
Shih-Kai Chu is a postdoctoral researcher in the Department of Biostatistics at Vanderbilt University Medical Center. His research focuses on single cell
transcriptomics analysis.
Shilin Zhao is an assistant professor in the Department of Biostatistics at Vanderbilt University Medical Center. His research focuses on statistical methods in
high dimensional data.
Yu Shyr is a professor and director in the Department of Biostatistics at Vanderbilt University Medical Center. His research interests include statistical and
bioinformatics methodology and adaptive clinical trials.
Qi Liu is an associate professor in the Department of Biostatistics at Vanderbilt University Medical Center. Her research interests include single cell omics
integration, and bioinformatics approaches to study complex disease.
Received: August 16, 2021. Revised: November 24, 2021. Accepted: December 11, 2021
© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/
by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial
re-use, please contact journals.permissions@oup.com

Briefings in Bioinformatics, 2022, 23(2), 1–17

https://doi.org/10.1093/bib/bbab565

Review

Comprehensive evaluation of noise reduction
methods for single-cell RNA sequencing data
Shih-Kai Chu, Shilin Zhao, Yu Shyr and Qi Liu

Corresponding authors: Qi Liu, 2220 Pierce Avenue, 497A PRB, Nashville, TN 37232, USA. Tel.: +1-615-322-6618; Fax: +1-615-936-2602. E-mail: qi.liu@vumc.org;
Yu Shyr, 2525 West End Avenue, Suite 1100, Rm 11132, Nashville, TN 37203, USA. Tel.: +1-615-936-6760; Fax: +1-615-936-2602. E-mail: yu.shyr@vumc.org

Abstract

Normalization and batch correction are critical steps in processing single-cell RNA sequencing (scRNA-seq) data, which remove
technical effects and systematic biases to unmask biological signals of interest. Although a number of computational methods
have been developed, there is no guidance for choosing appropriate procedures in different scenarios. In this study, we assessed
the performance of 28 scRNA-seq noise reduction procedures in 55 scenarios using simulated and real datasets. The scenarios
accounted for multiple biological and technical factors that greatly affect the denoising performance, including relative magnitude
of batch effects, the extent of cell population imbalance, the complexity of cell group structures, the proportion and the similarity of
nonoverlapping cell populations, dropout rates and variable library sizes. We used multiple quantitative metrics and visualization
of low-dimensional cell embeddings to evaluate the performance on batch mixing while preserving the original cell group and
gene structures. Based on our results, we specified technical or biological factors affecting the performance of each method and
recommended proper methods in different scenarios. In addition, we highlighted one challenging scenario where most methods
failed and resulted in overcorrection. Our studies not only provided a comprehensive guideline for selecting suitable noise reduction
procedures but also pointed out unsolved issues in the field, especially the urgent need of developing metrics for assessing batch
correction on imperceptible cell-type mixing.

Keywords: bioinformatics, single-cell RNA sequencing, normalization, batch effect adjustment

Introduction
As a powerful technique to profile gene expressions of
thousands to millions of cells simultaneously at a cel-
lular resolution, single-cell RNA sequencing (scRNA-seq)
has been widely used to characterize cellular hetero-
geneity [1–3], reconstruct developmental trajectory [4–6]
and improve our understanding of human disease [7–9].
Despite recent advances in technologies, scRNA-seq data
show high technical variability resulting from sequenc-
ing depth, amplification bias, RNA capture efficiency and
dropout events. These technical factors introduce sub-
stantial noise, making gene-level or cell-level expression
incomparable even within one individual dataset. Addi-
tionally, scRNA-seq generated in different laboratories, at
different times, by different platforms have large techni-
cal variations, making datasets incomparable and diffi-
cult for integration. Those unwanted variabilities intro-
duced by technical factors confound biological signals of
interest, which complicate the downstream analysis and
result in false interpretations.

Normalization and batch correction are two important
procedures to remove technical noises while preserving
true biological variations. Normalization methods aim to
adjust the influence of technical factors on gene counts
within an individual dataset. They fall into two groups.
One group is to infer cell-specific normalization factors,
assuming all genes in one cell are subject to the same
technical biases. The simplest approach is to scale the
counts by sequencing depths, i.e. library size normaliza-
tion (ls). BASiCS uses spike in to infer cell-specific nor-
malization factors [10]. Scran groups cells by their library
sizes to form cell pools, estimates the pool-specific scal-
ing factors and then obtains cell-specific scaling factors
by solving a linear equation system [11]. Scran reduces
the effect of dropout events by pooling cells, increases
the robustness of normalization and weakens the non-
DE assumption. The other group of methods suggests
that genes in one cell are affected unequally by technical
factors, meaning that cell-specific factor is insufficient.
They model the relationship between molecular counts
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and sequencing depth for every gene and infer normal-
ization factors to adjust for the count–depth relationship.
For example, SCnorm uses quantile regression to esti-
mate the count–depth relationship for every gene, groups
genes with similar dependence and then estimates nor-
malization factors within each group [12]. Sctransform,
as another example, models count–depth relationship for
every gene by negative binomial regression, regularizes
model parameters by a kernel smoother and directly pre-
dicts normalized count from the residuals of the model
[13].

Batch correction methods seek to eliminate system-
atic differences across scRNA-seq datasets from mul-
tiple experiments, laboratories and platforms, enabling
efficient integration of heterogeneous single-cell tran-
scriptomics. Some methods are borrowed from bulk RNA-
seq analysis, such as limma [14] and ComBat [15]. They
model the linear relationship between batch and gene
expression based on the Gaussian-distribution assump-
tion. To handle highly sparse and over-dispersed scRNA-
seq data, ZINB-WaVE extends the linear model based on
a zero-inflated negative binomial distribution [16]. These
linear-based methods assume that transcriptomics dif-
ferences between batches all attribute to technical fac-
tors that could be modeled and regressed out. In real
practices, however, cell populational compositions con-
tribute to transcriptomics shift as well, which are usually
unknown and not identical across batches. Without mod-
eling populational compositions as covariates, the esti-
mated coefficient for the batch factor contains biological
components, resulting in overcorrection. To account for
populational composition difference across scRNA-seq
studies, methods have been developed to define shared
cell types across batches by nearest neighbor (NN) or
mutual nearest neighbors (MNN), such as fastMNN [17],
Seurat [18], scMerge [19], Scanorama [20] and BBKNN
[21]. The expression differences between cells from the
same cell type but different batches are then used to
estimate the batch effect. To enable shared cell popula-
tion identification, NN-based methods project cells into
a common reduced dimensional embedding by principal
component analysis (PCA), non-negative matrix factor-
ization (NMF) or canonical correlation analysis (CCA).
For example, fastMNN finds mutual nearest pairs in the
low-dimensional space calculated from PCA [17]. Seurat
MultiCCA employs CCA to find a common embedding,
which is further used to identify MNNs as anchor points
[18]. scMerge combines linear modeling and MNN search
to remove unwanted variations across batches while
preserving the biological signal [19]. In addition to NN-
based methods, Harmony formulates an objective func-
tion to balance cell-type clustering and degree of dataset
mixing in the PCA space [22], which is fast for large-scale
datasets [23]. LIGER uses integrative NMF to jointly define
cell types from multiple single-cell datasets by calculat-
ing shared and dataset-specific metagenes [24]. Recently,
deep neural networks were applied to model library sizes
and batch effect biases for single-cell RNA-seq denoising

[25–27]. For example, scVI uses autoencoder to reduce
the high-dimensional gene-expression matrix to a lower-
dimensional representation, which can be interpreted
for relevant biology and can be used for clustering and
visualization [25].

Most methods target either normalization or batch
correction, which need to be combined with others for
a complete denoising procedure. Several methods, in
contrast, handle normalization and batch correction
together, such as ZINB-WaVE [16], scMerge [19] and scVI
[25], returning normalized and batch-corrected data.
Since each method comes with its own strengths and
weaknesses and works well under certain scenarios,
it is very difficult to choose appropriate denoising
procedures. In this study, we performed a comprehensive
evaluation of 28 denoising procedures on 55 scenarios
using both simulated and real datasets. These scenarios
account for a variety of technical and biological factors,
including relative magnitude of batch effect, the extent
of cell population imbalance, the complexity of cell
group structures, the proportion and the similarity of
nonoverlapping cell populations, dropout rates and
variable library sizes. We evaluated the performance of
methods in different scenarios by batch mixing along
with cell and gene structure preserving. This study not
only provides a guidance to choose appropriate methods
in different scenarios but also points out the challenge
scenario where most methods failed. Additionally, the
result suggested that novel metrics on correct batch
mixing is needed for assessing batch correction.

Results
Evaluation on 28 denoising procedures in 55
scenarios
We evaluated the performance of 28 denoising pro-
cedures in terms of their ability to remove unwanted
technical variations while preserving biological signals
of interest. The 28 denoising procedures consisted of 24
combinative steps of 4 normalization (ls, Scran, SCnorm
and sctransform) and 6 batch correction methods
(limma, ComBat, fastMNN, Scanorama, Seurat MultiCCA
V3 and Harmony), 3 approaches that address both
normalization and batch correction simultaneously
(ZINB-WaVE, scMerge and scVI), and LIGER with its
custom preprocessing (Figure 1). We created 55 scenarios
involving multiple technical and biological factors,
including relative magnitude of batch effects, the extent
of cell population imbalance, simple or complicated
cell group structures, the proportion and the similarity
of nonoverlapping cell populations, dropout rates and
variable library sizes. The magnitude of batch effects
varied from none, mild to strong biases. The cell
populational composition ranged from balance, mild
to severe imbalance. In imbalanced settings, we not
only designed scenarios with identical cell types, but
different proportions across batches, but also those
with nonoverlapping cell types. The nonoverlapping was
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Figure 1. The evaluation workflow. (A) Studied scenarios and datasets. (B) Normalization and batch correction methods included in this study. (C)
Adjustment performances assessed by both visualization and quantitative metrics. Quantitative metrics were summarized by a circle plot. Each circle
in the plot represented the evaluation result of a procedure (row) measured by a certain metric (column). The size of the circle was determined by
the metric score. The color of the circle was determined by the relative change of the score compared with the baseline (unadjusted). Red suggests an
increase, while blue indicates a decrease and gray means unchanged in scores. The darker the circle, the more improved or worsened are the scores.

either one rare/dominant cell type just in one batch, or
two similar/distinct cell types from two batches. Simple
cell group structures comprised only two distinct cell
groups, while complicated ones had multiple distinct cell
groups and similar subgroups. We evaluated the perfor-
mance by six quantitative metrics on batch mixing, cell
and gene structure preservation in conjunction with PCA
and tSNE visualizations. Average silhouette width_batch
(ASW_batch) and scUnifrac_batch measure the degree
of batch mixing. ASW_group and scUnifrac_group assess
the cell structure preservation. True positive rate (TPR)
and true negative rate (TNR) indicate the gene structure
preservation by calculating the percentage of true
marker (TP) and non-marker (TN) genes between cell
types (details in Materials and Methods) (Figure 1).

Evaluations on 23 scenarios with overlapping cell
types but different cell proportions and
magnitude of batch effects between two batches
To evaluate the influence of batch effects and cell popu-
lational compositions on the denoising performance, we
designed 15 scenarios with simple cell group structures
(only two cell types) and 8 scenarios with complicated
cell group structures (multiple cell types and subtypes) in
2 batches using both simulated and real datasets. The 15
scenarios comprised 9 simulated and 6 real studies from
pancreas scRNA-seq data [28–30], including 3 levels of
cell composition imbalance (balanced, mild imbalanced
or severe imbalanced) and 2 or 3 levels of magnitude
of batch effects, respectively (details in Materials and
Methods). The eight scenarios with multiple cell types,
generated from PBMC datasets [31], included two lev-
els of batch effects (mild and strong) and four levels

of cell compositions imbalance (balanced, mild, mod-
erate and severe imbalanced) (details in Materials and
Methods).

Harmony and LIGER output low-dimensional cell
embeddings without a corrected-gene-expression matrix.
Therefore, TPR or TNR scores were not reported for
Harmony and LIGER. Although scVI and fastMNN
return batch-corrected values after integration, they had
poor TPR score, suggesting disrupted gene structures
(Supplementary Figure S1 available online at http://
bib.oxfordjournals.org/). As mentioned in their studies,
the batch-corrected values from scVI and fastMNN no
longer correspond to gene-expression values and they
cannot be directly used in gene-based analysis [17,
25]. Although Scanorama obtained high TPR and TNR
scores, the corrected expression had different ranges
from the original data, resulting in low fold changes
in differential analysis (Supplementary Figure S2 avail-
able online at http://bib.oxfordjournals.org/). Different
ranges between corrected and original gene expres-
sion in Scanorama was also reported in a recent
benchmark study [23]. In summary, Seurat, scMerge,
ZINB-WaVE, limma and ComBat are recommended for
gene-based downstream analysis (Table 1, gene-based
analysis).

In a simple structure with only two cell types
in each batch (scenarios 1–15), similar results were
obtained in simulation and real datasets (Figure 2 and
Supplementary Figures S1 and S3 available online
at http://bib.oxfordjournals.org/). The performance of
linear-based methods (limma, ComBat and ZINB-WaVE)
was sensitive to cell composition imbalance. They
worked well when cell compositions were balanced
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but resulted in data distortion in imbalanced scenar-
ios. Compared to the original data (unadjusted), the
corrected data produced by these methods in mild or
severe imbalanced scenarios had lower ASW_batch and
scUnifrac_batch scores, suggesting poorer batch mixing
(Figure 2B and C and Supplementary Figure S1 available
online at http://bib.oxfordjournals.org/). The reason was
that they misrecognized the transcriptomic differences
caused by population compositions as batch effects and
overcorrected the data even when no technical biases
existed (Supplementary Figure S3 available online at
http://bib.oxfordjournals.org/). As expected, NN-based
methods, fastMNN, Scanorama and scMerge, were robust
to magnitude of batch effects and cell composition
imbalance. They obtained better batch mixing (higher
ASW_batch and scUnifrac_batch scores) than linear-
based methods especially when cell compositions were
imbalanced (Figure 2 and Supplementary Figures S1
and S3 available online at http://bib.oxfordjournals.
org/). Seurat, one of NN-based methods, achieved
good performance when there was only mild cell
composition imbalance (Figure 2B and E). However, it
totally changed the transcriptomic profiles when the
populational imbalance was severe. Seurat mixed the
two main populations from each batch even though
they belonged to different cell types and no batch effect
existed (low scUnifrac_group scores) (Figure 2C and F
and Supplementary Figures S1 and S3 available online
at http://bib.oxfordjournals.org/). The performance of
scVI and Harmony was affected by the magnitude of
batch effects, which had low ASW_batch and scU-
nifrac_batch scores when there were strong batch
effects, suggesting poor batch mixing (Figure 2D–F). It
should be noted that the performance of Harmony
could be improved if we added more penalties on
clusters with low batch-diversity and forced batch
mixing (Supplementary Figure S4 available online at
http://bib.oxfordjournals.org/). LIGER removed batch
effects successfully in every scenario (Figure 2). However,
it had low scUnifrac_group scores, indicating damaged
cell group structures (see the example in PBMC datasets
below). Different normalization methods had subtle
impact on the performance if any in all scenarios.

In scenarios with complicated cell group structures
(scenarios 16–23), linear-based methods (limma, Combat
and ZINB-WaVE) and scMerge showed different results
from those in settings with simple group structures.
Even when cell populations were balanced and batch
effects were mild, linear-based methods only had a
subtle improvement on ASW_batch and scUnifrac_batch
scores, suggesting incomplete batch removal (Figure 3A).
tSNE plots showed that major cell types mixed well (T
cells) but not minor groups (monocytes, megakaryocyte
and cDC) (Supplementary Figure S5 available online at
http://bib.oxfordjournals.org/). This was supported by
higher scUnifrac_batch scores for CD4 T and CD8 T cells
but lower scores for CD14 monocyte, CD16 monocyte,
megakaryocyte and cDC (Supplementary Figure S6
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Figure 2. Evaluation of noise reduction procedures on six scenarios generated from pancreas scRNA-seq data with two overlapping cell types in two
batches. Six scenarios included three levels of cell compositional difference (balanced, mild and severe imbalanced) and two levels of batch effects
(mild and strong). (A) Balanced and mild batch effects; (B) Mild imbalanced and mild batch effects; (C) Severe imbalanced and mild batch effects; (D)
Balanced and strong batch effects; (E) Mild imbalanced and strong batch effects; (F) Severe imbalanced and strong batch effects. Scores were represented
by circle sizes and changes in scores (� score) after noise reduction procedures were denoted by colors: red for increase, blue for decrease and gray for
unchanged.

available online at http://bib.oxfordjournals.org/). The
unsuccessful batch removal by linear methods was
highly likely due to the cell-type specific batch effects,
which could not be removed by one single transcrip-
tomics shift. When there were strong batch effects,
batch mixing for those minor cell types got even worse

with even lower scUnifrac_batch scores (Figure 3E,
Supplementary Figures S5 and S6 available online at
http://bib.oxfordjournals.org/). ComBat, modeling mean
and variances simultaneously, achieved better per-
formance than limma and ZINB-WaVE (Figure 3). In
the balanced and mild effect design, Harmony mixed

http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab565#supplementary-data
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monocytes but not T cells, suggesting parameters
need to be adjusted to increase batch mixing in those
cell types (Supplementary Figures S5 and S6 available
online at http://bib.oxfordjournals.org/). Surprisingly,
scMerge failed when batch effects were strong, which
wrongly mixed cell types together (Figure 3E–H and
Supplementary Figure S5 available online at http://bib.
oxfordjournals.org/). scMerge uses k-means clustering
before NN search, whose performance would be greatly
affected if k was chosen inappropriately. In high technical
noise and complicated cell-type structures (strong batch
effects and multiple cell types and subtypes), k-means
clustering combined with NN search cannot align cell
structures accurately between two batches. Consistent
with scenarios of simple cell group structures, Seurat
worked well when cell compositions were balanced,
mild or modest imbalanced, no matter mild or strong
batch effects (Figure 3A–C and E–G). However, it mixed
different cell types in the scenarios of severe imbalance
(Figure 3D and H and Supplementary Figure S7 available
online at http://bib.oxfordjournals.org/). LIGER worked
well except the scenario of strong batch effects and
severe imbalanced cell compositions, where different
cell types were mixed. In this case, the transcrip-
tomics structure was too complicated to find shared
and batch-specific metagenes, resulting in incorrect
alignment of cell types (Supplementary Figure S7 avail-
able online at http://bib.oxfordjournals.org/). fastMNN
achieved great performance in all scenarios (Figure 3
and Supplementary Figures S5 and S7 available online
at http://bib.oxfordjournals.org/). The normalization
method Scran increased batch mixing (high ASW_batch
and scUnifrac_batch scores) at the cost of losing
cell group structures slightly (low ASW_group and
scUnifrac_group scores), especially when combined
with Seurat, limma or ComBat (Figure 3). To be noted,
cDC had lower scUnifrac_batch scores than other cell
types, suggesting that batch removal on rare cell types
were not as successful as others, especially for LIGER,
Seurat, Scanorama and MNN (Supplementary Figure S6
available online at http://bib.oxfordjournals.org/).

In summary, proportional imbalance in cell groups
greatly impacts the performance of linear-based meth-
ods and Seurat. Seurat multi-CCA is tolerant to pop-
ulational imbalance unless the imbalance is severe.
Seurat reciprocal PCA is recommended by the developer
when cell populations are very different across batches.
LIGER had great performance except the scenario of
both strong batch effects and severe imbalanced cell
compositions. The high technical noise and biological
variations make it difficult to identify shared meta-
genes to align cells. Even LIGER removed batch effects
successfully and distinct cell groups were observed
in tSNE plots, and the global cell group structures
were disrupted (low scUnifrac_group scores in all 23
scenarios). Using PBMC datasets as an example, global
distances between two distinct cell types (T cells and
monocytes) were not preserved well in low-dimensional

cell embeddings of LIGER compared to other methods
(Supplementary Figure S8 available online at http://
bib.oxfordjournals.org/). The magnitude of batch effect
affects the performance of scVI and Harmony. Harmony
is flexible, and debugging parameters would help denoise
the data correctly. scMerge is sensitive to cell group struc-
tures, especially when batch effects are strong. fastMNN
and Scanorama have stable performance across different
scenarios (Table 1; two batches; mild/strong batch
effects; balance/imbalance and overlapping but mild/
severe imbalance).

Evaluations on 19 scenarios with nonoverlapping
cell types between two batches
In most cases, datasets do not contain the exact same cell
types across batches. To test the performance when there
were nonoverlapping cell types, we set up nine scenarios
for simulation studies and six scenarios using pancreas
scRNA-seq datasets mentioned above. The nine simu-
lated scenarios consisted of the combination of three
levels of batch effects (none, mild and strong) and three
types of nonoverlapping, i.e. a rare cell type, a cell type
or a dominant cell type. Here, the nonoverlapping cell
type only existed in one batch but not in the other. If
the nonoverlapping cell type was a rare population in the
batch, it was called ‘a rare nonoverlapping cell type’. If
the nonoverlapping cell type was a dominant population
in the batch, it was called ‘a dominant nonoverlapping
cell type’. If the nonoverlapping cell type was neither rare
nor dominant, it was called ‘a nonoverlapping cell type’
(details in Materials and Methods). The six scenarios
in real datasets were similar but without the no-batch
effect setting (Figure 4).

The performances in real datasets were similar with
those in simulation studies (Figure 4 and Supplementary
Figure S9 available online at http://bib.oxfordjournals.
org/). The scenarios with nonoverlapping cell types
between batches were specific cases of populational
composition imbalance. When one batch had a rare
nonoverlapping cell type, the imbalance was sub-
tle. Therefore, although performances of linear-based
methods were greatly affected by cell composition as
mentioned above, they were able to reduce batch effects
(increased ASW_batch and scUnifrac_batch scores
compared to unadjusted) (Figure 4A and D). ZINB-WaVE
obtained lower ASW_batch and scUnifrac_batch scores
than other methods even in the case of a rare nonover-
lapping cell type and strong batch effects (Figure 4D).
The tSNE plots also showed the same cell types from two
batches were mixed poorly (Supplementary Figure S10
available online at http://bib.oxfordjournals.org/). LIGER,
Seurat, fastMNN and Scanorama obtained improved
ASW_batch and scUnifrac_batch scores, suggesting
batch removal (Figure 4). Surprisingly, scMerge obtained
lower ASW_batch and scUnifrac_batch scores, indicating
unsuccessful batch correction in the scenario of mild
batch effects (Figure 4A). In strong batch effects, it
had lower ASW_group and scUnifrac_group scores,
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Figure 3. Evaluation of noise reduction procedures on eight scenarios generated from PBMC scRNA-seq data with multiple cell types in two batches.
Eight scenarios included four levels of cell compositional difference (balanced, mild, moderate and severe imbalanced) and two levels of batch effects
(mild and strong). (A) Balanced and mild batch effects; (B) Mild imbalanced and mild batch effects; (C) Moderate imbalanced and mild batch effects; (D)
Severe imbalanced and mild batch effects; (E) Balanced and strong batch effects; (F) Mild imbalanced and strong batch effects; (G) Moderate imbalanced
and strong batch effects; (H) Severe imbalanced and strong batch effects. Scores were represented by circle sizes and changes in scores (� score) after
noise reduction procedures were denoted by colors: red for increase, blue for decrease and gray for unchanged.

suggesting damaged cell group structures (Figure 4D)
(Supplementary Figure S10 available online at http://
bib.oxfordjournals.org/). This was probably due to the
reason that scMerge uses k-means clustering before NN
search, whose performance highly depends on the pre-
defined k. Additionally, the existence of a rare population

violates the assumption of equal sized clusters in k-
means clustering.

When one batch had a nonoverlapping cell type or
a dominant nonoverlapping cell type, the imbalance
became moderate or even severe. The performances
in these cases were similar with those with identical

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab565#supplementary-data
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Figure 4. Evaluation of noise reduction procedures on six scenarios generated from pancreas scRNA-seq data with nonoverlapping cell types in two
batches. The nonoverlapping cell type was a rare, one (neither rare nor dominant) or dominant cell type in the batch. The batch effect was either mild
(top) or strong (bottom). (A) a rare nonoverlapping cell type and mild batch effects; (B) a nonoverlapping cell type and mild batch effects; (C) a dominant
nonoverlapping cell type and mild batch effects; (D) a rare nonoverlapping cell type and strong batch effects; (E) a nonoverlapping cell type and strong
batch effects; (F) a dominant nonoverlapping cell type and strong batch effects; Scores were represented by circle sizes and changes in scores (� score)
after noise reduction procedures were denoted by colors: red for increase, blue for decrease and gray for unchanged.

cell types but different proportions. That is, linear-based
methods, LIGER and Seurat would not work well, whereas
NN-based methods reduced the batch effect success-
fully, including scMerge, fastMNN and Scanorama
(Figure 4B, C, E and F) (Supplementary Figure S10 avail-
able online at http://bib.oxfordjournals.org/). scVI reduced
mild batch effects but failed in the case of strong batch

effects. Harmony failed in those cases with strong batch
effects with default parameters, but performance could
be improved if we adjusted parameters to penalize
heavily on clusters with low batch-diversity.

Additionally, we created another four scenarios where
two batches shared one common cell type while each
having one batch-specific cell type using pancreas

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab565#supplementary-data
http://bib.oxfordjournals.org/
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scRNA-seq data. For example, one batch consisted of
alpha and ductal cells, and the other batch included
beta and ductal cells. The two batch-specific cell types
were either very different or similar (details in Materials
and Methods). Since these scenarios were specific cases
of imbalanced cell populations, linear-based methods
(limma, ComBat and ZINB-WaVE) and Seurat did not
work well (Figures 5 and 6). Linear-based methods
resulted in poor batch mixing with a low scUnifrac_batch
score. Seurat led to different cell types blending in
addition to the mixture of the common cell type from
two batches (Figures 5C and 6C). It should be noted
that ASW_group and scUnifrac_group could not reflect
the wrong cell-type mixture. For example, although
alpha and beta cells were wrongly mixed (Figure 6C),
they were still separated from ductal cells within each
batch, resulting in high and misleading ASW_group and
scUnifrac_group scores. The wrong cell-type mixture
could be observed from tSNE plots (Figure 6C and
Supplementary Figure S11 available online at http://
bib.oxfordjournals.org/). Among NN-based methods,
Scanorama achieved great performance in the mild
batch effect setting, which mixed the common cell
type from two batches well and also separated batch-
specific cell types no matter they were distinct or
similar (Figure 5). In the strong batch effect setting,
however, it worked when batch-specific cell types were
distinct but failed when they were similar (Figure 6 and
Supplementary Figure S11 available online at http://bib.
oxfordjournals.org/). fastMNN and scMerge removed
batch effects successfully when batch-specific cell
types were distinct (alpha and ductal cells in Figure 5).
However, they mixed the batch-specific cell types when
they were similar (alpha and beta cells in Figure 6).
The reason was that similar batch-specific cell types
were detected as MNNs since they were similar and
thus mistreated as the same cell type. When batch-
specific cell types were very different, they were not
detected as MNNs, therefore, only the common cell
type from two batches are mixed and batch-specific
cell types are kept separate (Figures 5 and 6). LIGER
worked well when batch-specific cell types were distinct
but mixed cell types incorrectly when they were similar
and batch effects were strong (Supplementary Figure S11
available online at http://bib.oxfordjournals.org/). Since
LIGER aligns cells based on shared and batch-specific
metagenes, batch-specific metagenes was mistakenly
identified as shared metagenes if they were similar.
Adding strong batch effects on top of similar batch-
specific cells made the situation even worse. The
performance of scVI and Harmony was not affected
by the population imbalance. They worked well when
batch effect was mild (Figure 5). However, scVI failed
in the strong batch effect scenario as mentioned above
(Supplementary Figure S11 available online at http://
bib.oxfordjournals.org/). The parameters of Harmony
need to be adjusted for a successful batch removal
when batch effect was strong (Figure 6 and (Table 1; two

batches, mild/strong batch effects, balance/imbalance
and distinct/similar nonoverlapping cell populations).
Each real scenario was repeated 100 times by resampling
cells to evaluate the variability of the performance.
Similar results were obtained from replicated scenarios.

Evaluations on three scenarios with multiple
batches
Integrating multiple batches is challenging due to the
high cellular heterogeneity and different levels of tech-
nical biases across datasets. We designed three scenar-
ios from PBMC data [31], which included six batches
and nine cell types. Each scenario had both complicated
batch effects and cell group structures. There were both
strong and mild batch effects across six datasets. More-
over, there were distinct cell types, such as T cells and
monocytes, and also similar sub-groups, such as CD4 and
CD8 T.

In the first scenario, each batch had the full dataset,
which included all cell types in the original data. Seurat
performed the best as it greatly reduced batch effects
(the highest scUnifrac_batch score) and also retained cell
group structures (an unchanged scUnifrac_group score)
(Figure 7A and Supplementary Figure S12 available
online at http://bib.oxfordjournals.org/). fastMNN ranked
the second, which mixed six batches without altering cell
group structures. Scanorama, however, only removed
batch effects partially. For example, CD14 monocytes
showed low scUnifrac_batch scores, suggesting insuffi-
cient batch removal (Supplementary Figure S13 available
online at http://bib.oxfordjournals.org/). It also min-
gled some cell types (Supplementary Figure S12 avail-
able online at http://bib.oxfordjournals.org/). scMerge
disrupted cell group structures (an improved scU-
nifrac_batch score but a decreased scUnifrac_group
score), where some distinct cell types in different batches
were put together wrongly (Supplementary Figure S12
available online at http://bib.oxfordjournals.org/). Linear-
based methods, limma, ComBat and ZINB-WaVE,
removed batch effects partially, which showed lower
scUnifrac_batch scores for CD14 and CD16 monocytes
(Supplementary Figure S13 available online at http://bib.
oxfordjournals.org/). Combat obtained better perfor-
mance than limma and ZINB-WAVE with higher scU-
nifrac_batch scores (Figure 7A and Supplementary Fig-
ures S12 and S13 available online at http://bib.oxfordjour
nals.org/). LIGER not only mixed batches (high scU-
nifrac_batch scores) but also blended distinct cell types,
suggesting LIGER failed to identify shared metagenes
in such complicated batch- and cell-type structures
(Figure 7A and Supplementary Figure S12 available
online at http://bib.oxfordjournals.org/). In the second
scenario, each cell type has a 25% of chance to be
missing in each batch. The results were consistent with
those in the first scenario. fastMNN and Seurat achieved
the best performance. Scanorama only removed batch
effects partially. scMerge, limma, ComBat and ZINB-
WaVE worked poorly to remove batch effects (Figure 7B
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Figure 5. Evaluation of noise reduction procedures on two scenarios generated from pancreas scRNA-seq data in two batches. One batch had beta and
ductal cells, and the other batch consisted of beta and alpha cells. The batch effect was either mild (A) or strong (B). tSNE visualization for corrected and
uncorrected datasets in the mild batch effect setting (C) (left: by batch; right: by group). Scores were represented by circle sizes and changes in scores
(� score) after noise reduction procedures were denoted by colors: red for increase, blue for decrease and gray for unchanged.

and Supplementary Figure S12 available online at http://
bib.oxfordjournals.org/). Consistent with results from
two batches, rare cell types (cDC and pDC) had much
lower scUnifrac_batch scores than others, suggesting
insufficient batch removal for those rare cell types in
almost all methods (Supplementary Figure S13 available
online at http://bib.oxfordjournals.org/).

In the third scenario, each cell type has 50% of
chances to be missing in each batch. In this case,
where a significant portion of cells were nonoverlapping
across datasets, Seurat led to cell-type mixing with
decreased scUnifrac_group scores than unadjusted
(Supplementary Figure S12 available online at http://
bib.oxfordjournals.org/). The performance of fastMNN
was slightly better than Seurat, which mixed batches
at the cost of some cell types blending (Figure 7C and
Supplementary Figure S12 available online at
http://bib.oxfordjournals.org/). It should be noted that
Harmony and scVI did not work well due to the
existence of strong batch effects. The findings were
summarized in Table 1; multiple batches. In terms of
normalization methods, Scran, combined with Seurat,
limma or ComBat, improved batch mixing at the cost of
disrupting cell group structures, which was consistent
with results from two batches (Figure 7). Sctransform,

in contrast, preserved cell group structures the best
compared to ls and Scran, especially in the third scenario
when a significant number of cell types were missing in
every batch (Figure 7). The 2nd and 3rd scenarios were
repeated 20 times and similar results were obtained.

Evaluations on 10 scenarios with variable
dropout rate and library size
In previous scenarios, we focused on the impact of
cell populational imbalance and magnitude of batch
effects on denoising procedures. These two factors
mostly affected the performance of batch correction
methods. The normalization methods, however, showed
subtle influence on the performance. To benchmark
the performance of normalization methods, we created
10 scenarios using real and simulated datasets with
balanced design and mild batch effect between two
batches. One scenario was generated by down-sampling
reads from each cell in the PBMC dataset mentioned
above. Higher percentage of reads was removed in cells
with smaller library sizes, leading to highly variable
sizes in each batch (details in Materials and Methods).
The other nine scenarios were generated by simulation,
where there were three levels of variations in dropout
rate and library size (low, middle and high). Dropout rate
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Figure 6. Evaluation of noise reduction procedures on two scenarios generated from pancreas scRNA-seq data in two batches. One batch had beta and
ductal cells, and the other batch comprised alpha and ductal cells. The batch effect was either mild (A) or strong (B). tSNE visualization for corrected
and uncorrected datasets in the mild batch effect setting (C) (left: by batch; right: by group). Scores were represented by circle sizes. Changes in scores
(� score) after noise reduction procedures were denoted by colors: red for increase, blue for decrease and gray for unchanged.

and library size are the two common technical noises
in single-cell RNA-seq datasets. The successful removal
of those technical noises is critical for uncovering cell
group structures.

In the down-sampled dataset, different procedures
were able to remove or partially remove batch effects,
whose performance was similar with those from the
scenario mentioned above (two batches with multiple
cell types in a balanced and mild batch effects design).
Surprisingly, normalization methods had a substantial
impact on preservation of cell group structures (Figure 8
and Supplementary Figure S14 available online at http://
bib.oxfordjournals.org/). As mentioned above, Scran
disrupted cell group structures slightly, especially
combined with Seurat, limma or ComBat in the scenario
of two batches and multiple batches (Figures 3 and 7).
When library sizes varied a lot across cells, Scran greatly
damaged cell group structures in the combination with
Seurat, limma or ComBat, especially for CD4 and CD8
T cells (low scUnifrac_group scores). In comparison,
Scran combined with fastMNN or Scanoroma preserved
cell group structures better. ls and sctransform pre-
served cell group structures well in the combination
of different batch correction methods (Figure 8 and
Supplementary Figure S14 available online at http://bib.
oxfordjournals.org/). ZINB-Wave and scMerge, which

handle normalization and batch correction simultane-
ously, had poor performance in preservation of cell group
structures when library size varied a lot (low ASW_group
and scUnifrac_group scores). ZINB-WaVE brought differ-
ent cell groups together and blended distinct cell types,
and scMerge merged similar subgroups like CD4 and CD8
T cells (Figure 8 and Supplementary Figure S14 available
online at http://bib.oxfordjournals.org/).

In simulation datasets with only two groups, when
dropout rate was low and the library size across cells was
similar, every normalization and batch correction meth-
ods worked well (Supplementary Figure S15 available
online at http://bib.oxfordjournals.org/). When dropout
rate was high, this technical noise masked the cell group
structure, which was reflected by a low scUnifrac_group
score before adjustment (Supplementary Figure S15
available online at http://bib.oxfordjournals.org/). scVI
and ZINB-WaVE uncovered the cell group structure
successfully with a high scUnifrac_group score. fastMNN
achieved higher scUnifrac_group scores when combined
with normalization methods ls, Scran and SCnorm
than with sctransform. Harmony, however, worked
better in combination with sctransform and SCnorm.
Seurat, scMerge, limma and ComBat failed to recover
the cell group structure when the dropout rate was
high. When the library size varied a lot, sctransform
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Figure 7. Evaluation of noise reduction procedures on three scenarios generated from PBMC scRNA-seq data in six batches. The three scenarios were
generated from the full dataset (A), randomly removing cell types by a 25% of chance (B) or by a 50% of chance (C). Scores were represented by circle sizes
and changes in scores (� score) after noise reduction procedures were denoted by colors: red for increase, blue for decrease and gray for unchanged.

performed better than other normalization methods.
The combination of sctransform with Harmony, Seurat,
Scanorama, limma and ComBat achieved higher scU-
nifrac_group scores. scVI and scMerge failed to uncover
the cell group structure with low scUnifrac_group scores
(Supplementary Figure S15 available online at http://bib.
oxfordjournals.org/). When there were both high dropout
rates and variable library sizes, Scanorama combined
with sctransform and ZINB-WaVE performed the best
with the highest scUnifrac_group score (Supplementary
Figure S15 available online at http://bib.oxfordjournals.
org/).

A guideline to select suitable procedures
When integrating multiple datasets, batch effects are
generally the main source of technical noise. Selection
of appropriate batch correction methods is critical for
denoising since each method has its own assumption and
works in certain scenarios. Under- or overcorrection will
lead to false interpretation of downstream analysis. Com-
pared to batch correction, normalization methods have
subtle impact on the performance unless library sizes
vary dramatically across cells. In this case, sctransform
and ls are recommended rather than Scran.

The performance of batch removal methods is mostly
affected by three factors, the complexity of cell group
structures, cell populational imbalance and magnitude
of batch effects. Linear-based methods, such as ComBat,
limma and ZINB-WaVE, have relative better performance
when there are no or very subtle differences (balance or

a rare nonoverlapping population) in cell populational
composition across datasets than imbalanced scenar-
ios. When there are cell compositional difference across
datasets, transcriptomics difference caused by cell pop-
ulational compositions would be mistakenly treated as
technical biases, resulting in overcorrection. The exis-
tence of cell-type specific batch effects, however, limited
their performance even in balanced scenarios. Therefore,
they should be used with caution for single-cell RNA-seq
batch correction.

Seurat uses CCA to map cells from different batches
into a common reduced dimensional space, which works
well when populational composition is not severe across
datasets. When cell populations are extremely imbal-
anced, such as substantially different composition or a
unique major population in one dataset, Seurat results
in erroneous cell-type mixing (Table 1). Extremely differ-
ent compositions result in weakly correlated gene mod-
ules in two datasets, making it difficult for CCA to cap-
ture. In this case, reciprocal PCA is recommended by the
developer.

The performance of other NN-based methods, scMerge,
fastMNN and Scanorama, are generally not affected by
cell populational imbalance. When there are similar
batch-specific cell types, however, scMerge and fastMNN
mistake them as MNNs and result in incorrect cell-
type mixing (similar nonoverlapping cell populations,
as shown in Table 1). scMerge finds MNNs between
cell clusters instead of cells. The existence of rare
nonoverlapping populations or complicated batch effects
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Figure 8. Evaluation of noise reduction procedures one scenario gen-
erated from PBMC scRNA-seq datasets in two batches with mild batch
effects. Cells in batch were down-sampled to have highly variable library
sizes. Scores were represented by circle sizes and changes in scores (�
score) after noise reduction procedures were denoted by colors: red for
increase, blue for decrease and gray for unchanged.

and cell group structures, e.g. multiple batches and co-
existence of strong batch effects and complicated cell
groups, make it difficult for clustering or aligning cell
clusters across batches (Table 1). Scanorama performs
well in scenarios with two batches, but its performance
reduces in scenarios with mixed batch effects.

The performance of scVI is robust to cell populational
imbalance but sensitive to magnitude of batch effects.
When there is a strong batch effect, scVI leads to under-
correction. The performance of Harmony is similar to
scVI, but it is flexible to balance the cluster accuracy
and batch mixing. For example, we found that the default
parameters led to undercorrection when the batch effect
was strong (Table 1). However, the batch effect would be
completely removed if we changed parameters to force
dataset mixing. Those parameters should be adjusted
based on the number of cells and the magnitude of
batch effects. The performance of LIGER depends on
the accurate identification of shared and batch-specific
metagenes. When there are high technical noise and
biological variations, such as the co-existence of strong
batch effects and severe compositional imbalance, strong
batch effects and similar batch-specific cell types and
the combination of mixed batch effects and compli-
cated cell group structures, shared metagenes are not
the major source of variances and are masked by those
technical and biological noises. Therefore, LIGER cannot

identify shared metagenes accurately and will lead to
data distortion.

In integrating multiple batches, where different mag-
nitude of batch effects and cell population imbalance are
generally involved, NN-based methods except scMerge
are recommended. In the challenging case when a
significant number of cell types are missing in every
batch (Figure 7C), none of methods achieved great
performance, which either have poor batch mixing or
blending cell types. FastMNN performs better than other
methods. Harmony is quite flexible, so it might work
if cell types are pre-known and thus parameters are
adjusted manually to force the same cell types from
different batches’ mix (Table 1).

To be noted, Harmony, scVI, LIGER and fastMNN only
provide corrected cell-level embeddings, which can be
used for clusters or trajectories. Cell-level embeddings
generated by LIGER, however, should be treated with
caution since the global structure is not preserved well.
Other methods produce corrected expression matrices.
The corrected gene-expression values returned by
Scanorama, however, have different ranges from the orig-
inal data, which should be treated with caution (Table 1).

Discussion
We performed a comprehensive evaluation of noise
reduction procedures for single-cell RNA-seq data
using simulated and real datasets. We summarized
our findings as a guideline for selection of suitable
procedures in different scenarios. Special caution should
be paid on technical and biological factors, including
magnitude of batch effect, the complexity of cell group
structures, the extent of cell population imbalance and
the proportion and the similarity of nonoverlapping cell
populations, which would greatly affect the performance
of each batch correction method.

Although users can apply default settings to run anal-
ysis without knowing the parameters, the knowledge of
underlying algorithms and assumptions would help find
right settings for better performance. For example, the
default parameters of Harmony led to undercorrection
in our scenarios with strong batch effect. The undercor-
rection suggests that cluster diversity is not penalized
enough. The increase of the parameter of ‘theta’ forces
dataset mixing and leads to successful batch effects
removal. The appropriate balance between cluster accu-
racy and diversity is critical for avoiding over- or under-
correction, which would be adjusted by the parame-
ters theta and sigma. As another example, Seurat and
scMerge use highly variable genes as default to calculate
the reduced dimension vectors, whereas fastMNN and
Scanorama depend on users to select highly variable fea-
tures before batch correction. The variable genes should
be selected from each batch separately to get only cell-
type variation. The improper choice of highly variable
genes would lead to the wrong match between cell types,
resulting in the removal of true biological variations.
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By default, Seurat uses CCA to find a common reduced
dimensional space, which would lead to wrong mixing
when there is severe cell populational imbalance. In this
case, choosing another option ‘reciprocal PCA’ would
solve the problem. Additionally, scMerge and Harmony
require to set number of clusters in each batch, which
greatly impact the performance and may need to be
adjusted in certain scenarios.

The scenario with similar nonoverlapping cell popula-
tions across batches is the most challenging. Most meth-
ods removed the difference between similar nonoverlap-
ping cell populations and mixed them together, lead-
ing to overcorrection. It is due to the fact that simi-
lar nonoverlapping cell populations are misidentified as
MNNs in the reduced dimensional space. Considering
not only MNNs but also their distances might help solve
this issue. Most NN methods assume that the differ-
ences between cell types are greater than the differences
between batch. When batch effect is too strong to dom-
inate over cell-type differences, special cautions should
be paid to avoid erroneous cell-type mixing. Linear-based
methods are very sensitive to cell populational imbal-
ance. The performance of linear-based methods could be
improved under imbalanced cases if cell groups could be
included into the model as covariates. scMerge employs
this strategy to improve its performance, which first uses
mutual nearest clusters to define cell groups and then
keeps them in the model as wanted factors.

In our evaluations, the metrics can be used to dis-
tinguish correct from wrong mixing (cell-type mixing)
since the cell types are known. Incorrect mixing of two
different cell types from two batches would obtain very
low scUnifrac_batch and ASW_batch scores. Similarly,
ARIbatch and LISIbatch were used to quantify batch mixing,
while ARIcelltype and LISIcelltype were used to evaluate cell-
type mixing in a latest evaluation study [23]. In real
practices, however, cell types are generally unknown,
which make it very challenging to determine whether
batch correction work properly or not. Although there
are metrics developed for assessing single-cell RNA-seq
batch correction, such as kBET [32], they only focus on
batch mixing. They cannot tell the correct one (the same
cell type from two batches mix) from an erroneous (dif-
ferent cell types from two batches mix) mixture. In the
similar nonoverlapping scenario, for example, if we do
not know B and C are not the same cell types and should
not be mixed, Seurat, fastMNN and scMerge with a better
batch mixing and a highly kBET score would be wrongly
chosen rather than Scanorama. One feasible way is to
analyze each dataset separately to gain some idea about
cell types in each batch and then explore the batch-
corrected results manually to decide whether there is
any suspicious mixing. But it is time-consuming and
requires a strong background. To automate the process,
new quantitative metrics are needed for the evalua-
tion of batch correct methods, which not only measure

batch mixing but also evaluate imperceptible cell-type
mixing.

Recent efforts to benchmark batch correction meth-
ods for single-cell RNA-seq all came to the conclusion
that no single method emerges as the best performer in
every dataset [23, 33, 34]. They also showed the impor-
tance of the selection of highly variable genes and the
limitation of different types of outputs on the down-
stream analysis. Instead of recommending one or several
methods, our studies focused on sorting out technical
and biological factors that affect the performance of
each method at the view of methodological assumptions
and differences. For example, Seurat distorts the data
when there is severe cell composition imbalance due
to dimensional reduction by CCA. In this case, recipro-
cal PCA instead of CCA is recommended. Harmony was
reported to succeed in two datasets but to fail in one
dataset [30]. Our study, however, identified the impor-
tance to adjust its parameters to balance batch mixing
and cluster accuracy. LIGER aligns cells incorrectly when
technical noise and biological variances are too compli-
cated to find shared metagenes across batches. Revealing
limitations of existing methods provides guidance and
directions how to improve. Our study also pointed out the
urgent need of new metrics for evaluation since cell types
are unknown in real applications.

Materials and methods
Studied scenarios
Scenarios with identical cell populations

We designed 23 scenarios to evaluate denoising proce-
dures on two batches with identical cell populations.
In scenarios 1–9, we generated nine simulation datasets
by considering three levels of batch effects (none, mild
or strong batch effect) and three levels of cell compo-
sitions imbalances (balanced, moderate imbalanced or
severe imbalanced) using the R package Splatter [35].
The parameters of simulation studies are summarized
in Supplementary Table S1 available online at http://bib.
oxfordjournals.org/. In the mild batch effect setting, the
batch explained the lower or comparative proportion of
variation than cell groups. In the strong batch effect
setting, in contrast, the batch explained the higher pro-
portion of variation than cell groups. In the setting of bal-
anced cell populations, two batches had the exact same
cell population compositions. In the settings of moderate
or severe imbalanced, however, two batches contained
different cell population compositions. The ratio of two
cell populations was 7:3 in one batch but was 3:7 in the
other batch when moderate imbalanced, whereas the
ratio of two cell populations was 9:1 in one batch but was
1:9 in the other batch when severe imbalanced.

In scenarios 10–15, we used real datasets to create
six scenarios with mild or strong batch effects and
three levels of cell compositions’ imbalance (balanced,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab565#supplementary-data
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moderate and severe imbalanced). The setup of cell
composition imbalances was the same with simulation
studies mentioned above. The datasets with mild batch
effects included two scRNAseq datasets generated by
inDrops from human pancreatic islets (GEO Accession
ID: GSE84133) [28]. The datasets with strong batch effects
comprised two scRNAseq datasets from human pan-
creatic islets generated by different platforms. One was
produced by Fluidigm C1(GEO Assession ID: GSE86469)
[29], and the other was generated by SMART-seq2 (EBI-
ArrayExpress Accession ID: E-MTAB-5061) [30]. Two cell
types were extracted from the datasets, alpha and beta
cells (details are summarized in Supplementary Table S1
available online at http://bib.oxfordjournals.org/).

In scenarios 16–23, we used PBMC datasets generated
by multiple platforms [31], including two levels of batch
effects (mild and strong) and four levels of cell compo-
sitions imbalance (balanced, mild, moderate and severe
imbalanced). The scenario with mild batch effects con-
sisted of eight cell types in two scRNAseq datasets gener-
ated by 10x v2 and v3 platforms, respectively (scenarios
16–19). The scenario with strong batch effects comprised
seven cell types in two scRNAseq datasets from 10x v2
and inDrops platforms, respectively (scenario 20–23). All
cells were included in the balanced design. The 30% of
T cells (including CD4 T, CD8 T and NK) were randomly
chosen in one batch, 30% of monocyte (including CD14
and CD16) were randomly selected in the other batch
and other cells (cDC, B cells and Meg) were kept in the
mild imbalanced design. In the moderate imbalanced
design, 10% of T cells (including CD4 T, CD8 T and NK)
were randomly chosen in one batch, 10% of monocytes
(including CD14 and CD16) were randomly selected in the
other batch and other cells (cDC, B cells and Meg) were
kept in the moderate design. In the severe imbalanced
design, 10% of CD4 T were randomly chosen in one batch,
10% of CD14 monocytes were randomly selected in the
other batch and all the other cells were removed.

Scenarios with nonoverlapping cell populations

We laid out two cases with nonoverlapping cell popula-
tions in two batches. One is that the nonoverlapping cell
population only exists in one batch, while the other is
that each batch has one nonoverlapping cell population.
In the first case, we designed 15 scenarios, including 9
scenarios based on simulated datasets by Splatter (sce-
narios 24–32) and 6 scenarios based on real datasets
(scenarios 33–38). In the second case, we created four
scenarios using real datasets (scenarios 39–42).

Scenarios 24–32 consisted of the combination of
three levels of batch effect (none, mild and strong)
and three types of nonoverlapping, i.e. a rare cell type,
a cell type or a dominant cell type. Based on real
datasets, scenarios 33–38 had the similar setting with
simulated datasets without the no-batch effect setting
(Supplementary Table S1 available online at http://bib.
oxfordjournals.org/). In scenarios 39–42, each batch has
one nonoverlapping cell population. In scenarios 39–42,

we used datasets with mild batch effects, i.e. two samples
from human pancreatic islet in the same study (GEO ID:
GSE84133). The two nonoverlapping cell populations in
two batches were very different in the scenario 39 (ductal
and alpha cells), where one batch had beta and ductal
cells, and the other batch had beta and alpha cells. In
the scenario 32, the two nonoverlapping cell populations
were similar (alpha and beta cells), where one batch
had ductal and beta cells, and the other batch had
ductal and alpha cells. Scenarios 41–42 were similar with
scenarios 39–40 but with strong batch effects, where two
datasets generated by different platforms were used (one
by SMART-seq2 with ID E-MTAB-5061 and the other by
Fluidigm C1with ID GSE86469) (Supplementary Table S1
available online at http://bib.oxfordjournals.org/). Those
scenarios 33–42 were repeated 100 times by resampling
cells.

Three scenarios of multiple batches with strong batch effect
and cell population imbalance

We created three scenarios (scenarios 43–45) with six
batches and nine cell types using PBMC datasets [31].
Both mild and strong batch effects were involved since
datasets were generated by the same or different plat-
forms, including two datasets from 10x v2 (A and B),
four datasets from 10x v3, Dropseq, inDrops and seqWell,
respectively. The nine cell types were B, CD4 T, CD8 T, NK,
megakaryocytes, CD14 monocytes, CD16 monocytes, cDC
and pDC. Three scenarios corresponded to three levels
of cell group heterogeneity, where 0%, 25% or 50% of
chances were that one cell type would be missing in a
batch. The second and third scenarios were regenerated
20 times.

Ten scenarios with varying dropout rates and library sizes

We designed one scenario (scenario 46) to evaluate the
performance of denoising procedures on recovering cell
group structures obscured by highly variable library
sizes. We used the same PBMC dataset [31]. Reads were
down-sampled in each batch. Down-sampling proportion
of each cell was determined by its library size relative
to the maximum library size with a minimum down-
sampling rate of 10% (90% of reads were discarded).
Higher percentage of reads was removed in cells with
smaller library sizes. For example, the cell with the
maximum library size was not down-sampled. The
cell with half of the maximum library size was down-
sampled by 50%. Cells with <10% of the maximum
library size were down-sampled by 10%.

High dropout and variable library sizes might obscure
original cell/gene structure and pose challenges to noise
reduction procedures. We designed nine scenarios (sce-
narios 47–55) to assess the performance of denoising
procedures on recovering original data structures using
simulation. The simulation datasets with mild batch
effect and two balanced cell proportion were generated
by Splatter, which included three levels of dropout rates
from low, modest to high dropouts and also three levels
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of variable library size, ranging from lowly, modestly
to highly variable. The details of parameters are sum-
marized in Supplementary Table S1 available online at
http://bib.oxfordjournals.org/.

Normalization and batch effect adjustment
methods
Four normalization methods, ls, Scran, SCnorm and
sctransform, were included in this study. ls and Scran
estimated one scaling factor per cell and used it to
normalize the expression. SCnorm and sctransform,
in contrast, treat each gene in a cell differently by
estimating multiple scaling factors for each cell. To be
noted, SCnorm was not used in PBMC datasets due
to memory issues. Six batch effect adjustment meth-
ods, including limma, ComBat, fastMNN, Scanorama,
Seurat and Harmony, were considered in this study.
Limma and ComBat belonged to linear-based methods,
while fastMNN, Scanorama and Seurat were NN-based
methods. Combining normalization with batch effect
adjustment methods, we had in total of 24 noise reduc-
tion procedures. In addition, three methods handling
normalization and batch correction together, ZINB-
WaVE, scMerge and scVI, and one method, LIGER, with its
custom preprocessing were included in the study as well.
The detailed settings and the version of each method are
summarized in Supplementary Table S2 available online
at http://bib.oxfordjournals.org/.

Metrics for assessment
To assess denoising performance, we used three different
methods, ASW [36], scUnifrac [37] distance and marker
genes of each cell group. To measure batch mixing,
ASW_batch and scUnifrac_batch were calculated. The
metrics were calculated for each cell group sharing in
all batches and then the mean values were obtained
[Equation (1)]. Higher ASW_batch and scUnifrac_batch
scores suggest better batch mixing. To measure cell
groups separation, ASW_group and scUnifrac_group
were calculated [Equation (2)]. The metrics were cal-
culated for each batch and then the mean values
were obtained. Higher ASW_group and scUnifrac_group
scores suggest better cell group separation. The positive,
none or negative changes of the ASW_group and
scUnifrac_group values after batch correction compared
to those before batch correction suggests successfully
recovered, retained or disrupted cell group structures,
respectively.

ASW_batch = 1 − ∑
k∈groups(b)k \Ngroup,

where s(b)k is the silhouette coefficient on batches for the
group k.

scUnifrac_batch = 1 − ∑
i<j,i,j∈batch,k∈groupd(i, j)k \

[C(Nbatch, 2)∗ Ngroup], (1)

where d(i, j)k is the scUnifrac distance between two
batches i and j for the group k, C(Nbatch, 2) is the number

of combinations to select two from Nbatch, Nbatch is the
number of batches and Ngroup is the number of cell
groups.

ASW_group =
∑

k∈batchs(g)k \Nbatch,

where s(g)k is the silhouette coefficient on groups for the
batch k.

scUnifrac_group =
∑

i<j,i,j∈ group,k∈batchd(i, j)k \
[C(Ngroup, 2)∗ Nbatch], (2)

where d(i, j)k is the scUnifrac distance between two
groups i and j for the batch k, C(Ngroup, 2) is the number
of combinations to select two from Ngroup, Ngroup is
the number of cell groups and Nbatch is the number of
batches.

Truly differentially expressed genes between cell
groups were predefined in simulated datasets. limma
was used to perform differential expression analysis.
Genes with FDR-adjusted P-value < 0.05 were considered
to be significantly different. TPR was defined as TP/T,
and TNR was defined as TN/N. The positive, none or
negative changes of TPR and TNR values after batch
correction compared to those before batch correction
suggest successfully recovered, retained, or disrupted
gene structures, respectively.

Key Points

• Normalization and batch correction are critical steps
in scRNA-seq data, which remove technical effects and
systematic biases to unmask biological signal of interest.

• We perform a comprehensive evaluation of noise reduc-
tion procedures for single-cell RNA-seq data using simu-
lated and real datasets.

• Our findings show that special caution should be paid on
technical and biological factors, including magnitude of
batch effect, the complexity of cell group structures, the
extent of cell population imbalance and the proportion
and the similarity of nonoverlapping cell populations,
which would greatly affect the performance of each
batch correction method.

• Our studies not only provide a comprehensive guideline
for selecting suitable noise reduction procedures but also
point out unsolved issues in the field, especially the
urgent need of developing metrics for assessing batch
correction on imperceptible cell-type mixing.

Supplementary data
Supplementary data are available online at http://bib.
oxfordjournals.org/.
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