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a b s t r a c t 

The PO 4 
3 − widespread in urban sewages promotes eutrophication of water sources, with harmful effects to 

natural life and endanger human health. The removal of PO 4 
3 − from urban sewage requires treatment at tertiary 

level, with high costs and low efficiency in most cases. Thus, a functionalization method for surface modification 

of kaolinite was proposed to improve the removal of PO 4 
3 − from urban sewage. The kaolinite commercial did not 

remove PO 4 
3- from aqueous solution. However, the functionalized kaolinite (FK) was efficient, with a maximum 

removal capacity of 8.4 ± 0.1 mg PO 4 
3 −/L, within less than 1 min of reaction. The removal of PO 4 

3- is associated 

with precipitation of pyromorphite, a mineral with low solubility ( K sp < 10 −79,6 ). Finally, real urban sewage 

samples (raw and treated) were also tested for removal of PO 4 
3- using FK, confirming its effectiveness. The central 

aspects of this development are: 

• Functionalized kaolinite (FK), with Pb(II), for removal of PO 4 
3 − from urban sewage was studied. 

• The FK was efficient for removal of up to 8.4 mg PO 4 
3 −/L from aqueous solution, within a short reaction time. 

• The precipitation of pyromorphite was the mechanism responsible for removal of PO 4 
3- and FK efficiency have 

been confirmed for real urban sewage samples. 
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Specifications table 

Subject Area: Environmental Science 

More specific subject area: Removal of phosphate from urban sewage 

Method name: Functionalization of kaolinite for removal of phosphate from urban sewage 

Name and reference or original 

method: 

S. Moharami & M. Jalali (2015). Use of modified clays for removal of 

phosphorous from aqueous solutions. Environ. Monit. Assess. 187:639. 

Resources availability: N/A 

Method details 

Background 

The PO 4 
3 − present in urban sewage promotes eutrophication in the water bodies [1] . This anion is

difficult to remove during the treatment of urban sewage, requiring treatment at the tertiary level [2] .

The most used method for the removal of PO 4 
3 − from urban sewage is the chemical precipitation,

involving the addition of bivalent or trivalent metal salts [3–5] . Recently, studies have shown the

precipitation of pyromorphite (5Pb 2 + + 3PO 4 
3 − + H 2 O → Pb 5 (PO 4 ) 3 (OH) (pyromorphite) + H 

+ ) in natural

surface waters due to presence of PO 4 
3 − and Pb(II), reducing the concentration of dissolved Pb(II)

[ 6 , 7 ]. The pyromorphite has a low solubility constant ( K sp < 10 −79,6 ), preventing that the Pb(II) returns

to the environment as a dissolved cation [8–10] . 

Kaolinite [Al 2 Si 2 O 5 (OH) 4 ] has its negatively-charged surface, becoming this mineral an important

adsorbent for cationic ions [11] . The functionalization of kaolinite with acid treatment [12] and

bivalent trace elements can promote the removal of anionic molecules, such as PO 4 
3 −, present in the

urban sewage [13–15] . Based on the functionalization of commercial kaolinite (CK) with bivalent trace

elements, the functionalized kaolinite (FK) with Pb(II) was produced. The efficiency for removal of 

PO 4 
3- from aqueous solution using FK was studied and compared with CK. Furthermore, the reaction

time and maximum removal capacity of PO 4 
3- was determined using FK. Finally, the FK was applied

in real urban sewage samples, attesting its effectiveness. 

Functionalization of commercial kaolinite 

The CK (Sigma-Aldrich®, CAS Number 1318-74-7) was used in this study. The following procedures 

have been applied for the functionalization: 

1 – About 1.0 g of CK was placed in a beaker; 

2 – 10 mL of aqueous solution with Pb(II) initial concentration of 40 mg/L was added; 

3 – The beaker was agitated (digital shaker Biothec – model BT 645) for 24 h at 145 rpm; 

4 – The solution was centrifuged (centrifuge Excelsa II® – model 206-BL) for 25 min at 30 0 0 rpm;

5 – The FK was separated and washed three times, using ultrapure water (Milli-Q® system - model

IQ 70 0 0) with electrical conductivity lower than 0.02 μS/cm; 

6 – Finally, the FK was dried for 12 h at 40 °C. 

Method validation 

For validation purposes, 1.0 g of each sample (CK and FK) was mixed with 10 mL of aqueous

solution containing PO 4 
3 − in the initial concentration ( C 0 ) of 1 mg/L at pH 6 [9] . The suspension was

shaken for 24 h at 145 rpm, and then centrifuged at 30 0 0 rpm for 25 min. The supernatant was

separated and the PO 4 
3- concentration remaining in solution ( C e ) was measured using a Hach DR-

2800 spectrophotometer, with a detection limit of 0.1 mg/L. The removal efficiency of PO 4 
3- ( %A – in

percentage) was determined according to the Eq. 1 . The experimental procedures were carried out in

triplicate. 

% A = [ ( C 0 − −C e ) / C e ] . 100 (1) 
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Table 1 

Removal efficiency ( %A ) of PO 4 
3 − (mg/L) using FK and CK in aqueous solution. 

CK FK 

C 0 C e %A C 0 C e %A 

1.0 1.0 ± 0.1 0 1.0 < 0.1 100 

Table 2 

Reaction time (min) and removal efficiency ( %A ) of PO 4 
3 − (mg/L) using FK in aqueous solution. 

Time C 0 C e %A 

0 1.0 1.0 ± 0.1 0 

1 1.0 < 0.1 100 

5 1.0 < 0.1 100 

15 1.0 < 0.1 100 

30 1.0 < 0.1 100 

60 1.0 < 0.1 100 

Table 3 

Maximum removal capacity of PO 4 
3 − using FK and concentration of residual Pb(II) in aqueous solution. 

PO 4 
3- (mg/L) Pb(II) (mg/L) 

C o C e %A 

1 < 0.1 100 692 ± 20 

2 < 0.1 100 91 ± 4 

3 < 0.1 100 63 ± 3 

4 < 0.1 100 < 0.006 

7 < 0.1 100 < 0.006 

9 0.6 ± 0.1 93.3 < 0.006 
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The results are presented in Table 1 . The removal efficiencies of PO 4 
3 − were 0 and 100% using CK

nd FK, respectively. These results evidenced the functionalization plays a crucial role on the removal

f PO 4 
3 −. The precipitation of pyromorphite was the main mechanism associated with PO 4 

3- removal

sing FK with Pb(II), as shown in Fig. 1 . 

eaction time and maximum removal capacity of PO 4 
3- using functionalized kaolinite 

The reaction time for removal of PO 4 
3- using KF has been investigated, according the following

rocedures carried out in triplicate. The FK (1.0 g) was mixed in 10 mL of an aqueous solution with

 0 of 1 mg PO 4 
3 −/L at pH 6 [9] . The suspension was shaken at 145 rpm, with samples taken after

, 5, 15, 30 and 60 min. The solution was centrifuged at 30 0 0 rpm for 25 min, with the supernatant

eparated and the C e determined. The experiments have shown no residuals of PO 4 
3- after 1 min of

eaction time ( Table 2 ), showing a fast reaction time for removal of PO 4 
3 − associated to the mineral

yromorphite precipitation. 

The maximum removal capacity of PO 4 
3 − using FK was also determined (in triplicate). The samples

ith 1.0 g: 10 mL of an aqueous solution with C 0 of 1 mg/L were stirred at 145 rpm for 5 min at pH

 [9] , with C 0 of 1, 2, 3, 4, 7 and 9 mg/L. The solutions were centrifuged for 25 min at 30 0 0 rpm

nd the C e determined in the supernatants. The maximum removal capacity of PO 4 
3 − using FK was

.4 ± 0.1 mg/L ( Table 3 ) or 8.4 mg/g, indicating an efficiency of 93.3% for removal of PO 4 
3- from

queous solutions with C 0 of 9 mg/L. The value of 8.4 mg/g is higher than the removal capacities

btained for natural or functionalized kaolinite, i.e., CK used in this study ( < 0.1 mg/g), kaolinite from

inthipe (ca. 0.15 mg/g) [12] , modified kaolinite with FeCl 3 (1.31 mg/g) [13] and modified kaolinite

ith seawater in different temperatures (4.07 mg/g at 600 °C) [15] . 

Trace levels of residual Pb(II) in the treated effluent can pose a serious environmental risk for

quatic systems due to its toxicity. Thus, the concentration of Pb(II) were also determined in the
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Fig. 1. SEM-EDS images of functionalized kaolinite after the removal of PO 4 
3 − , showing the precipitation of small grains (lower than 5 μm) of pyromorphite (spots 1, 2 and 3). 
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Table 4 

C 0 and C e averages of PO 4 
3- and Pb(II) (in mg/L) measured in the urban sewage collected in a WWTP located in Rio Claro. 

Sample C 0 of PO 4 
3 − C e of PO 4 

3 − C 0 of Pb(II) C e of Pb(II) 

Raw 6.1 ± 0.1 < 0.1 < 0.006 < 0.006 

Treated 3.8 ± 0.1 < 0.1 < 0.006 < 0.006 
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upernatants by inductively coupled plasma optical emission spectrometry (ICP OES), iCAP 60 0 0

ERIES machine Thermo Scientific, with detection limit of 0.006 mg/L. The presence of residual Pb(II)

n aqueous solutions was measured in aqueous solutions with C 0 of 1, 2 e 3 mg/L of PO 4 
3 −. Residual

b(II) was not detected for C 0 of PO 4 
3 − � 4 mg/L, indicating the use of FK for removal of PO 4 

3 − only

n urban sewage with C 0 � 4 mg/L. Further studies for lower C 0 concentrations in urban sewage are

ncouraged before application. 

emoval of PO 4 
3- using functionalized kaolinite in real urban sewage samples 

Three samples of raw and treated urban sewage were collected in a wastewater treatment plant

WWTP) located in Rio Claro, São Paulo State, Brazil. These samples were stored in labeled amber

ontainer at 4 °C and transported immediately to the laboratory, where they were filtered, using 0.45

m MF-Millipore® membrane filter, and the C 0 of PO 4 
3 − and Pb(II) measured ( Table 4 ). In order

o verify the real removal efficiency of PO 4 
3 − from urban sewage (raw and treated), 10 mL of each

ltered sample were mixed with 1.0 g of FK. The solutions were shaken at 145 rpm for 5 min at pH

 [9] , centrifuged at 30 0 0 rpm for 25 min, and then the C e of PO 4 
3 − and Pb(II) were determined in

he supernatants ( Table 4 ). 

The C 0 averages of PO 4 
3- were 6.1 ± 0.1 e 3.8 ± 0.1 mg/L, respectively, for raw and treated urban

ewage. After the use of FK, C e averages of PO 4 
3- were lower than 0.1 mg/L. In addition, the C 0 and C e

verages of Pb(II) were always lower than the detection limit of 0.006 mg/L. These results show the

fficiency during the use of FK for removal of PO 4 
3 − from urban sewage in real samples collected in

 WWTP. 

onclusions 

A method for functionalization of kaolinite for removal of PO 4 
3 − from urban sewage was studied.

he functionalized kaolinite (FK) with Pb(II) have shown a promising alternative for removal of PO 4 
3 −

n aqueous solution, with maximum removal capacity of 8.4 mg/L, within a reaction time lower than

 min. The precipitation of PO 4 
3- is associated with pyromorphite, a mineral with low solubility ( K sp

 10 −79,6 ). Finally, real urban sewage samples (raw and treated) were also tested for removal of PO 4 
3-

sing KF, confirming its effectiveness for removal of PO 4 
3 − from urban sewage with C 0 � 4 mg/L. 
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