were contributing to
transmission (simulations varying R with fixed p suggest
that our method is not biased toward inference of more early
unsampled cases, though their numbers are variable, cf. sup
plementary fig. S6, Supplementary Material online). During
this period, the two major clades of the phylogeny diverged.
Figure 6A recapitulates the two major waves of the
outbreak—an early peak around 1998 and a second pulse
from 2005 onwards—each with a small portion of inferred
unsampled cases. Although the number of unsampled indi-
viduals was small, the method does allocate key transmission
events to unsampled cases, particularly early in the outbreak,
suggesting that screening and investigation earlier in the out-
break was not as comprehensive as it eventually became. This
is to be expected, as outbreak management efforts typically
intensify as the number of cases grows.

Figure 6B shows the posterior times between an individual
becoming infected and infecting others (the generation time)
and the posterior time intervals between infection and sam-
pling (the infectious period), with priors shown in grey. Our
observed generation times are variable, which reflects the
clinical history of tuberculosis—an infection that can progress
rapidly to active, infectious disease or that can have an
asymptomatic, noninfectious latent period of variable length.
We used a Gamma distribution as a prior, with mode strictly
greater than zero, but the posterior generation times have a
mode closer to zero, suggesting a relatively high portion of
those who go on to infect others have a rapid progression to
from infection to active disease. It is important to note that
the posterior generation times are only an indicator of the
inferred natural history of tuberculosis among those with ac-
tive disease who were sampled; individuals who were infected
but did not progress to active disease and those who never
presented to care and were not sampled do not appear in the
dataset, and those who did not infect others do not appear in
the cases behind the inferred generation times. The mean
posterior generation time was 1.0 years with a standard de-
viation of 1.36 years. The posterior times between becoming
infected and becoming known to health authorities also differ
from the prior assumption; they have a mean of 1.4 years and
standard deviation of 2 years. Sampling times are distinct
from the prior but are affected by a change in the prior
assumption.

Where inferred infectors are sampled cases with associated
clinical and/or epidemiological data, an advantage of our ap-
proach is that it allows comparison of the relative contribu-
tions of different groups of individuals to the burden of
transmission. Supplementary figure S7, Supplementary

Material online shows the inferred per-case transmission
stratified by several characteristics of the cases (Roetzer
et al. 2013): Individuals’ AFB smear status (a measure of
how many bacilli are found in their sputum, if any), HIV
status, abuse of alcohol or other drugs, and whether the in-
dividual had a permanent domestic residence. Our method
did not detect significant differences in secondary infections
arising from smear-positive and -negative cases, between sub-
stance users and nonsubstance users, and between stably or
transiently housed individuals. However, consistent with the
hypothesis that HIV-positive patients tend to be less infec-
tious with tuberculosis (Huang et al. 2014), we find that HIV-
positive individuals transmitted somewhat fewer cases on
average than HIV-negative individuals. Owing to the small
number of HIV-positive cases—only five individuals were
HIV-positive in this data—the estimates are much more var-
iable than the estimates for HIV-negative cases. Many more
clinical or demographic factors might impact transmissions,
such as the presence of cavitary disease and the reported
number of social contacts, but these data were unavailable
for the present analysis.

Results in supplementary figure S7, Supplementary
Material online do not reflect differences in transmission rates
given contact with others, because we do not know about
exposures that did not result in infection. We also do not
have information about behaviors that might modulate
transmission. For example, if smear-positive cases sought
and obtained treatment more rapidly than smear-negative
cases, or were more unwell and had more limited activities,
their transmission rate per contact could be higher than their
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FIG. 5. Consensus transmission tree for the tuberculosis outbreak. To
avoid confusion between this transmission tree and a phylogenetic
tree, the layout is different from the way phylogenetic trees are usually
represented. Dots represent individuals with on the x-axis the poste-
rior mean time of infection. The y-axis is arbitrary. Filled dots repre-
sent sampled individuals and unfilled dots represent unsampled
inferred individuals.
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smear-negative counterparts but they might still contribute
fewer onward transmissions. The posterior sampling density
is p ¼ 0:93 with a standard deviation of 0.05, consistent with
a very densely sampled outbreak in a high-resourced setting
with good case finding.

Discussion
We have described a new methodology for reconstructing
who infected whom based on genomic data from an infec-
tious disease outbreak. The novelty of this approach, which
extends our earlier work in the area, is that it now accounts
for both the possibility of some cases not having been sam-
pled and the possibility that more cases may occur in the
future. Addressing these issues overcomes key hurdles in us-
ing genomic data to reconstruct disease transmission events
during a real-time public health response. In these situations,

a case may not be sequenced due to a lack of clinical
specimen or otherwise sequenceable material, whereas cases
might go unsampled for various reasons, including subclinical,
or asymptomatic, infections for which an individual may not
seek care, or a diagnosis in another jurisdiction. Furthermore,
following early proof-of-concept retrospective studies, geno-
mic epidemiology is now being used to prospectively under-
stand outbreaks, as in the recent outbreak of Ebola (Gire et al.
2014). Allowing inference before the end of the outbreak
turns our method into a real-time, actionable approach.

Our methodology is based on an explicit transmission
model that makes a number of assumptions, some of which
could be relaxed if required by specific applications. A first
example is the fact that we consider a branching process with
reproduction number R remaining constant throughout the
outbreak. This contrasts with our previous work (Didelot et al.
2014) assuming an SIR model, in which R decreases over time
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FIG. 6. (A) Outbreak plot showing the numbers of sampled and unsampled cases through time in the posterior sample of transmission trees.
Although the posterior estimate of p is 0.93, predicting that cases would eventually be detected with high probability, in the time period just before
sampling ended, the inferred transmission trees contain a number of unsampled cases. The solid line represents the probability of sampling cases as
a function of their infection time, given that observation stops at T¼ 2011. (B) Posterior generation times and times between infection and
sampling. Bars show histograms of the posterior quantities and solid lines show the related prior densities.

Didelot et al. . doi:10.1093/molbev/msw275 MBE

1004

Deleted Text: -
Deleted Text: while 
Deleted Text: which 


due to depletion of susceptible hosts. The new branching
process has many advantages over the previous SIR model,
allowing more flexibility in the distributions of offspring num-
ber, sampling time and generation time, as well as having
useful mathematical properties which we used to derive
the probability of a transmission tree. However, there are
situations where the reproduction number varies over time
and quantifying these variations is of great epidemiological
importance (Cori et al. 2013). Application of our methodol-
ogy as in stands in such a situation could still be insightful as
temporal trends in the posterior distribution for the number
of offspring can be significant even if our prior model is con-
stant over time. Temporal variation could be explicitly incor-
porated in the prior model relatively easily, for instance by
assuming stepwise changes or some predetermined paramet-
ric function for R(t), the parameters of which could be jointly
estimated in our Bayesian framework. A second example con-
cerns the observation of cases, which we assumed to happen
with probability pðtÞ for an individual infected at time t, with
pðtÞ reflecting both the impossibility of observing cases hap-
pening after the time T when observation stops, and the
lower probability of observing cases soon before T
(Equation 8). It is often difficult in epidemiological studies
to know the real function pðtÞ, but in situations where, for
example, surveillance did not start before a certain date, the
function pðtÞ we used here could be updated to reflect this.
Other assumptions in our model would be more difficult to
relax, such as the complete transmission bottleneck which
considers that only a single pathogen variant is transmitted
from the donor to the recipient of each transmission event.

A key feature of our methodology is that it proceeds in two
steps—first, genomic data are used to reconstruct a phyloge-
netic tree, and second, likely transmission events given the
phylogeny are inferred. There are both advantages and dis-
advantages to this approach, compared with the more theo-
retically accurate joint inference of phylogenetic and
transmission trees (Hall et al. 2015; De Maio et al. 2016;
Klinkenberg et al. 2016). Our two-step approach makes it
difficult to pass the uncertainty in the phylogenetic recon-
struction on to the transmission analysis. This is especially
relevant if the time-labeled phylogeny is inferred not using a
point estimation procedure (Fourment and Holmes 2014; To
et al. 2016), but rather with a Bayesian sampling method
(Drummond et al. 2012; Bouckaert et al. 2014). In this case,
applying the transmission analysis separately to a sample of
trees from the phylogenetic posterior can help account for
uncertainty (Didelot et al. 2014). However, two problems re-
main: How to choose the tree prior in the phylogenetic re-
construction and how to combine the results from the
separate transmission analyses. A solution may be to consider
that the phylogenetic trees sampled in the first step are com-
ing from a biased distribution, which can be corrected for
using importance sampling in the second step, such that the
separate transmission analyses are correctly aggregated and
the prior used in the first step is nullified (Meligkotsidou and
Fearnhead 2007). It should also be noted that our two-step
approach has significant advantages both computationally
and conceptually. Computationally, we were able to analyze

outbreaks with hundreds of cases in a matter of hours.
Conceptually, working with a fixed phylogeny allows us to
explore much more complex models for transmission trees,
such as the partially sampled and ongoing scenarios. To date,
no other transmission inference approach can handle these
difficult scenarios. Another advantage of our two-step ap-
proach is that it allows relatively easy detection of separate
introductions of a pathogen in the population of interest
(Jombart et al. 2014; Worby et al. 2016). Under such a sce-
nario, there would be several clusters in the phylogenetic tree
each of which corresponds to a separate entry followed by
local transmission. The expected genetic distance between
separate introductions varies depending on the pathogen,
size of the population under study, and global epidemiolog-
ical properties, but clusters corresponding to clearly separate
introductions are usually easy to infer by simple observation
of the phylogenetic tree (Nelson et al. 2006; Didelot et al.
2012; Holt et al. 2012; He et al. 2013; Didelot et al. 2015).
These genetic clusters can then be analyzed independently
to reconstruct local transmission events.

We have previously applied earlier versions of our approach
to understanding a complex tuberculosis outbreak in a largely
homeless Canadian population (Didelot et al. 2014; Hatherell
et al. 2016), showing how it reveals key individuals contributing
to transmission and how its ability to time infection events can
be used to declare a waning tuberculosis outbreak truly over.
Here, we demonstrate our new methodology’s ability to iden-
tify unsampled cases. Finding such cases is critically important
for tuberculosis control—not only does it allow us to seek out
these individuals and connect them with treatment, but also it
allows us to extend our case-funding efforts to include a larger
proportion of potentially exposed individuals. In our present
analysis of the Hamburg dataset, we found that the generation
time was relatively rapid, with the majority of infected
individuals progressing to active disease and infecting others
doing so within 2 years, with many progressing to active disease
almost immediately. This is important data for outbreak
management—if borne out by further reconstructions, it sug-
gests a bound for the time over which an individual who has
been exposed to tuberculosis should be followed up.

Although the ability to more confidently infer both the
direction and the timing of a disease transmission event rep-
resents a powerful tool for understanding an outbreak’s dy-
namics, it raises critical ethical and legal issues. The HIV
community has struggled with the use of phylogenetics in
the criminal prosecution of HIV transmission for several
years—most hold that phylogenetics can exclude the possibil-
ity of transmission but not prove that transmission occurred
(Romero-Severson et al. 2016). The introduction of
approaches such as the one presented here complicate the
landscape by introducing the possibility of proof via high pos-
terior probabilities of individual transmission events. Were this
technique to be used in criminal prosecution, extensive
model-based and real-world validation would be required,
and a set of rigorous guidelines would have to be established,
including the appropriate use of controls and standards re-
lated to genome sequencing and informatic processing
(Budowle et al. 2014). We speculate that for rapidly evolving

Genomic Infectious Disease Epidemiology . doi:10.1093/molbev/msw275 MBE

1005

Deleted Text: is 
Deleted Text: to 
Deleted Text: l
Deleted Text: how 
Deleted Text: s
Deleted Text: s
Deleted Text: two 
Deleted Text: While 


pathogens such as the RNA viruses, inference methods that
report the direction of transmission may eventually appear on
the judicial stage. For more clonal bacterial pathogens such as
tuberculosis, validation is likely to reveal that the degree of
uncertainty is too high to definitively rule in transmission
events, and that the technique is best suited for excluding
the possibility of person-to-person transmission. Beyond the
judicial domain, one must also consider whether the academic
publication of transmission networks is being carried out in a
manner that protects patient privacy. In settings with a low
burden of a specific disease, the affiliations of the authors, the
name of the disease, and simple metadata such as sampling
time might be sufficient for knowledgeable individuals to iden-
tify cases within the network. Given the growing research into
transmission inference, guidance around appropriate meta-
data release and anonymization is clearly warranted.

In conclusion, we present a new method TransPhylo for
the automated inference of person-to-person disease trans-
mission events from pathogen genomic data, one which ac-
counts for the complex and variable nature of sampling cases
during an outbreak. When coupled to the routine genomic
surveillance of key pathogens now in place at many public
health agencies, such as Public Health England’s new genomic
approach to tuberculosis diagnosis and laboratory character-
ization (Pankhurst et al. 2016), our method has the potential
to rapidly suggest the contact network underlying an out-
break. Given the significant resources associated with a con-
tact investigation, any tool that can quickly assist in
prioritizing individuals for follow-up is an important contri-
bution to the public health domain.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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