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Abstract: The objective of this research was to assess the performance of an embedded sensing system
designed to measure the distance between a prosthetic socket wall and residual limb. Low-profile
inductive sensors were laminated into prosthetic sockets and flexible ferromagnetic targets were
created from elastomeric liners with embedded iron particles for four participants with transtibial
amputation. Using insights from sensor performance testing, a novel calibration procedure was
developed to quickly and accurately calibrate the multiple embedded sensors. The sensing system was
evaluated through laboratory tests in which participants wore sock combinations with three distinct
thicknesses and conducted a series of activities including standing, walking, and sitting. When a
thicker sock was worn, the limb typically moved further away from the socket and peak-to-peak
displacements decreased. However, sensors did not measure equivalent distances or displacements
for a given sock combination, which provided information regarding the fit of the socket and how a
sock change intervention influenced socket fit. Monitoring of limb–socket displacements may serve
as a valuable tool for researchers and clinicians to quantitatively assess socket fit.

Keywords: amputee; prosthetic socket; socket fit; sensor design; residual limb displacements;
pistoning; prosthetic socks

1. Introduction

Measurements of relative displacements between the residual limb and prosthetic socket may be
a valuable clinical tool in monitoring socket fit for people with transtibial amputation. Both daily and
long-term changes in residual limb volume and shape alter the coupling between the limb and socket,
resulting in degradation of socket fit that manifests as relative motion between the residual limb and
prosthetic socket [1,2]. Greater limb–socket displacements are associated with lower perceived socket
comfort, greater incidence of skin breakdown, and gait instability.

Prosthesis users commonly adjust their prosthesis to accommodate changes in fit, through actions
such as adding or removing socks to reduce socket size or temporarily doffing the prosthesis to allow
limb fluid volume recovery. However, such accommodation strategies require the prosthesis user to
recognize when changes are needed through indications such as pain, skin breakdown, stumbling,
or falls [3]. At-home monitoring of limb–socket displacements may be used to convey to the prosthesis
user that an accommodation is needed, and in doing so, prevent the negative consequences from
a degraded socket fit. Further, providing practitioners with data on their patients’ socket fit and
accommodation strategies may help practitioners better understand and inform their patients, or justify
the need for prosthesis modifications or replacement.
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A number of sensors have been utilized to investigate socket fit. Load cells mounted beneath
the socket provide insight into the forces and moments acting on the socket, but their high power
consumption and indirect measurement of limb–socket interactions limit the applicability of the
technology for socket fit monitoring applications [4–6]. Force sensing resistors (FSRs) have been widely
used to measure interface pressures, under the premise that changes in socket fit manifest as increases
in pressure magnitude at key weight bearing locations [7–9]. However, the locations of focal pressures
on a residual limb are localized and highly dynamic, and change based on the socket fit and residual
limb fluid volume changes [2]. Further, the poor accuracy and resolution and significant drift exhibited
by many FSR models limit the reliability of assessment of actual changes in fit [10–13].

Researchers have also used commercial displacement sensors to evaluate limb–socket
displacements. Photoelectric [14] and inductive [15] sensors were placed at the inferior aspects of
prosthetic sockets to evaluate vertical limb motion (i.e., pistoning) during ambulation. While the results
of these studies provided meaningful insight into pistoning magnitudes, the sensors used were bulky,
unsuitable for long-term monitoring, and required permanent modification of the participants’ sockets.

A smaller, battery-powered inductive sensor has enabled longer-term monitoring outside of the
laboratory [16,17]. Using a target made of conductive fabric that was adhered to elastomeric liners,
the sensor measured limb–socket displacements during out of lab tests ranging from two days to
two weeks. However, debris build-up between fibers of the target material caused significant signal
degradation [16,17]. To address the degradation challenges associated with conductive fabric targets,
a novel iron-seeded polymeric target was developed and incorporated into prosthetic sheaths worn
over elastomeric liners [18]. The ferromagnetic composite sheaths performed better than conductive
targets, reducing signal degradation from 50% in two weeks to less than 3% over four weeks [16,18].
However, the sheath was susceptible to bunching and it added thickness to the liner that some
participants found uncomfortable.

Previously, the inductive sensors were incorporated into individual polymeric shells or 3D printed
inserts that were temporarily adhered to the inner socket wall. Individual polymeric shells allowed
for quick instrumentation, but may have altered the interface mechanics between the limb and socket.
The fabrication of 3D printed inserts was a time-consuming process and participants needed to have a
loose-fitting socket, so that the inserts took up space normally occupied by socks. Otherwise, a larger
socket had to be fabricated to fit the inserts [17].

This research expands on prior investigations to develop and evaluate a novel, wearable inductive
sensing system to measure the distance between the residual limb and the prosthetic socket. Sensors
were embedded into cable-paneled adjustable sockets for participants with transtibial amputation,
and the ferrous target technology was integrated into elastomeric prosthetic liners. Benchtop and
clinical tests were performed to assess the integrated sensing system’s ability to measure limb–socket
distances and displacements.

2. Materials and Methods

The wearable sensing system consisted of a low-profile sensor, a flexible iron-seeded elastomeric
target, and a portable data acquisition unit (Figure 1) [16–18]. Sensors were embedded into prosthetic
sockets and flexible targets were created by incorporating iron particles into elastomeric prosthetic
liners so that the sensors measured the distance between the liner and socket wall.

The low-profile sensor was a custom-designed flexible coil antenna (diameter 32.0 mm, thickness
0.15 mm) and a surface-mounted capacitor (220 pF). A 10 kΩ surface mount thermistor was
soldered to the antenna to monitor the temperature of the sensing environment and compensate
for thermal-induced drift.

A custom-designed portable data acquisition unit containing an inductive sensing chip (LDC1614,
Texas Instruments, Dallas, TX, USA) was used to power the sensors and collect proximity data.
When powered, the inductor and capacitor operated as an inductor–capacitor (LC) tank oscillator.
The presence of the magnetically permeable target within the sensor’s field reinforced the inductor and
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lowered the sensor’s oscillation frequency in a distance-dependent manner. Therefore, the changes
in sensor frequency measured by the inductive sensing chip were a sensitive measure of proximity
between the target and sensor antenna. The sensor output (proximity counts) is a ratio of the sensor’s
oscillation frequency to an external reference clock frequency.Sensors 2018, 18, x FOR PEER REVIEW  3 of 17 
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Figure 1. Inductive sensing system components: (a) sensor antenna; (b) inner surface of ferrous
liner with iron-doped polymer between fabric and normal (unfilled) elastomer; (c) portable data
acquisition unit.

The wearable sensor target was a ferrous elastomeric liner worn over the residual limb. The liner
was constructed so that the iron-doped polymer (thickness 1 mm, iron content 80 percent by weight)
was embedded between the liner fabric and the normal (unfilled) elastomer.

Instrumented, adjustable cable-paneled sockets were fabricated for participants with transtibial
amputation. Each participant’s regularly-used socket was digitized using a mechanical coordinate
measurement machine (FaroArm Platinum, FARO Technologies, Lake Mary, FL, USA) so that the
instrumented socket duplicated the shape of the current socket. Sensors were embedded between an
inner layup consisting of four layers of Nyglass stockinet (Paceline, Matthews, NC, USA) and epoxy
acrylic resin (Paceline, Matthews, NC, USA) and a secondary layup consisting of a single layer of
carbon fiber. This was followed by a final four-layer outer layup consisting of two layers of carbon
fiber separated by two layers of Nyglass. Tubing and cabling for the panels was placed between the
secondary and outer layups. Ferrite shielding (thickness 0.3 mm, Wurth Electronics, Waldenburg,
Germany) was attached to the outer-facing side of the inductive sensors to block electromagnetic
interference from the carbon fiber and external environment. Sensors were placed in the anterior
proximal (AP), anterior midlimb (AM), anterior midlimb distal (AMD), anterior inferior (AI), posterior
inferior (PI), posterior midlimb medial (PM), and posterior midlimb lateral (PL) aspects of the socket
(Figure 2). The anterior midlimb distal sensor was omitted for participants with short residual limbs.
A cable connected the panels of the socket such that by extending or retracting the cable, the panel
distances relative to the socket could be adjusted.

Calibration of the embedded sensors was conducted in two stages; a detailed benchtop calibration
followed by a reduced-point in-socket calibration. Preliminary sensor repeatability tests revealed that
the sensor configuration (i.e., depth in layup, sensor curvature) shifted the sensor sensitivity curve;
therefore, each sensor should be calibrated in its final embedded in-socket configuration (Appendix A).
Variation in the thickness of the embedded iron layer in the ferrous liners caused a similar shift in
sensor response, indicating that the in-socket calibration needed to be performed with the ferrous liner
matching the socket of interest (Appendix A). The dual-stage calibration procedure was conducted
to determine the offset between a single, detailed calibration and the unique in-socket response due
to variation in sensor configuration and target variability. This dual-stage calibration also minimizes
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any error associated with inconsistency in the target liner during in-plane movements of the limb,
which were not assessed in this study but have been addressed previously [18].Sensors 2018, 18, x FOR PEER REVIEW  4 of 17 
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Figure 2. Sensors embedded into seven locations in the prosthetic socket: (a) socket with embedded
sensors visible through Nyglass inner layup; (b) sensor locations of the anterior aspect of the socket;
(c) sensor locations of posterior socket. Sensors anterior midlimb (AM), posterior midlimb medial (PM),
and posterior midlimb lateral (PL) were fabricated on a latitudinal line at half the average height of
each panel. Anterior proximal (AP); anterior midlimb distal (AMD); anterior inferior (AI); posterior
inferior (PI).

In the first phase of the calibration procedure, a detailed calibration was obtained for a single
location on a ferrous liner using a benchtop setup (Figure 3). The liner was placed flat on the bench
with a Delrin® block separating the two sides of the liner and isolating the region of interest. A sensor
was fastened to the arm of a digital height gauge (Mitutoyo 570-312, Aurora, IL, USA) so that the
height gauge measured the distance between the sensor and the target. Data were collected while the
sensor was raised 20 mm away from the liner in steps of 0.25 mm from 0 to 5 mm, 0.5 mm from 5 to
15 mm, and 1 mm from 15 to 20 mm. The sensor was then lowered back into contact with the liner
with the same step pattern. The benchtop calibration took approximately 10 min to complete.

An in-socket calibration procedure was then performed to measure the sensitivity of the embedded
sensors in their final configuration. In-socket sensor response was assessed at four known distances
(0.00 mm, 1.09 mm, 2.19 mm, and 3.29 mm). A custom silicone bladder with a proximal tubing port
was placed inside the ferrous liner and was inflated to 27.6 kPa to expand the liner to conform to
the socket’s contours (Figure 3). Polymeric offset pieces were fabricated from a Shore 60A platinum
cure silicone (PlatSil 73-60, Polytek Development Corp., Easton, PA, USA) to restrict liner expansion
and obtain measurements at non-zero distances. Measurements were taken by placing the desired
number of offset pieces on the inner socket wall and then inflating the bladder and liner to conform to
the socket contours. The in-socket calibration procedure took approximately 5 min to complete for a
single socket.

In-socket calibration data were offset along the x-axis from the benchtop calibration data. Offsets
were calculated by converting the proximity counts measured during the in-socket calibration into
distances using the unadjusted benchtop calibration data. Calculated distances were subtracted from
the actual socket–liner distances (thickness of the offset pieces), and the median of these differences
was taken to obtain a single distance offset for each sensor. Offsets were applied to the benchtop
calibration to create individual calibrations for each embedded sensor location that reflected the
sensor’s in-socket response.
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Figure 3. Calibration systems: (a) benchtop calibration system consisted of a sensor fastened to the
arm of a vertical height gauge. A high-resolution measurement was obtained from a single location
on the liner. (b) Complete in-socket calibration system with the bladder and liner expanded to force
the liner to conform to socket wall while data were collected. (c) Bladder used to expand the liner.
(d) Flexible offset pieces were adhered to the socket wall to measure sensor response at multiple
liner–antenna distances.

Participants were included in this study if they had a transtibial amputation at least 18 months
prior and regularly used a definitive prosthesis at least four hours per day without assistive aides.
Candidate participants were excluded if they presented with skin breakdown or soft tissue injury at
the time of study. Study procedures were conducted in accordance with approval #49624 from the
University of Washington Institutional Review Board. All participants provided written informed
consent prior to any study procedures being performed.

Participants conducted two in-lab procedures to assess the ability of the sensors to measure
limb–socket distances and displacements and evaluate socket fit. In the first portion of the test session,
participants were asked to don a variety of sock combinations and stand with equal weight bearing
for 15 s for each combination. Thickness of each sock combination under incremental loading up to
101.2 kPa was tested after the session using a tabletop test system [19,20]. The researcher then asked
participants to identify a minimum and maximum sock thickness in which they could safely walk,
and selected an intermediate sock thickness between the self-selected minimum and maximum. In the
second portion of the test session, participants conducted a series of activities while wearing each sock
combination. The activities were as follows: stand (15 s), walk (1 min), stand (15 s), sit (1 min), stand
(15 s), walk (1 min), stand (15 s), and sit and change sock.

The distance between the limb and socket during the first portion of the test was obtained
for each of the three sock combinations as the average of the distance measurements over the 15-s
standing period. Peak-to-peak displacements were calculated for the walking portion of the test
session as the difference between the maximum and minimum distance for a step. The minimum
distance during a walking cycle represented the limb–socket distance during the stance phase of gait,
whereas the maximum distance represented swing phase. Displacements were calculated for each
step, and averaged over each walking cycle to obtain one average peak-to-peak displacement per
sock combination.

3. Results

3.1. Sensor Calibration

Calibration of a single location on a ferrous liner with the benchtop calibration system revealed
that the sensor effectively measured the distance between the sensor and target over a 15 mm range,
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with a full-scale output (FSO) of 7.6 × 105 counts. No substantial hysteresis was observed. The sensor
was more sensitive at closer distances, with sensitivity ranging from 2.2 × 105 counts/mm at the
closest distances to 9.2 × 102 counts/mm at the farthest distances. The peak-to-peak noise during the
calibration steps averaged 0.06% FSO, and the drift measured over a 30 min period was 0.08% FSO.
A fifth-order polynomial fit well to the data, with the root mean square (RMS) error within 0.007% FSO.

In-socket calibrations revealed that embedded sensors had calibration curves that were consistent
in shape with each other and the benchtop calibration, but were shifted along the x-axis (distance)
(Figure 4). The x-axis offsets between the embedded sensor calibrations and the benchtop calibration
ranged between −0.4 mm and 3.1 mm. When the x-axis offset correction was applied to the benchtop
calibration, the RMS error between in-socket measurements and the calibration curve averaged 2.78%
FSO across all sensors in four test sockets (n = 27 sensors). Conversely, the RMS error between
the unadjusted benchtop calibration curve and the in-socket measurements averaged 26.83% FSO,
highlighting the importance of calibrating each embedded sensor to minimize calibration errors.
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Figure 4. Benchtop calibration obtained from one location on a ferrous liner, in-socket measurements
from one sensor in the socket for Participant 1, and the x-axis offset-corrected benchtop calibration to
accurately represent the embedded sensor’s response.

3.2. Clinical Evaluation

Four people with transtibial amputation of traumatic etiology participated in this study. Three of
the participants were male and one participant was female. The mean age of the participant pool was
48 ± 22 years, and the mean time from amputation was 21 ± 16 years. All participants were K-3 level
ambulators and used total surface bearing prostheses with locking pin suspension. Participant 2 and
Participant 4 had hypertension, a risk factor for vascular disorders that influence residual limb fluid
volume [1,21]. The panels of the socket were in a neutral position, that is, the inner face of the panels
was flush with the surrounding socket wall, for three of the four participants. Participant 4 could not
wear socks with the panels in the neutral position, so 16.63 mm of cable was added to the socket to
loosen the panels and increase the socket size by 2.44%. The panels remained in a single position for
the entirety of the testing session.
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Limb–socket distances measured during standing with equal weight bearing were compared
with the corresponding thickness range of the sock combination. Sensor-measured distances increased
with sock thickness, but sensors did not necessarily measure equivalent distances for a given sock
combination (Figure 5). Distances greater than the maximum unloaded sock thickness were attributed
to the presence of an air gap between the sensor and liner, whereas closer sensor-measured distances
indicated greater compression of the sock. For all participants, the posterior inferior sensor commonly
measured distances greater than the maximum sock thickness, indicating an air gap between the socket
and liner at the distal end of the socket. Each participant had one sensor that consistently measured
the closest distances, but this sensor varied by participant (posterior medial for Participant 1, anterior
midlimb for Participants 2 and 3, and anterior inferior for Participant 4).
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closer in the posterior medial and lateral regions when a 1 ply sock was added. Such a change 
indicates that the addition of the sock significantly altered the fit of the socket, shifting loading from 
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Figure 5. Sensor measured limb–socket distances and actual sock thickness range for each sock
combination worn by Participant 1. The sock thickness range was measured between 0 and 121.5 kPa
using a benchtop measurement system. Sensors did not measure equivalent distances for a single sock
combination. Distances greater than the maximum sock thickness indicated an air gap between the
limb and liner, whereas closer distances indicated greater compression of the sock over the sensor.

When participants wore thick socks compared with thin or no socks while walking, stance phase
limb–socket distances increased, barring discrepancies at three sensors for Participant 4 (Figure 6).
For that participant, the limb moved away from the socket wall in the anterior proximal region and
closer in the posterior medial and lateral regions when a 1 ply sock was added. Such a change indicates
that the addition of the sock significantly altered the fit of the socket, shifting loading from the anterior
aspect of the socket to the posterior midlimb region. The substantial increase in stance phase distance
for the inferior sensors for the 4 ply condition for Participant 1 suggests that the addition of the thicker
sock caused the limb to sit higher in the socket and was likely “hung up” on the proximal aspects of
the socket. Negative stance phase distances were likely the result of compression of the ferrous liner
against the socket wall, as demonstrated in Appendix A.

Peak-to-peak limb–socket displacements, that is, the difference between the swing phase and
stance phase distances, were compared across participants and sock combinations during the walking
trials. The displacement profile was unique for each participant (Figure 7). The posterior medial and
lateral midlimb sensors consistently measured the smallest peak-to-peak displacements. The greatest
peak-to-peak displacements were measured at the anterior midlimb distal sensor for Participant 1 and
Participant 2 and at both inferior sensors for Participant 3 and Participant 4.

Peak-to-peak displacements typically decreased as sock thickness increased; however, the changes
following a sock change were relatively small (Figure 8). When participants wore a thinner sock than
the intermediate condition, the minimum and maximum changes in peak-to-peak displacements were
−0.8 mm and 1.7 mm, respectively. The minimum and maximum changes when a thicker sock was
worn were −1.0 mm and 0.7 mm, respectively. The mean displacement change magnitude was 0.42 mm
for a sock thickness reduction, and −0.2 mm for a sock thickness increase. Not all sensors measured
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changes in displacement that followed the trend of lower displacements with thicker socks and greater
displacements with thinner socks, indicating a non-global change in fit with the sock change.
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Figure 8. Changes in peak-to-peak limb–socket displacements for the following: (a) a reduction in
sock thickness from intermediate; (b) an increase in sock thickness from intermediate. Displacements
typically increased when sock thickness decreased and decreased when sock thickness increased.
Participant 3 did not have an anterior midlimb distal sensor.

4. Discussion

The purpose of this study was to evaluate an embedded sensing system that measured the
distance between the socket and the residual limb. This sensing system may serve as a useful tool for
researchers to investigate how interventions or new technologies influence socket fit. For clinicians,
monitoring of residual limb displacements in the clinic or longer-term data collection in a patient’s
free-living environment may help diagnose socket fit problems, and justify a new socket as needed.

Laminating sensors into the socket wall and embedding the target material into prosthetic liners
overcame limitations of prior designs, allowing many sensors to be used without disturbing the
normal limb–socket interface [16–18]. The quick in-socket calibration procedure that accounted for
each sensor’s unique position and curvature within the socket further contributed to the practicality of
the design by reducing the error to less than 3% FSO. Measured peak-to-peak displacements at the
anterior and inferior sensors ranged from 0.7 mm to 9.4 mm, respectively, consistent with findings
from prior studies [14,15,17,22].

The enhanced capabilities of the system provide new clinical insight. The results demonstrated
that prosthesis users and practitioners should not expect the addition of a sock to alter the distance
between the limb and socket in a uniform manner during standing and walking. The sock may cause
the relative limb position to change, resulting in localized contact between the limb and socket in
some regions or loss of contact in other regions. Participant 1 in the present study appeared to shift
upward in the socket when the maximum sock thickness was added, evidenced by substantially
greater limb–socket distances at the anterior inferior and posterior inferior sites. Participant 4, on the
other hand, may have experienced a posterior translation of the limb when the intermediate sock
thickness was added, resulting in closer distances measured by the posterior midlimb sensors. Similar
to interface stress measurements reported in the literature, the displacement distribution and changes
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in this distribution with an intervention varied among participants [23–26]. This finding further
highlights the complexity of quantifying degradation of socket fit.

The relatively small changes in peak-to-peak displacements, that is, −0.8 to 1.7 mm, for different
sock thickness is surprising. Experienced clinicians can visually identify “pistoning” during gait
inspection when socket fit has degraded, which would indicate that larger displacements occur.
However, pistoning is movement of the limb relative to the socket and may primarily reflect
displacement between the bone and surrounding tissue, as opposed to displacement between the limb
and socket. A number of researchers have utilized imaging techniques such as radiography and motion
analysis to investigate relative bone–socket positions in both static and dynamic positions [27]. Across
these studies, liner–socket displacements (0–16 mm) were typically much smaller than the bone–socket
displacements (3–81 mm) [27]. In 1977, Burgess was surprised to find that patients tolerated 19 mm of
bone–socket pistoning without disturbed patient comfort or gait [28]. The magnitude of displacement
between the liner or skin and the socket that is clinically relevant may thus be smaller than bone–socket
displacements typically used to evaluate pistoning.

It will likely be through studies conducted on many prosthesis users that utilize clinical knowledge
towards data interpretation that limb–socket measurement technology will advance as a useful
diagnostic and prognostic tool for prosthetic care. Technical developments such as incorporating the
ferrous polymer targets into any liner model will facilitate such large-scale studies. Participant 1 and
Participant 2 normally wore a liner from another manufacturer, and so the fit between the liner and
socket was altered using this only-available models of ferrous liner.

The ferrous liners demonstrated susceptibility to compression, resulting in negative distance
measurement in some participant test data (Figure 6). It may be possible to control stiffness of the
polymer on the outside of the liner between the ferrous target and socket wall, creating the elastic
element of a pressure sensor. This advancement would allow the sensor to measure limb–socket
distances when the limb is just in contact or further away from the socket and limb–socket pressures
when it is forced against the socket wall.

5. Conclusions

This study demonstrated the performance of a sensing system designed to measure residual limb
distances at multiple locations in the prosthetic socket without disturbing the limb–socket interface.
Using a novel calibration method, many sensors were calibrated quickly, contributing to a practical
design. The sensors provided insight into limb-socket positions during stance phase and displacements
(pistoning) during swing phase. This sensing system may serve as a valuable tool for both researchers
and clinicians to understand socket fit as it relates to accommodation strategies and interventions,
and patient prosthesis use.
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Appendix A

Appendix A.1. Antenna Repeatability

Three antennae were randomly selected for evaluation. Sensor sensitivity was measured by
adhering the antenna to the arm of a vertical height gauge, which measured the distance between
the sensor and a target that was flat on the bench. A single patch of the ferrous target was
used in the sensitivity tests to eliminate error associated with consistency between target samples.
Sensors demonstrated unique baseline proximity counts when no target was in the sensors’ field of
view, indicating that each sensor operated at a different tank oscillation frequency when powered.
This resulted in a large standard deviation when the average sensitivity was plotted (Figure A1).
This variation was accounted for by subtracting the baseline offset from sensor data, so that the
sensor baseline was zero. Removal of the baseline offsets aligned the sensitivity curves by shifting the
curves along the y-axis, and reduced error between sensor response curves to an RMS error less than
2.0% FSO.Sensors 2018, 18, x FOR PEER REVIEW  12 of 17 
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Figure A1. Sensor sensitivity was measured for multiple sensors to assess repeatability. Average
sensitivity for the same three sensors after the sensor proximity counts were normalized to set the
baseline counts to zero. Curves were shifted along the y-axis when the baseline offset was removed,
which minimized repeatability error.

Appendix A.2. In-Socket Sensor Configuration

A benchtop test setup was created to investigate the influence of sensor configuration variables
on sensitivity (Figure A2). The setup was created with the same inner and outer layup procedure
utilized to create the instrumented sockets, and contained four regions with specific radii (3.0 cm,
4.0 cm, 5.0 cm, and 6.0 cm) that were representative of the magnitude of curvature present in prosthetic
sockets. One sensor was embedded in each region. These regions were labeled Sensor 1 (3.0 cm),
Sensor 2 (4.0 cm), Sensor 3 (5.0 cm), and Sensor 4 (6.0 cm). A single patch of a ferrous target was
used to evaluate sensor response. Attachments matching the curvature of each region and fastened
to a probe arm and z-axis stage held the target patch in a conforming curvature. The z-axis stage
(Misumi ZWG90, Schaumburg, IL, USA) moved the target, and a vertical height gauge (Mitutoyo
570-212, Aurora, IL, USA) with a precision of 0.01 mm measured the position of the z-axis stage and
thus the distance between the target and the layup wall. Sensor response was evaluated from 0.0 mm
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to 10.0 mm in steps of 1.0 mm. The target was then lowered from 10.0 mm to 0.0 mm in 1.0 mm steps
to assess hysteresis.Sensors 2018, 18, x FOR PEER REVIEW  13 of 17 
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Figure A2. Benchtop setup to evaluate effects of curvature on sensor output: (a) composite with
embedded sensors; (b) 3D printed mounding pieces, probe arm, and z-axis stage used to hold the
target in a defined curvature at specified distances from the base.

The results indicated that as curvature of the sensor increased, the sensor response curve shifted
along the x-axis (distance) (Figure A3). X-axis offsets were applied to align the curves for Sensor 1,
Sensor 3, and Sensor 4 with Sensor 2. The offset magnitudes were 0.43 mm for Sensor 1, −0.49 mm for
Sensor 3, and −0.73 mm for Sensor 4. After alignment, the RMS error between the curve for Sensor 2
and the shifted curves averaged 1.35% FSO.
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Appendix A.3. Antenna Thermal Sensitivity

The thermal sensitivity of the antenna was evaluated to identify the magnitude and linearity of
thermal drift. An antenna was placed in an oven and the temperature was increased from 22 ◦C to 60 ◦C
while data was collected from the antenna and a surface-mounted thermistor on the antenna. Sensor
output was dependent on temperature, and changed by 3.13% across the 38 ◦C range (Figure A4).
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Appendix A.4. Liner Repeatability

Both within-liner and between-liner repeatability were evaluated by calibrating an anterior
midlimb location and a posterior midlimb location on five liners using the vertical height gauge
benchtop calibration method. Sensor response was evaluated at antenna-target distances of 0.0 mm to
15.0 mm. The results demonstrated variability in sensor response both between locations on a single
liner and between liners that manifested as an x-axis shift of the sensor response curve, similar to the
effect of sensor configuration on the response curve (Figure A3). After adjusting the sensor response
curves with x-axis offset corrections to align with the curve of one location (Figure A5), the RMS error
averaged 0.96% FSO. These findings indicated that the variation in target signal strength needed to be
accounted for in the calibration procedure, but that a single calibration curve could be used as a base
calibration, similar to the shifting procedure to account for sensor configuration variation.

Appendix A.5. Liner Compression

The influence of compression of the deformable target-embedded liner on sensor response was
assessed using a previously described custom fixture [18]. Compressive stresses up to 250 kPa were
applied to a 7.7 cm by 7.7 cm sample of a ferrous liner at an antenna–liner distance of 1.5 mm.
The antenna–liner distance of 1.5 mm was selected as it most closely represented contact between the
liner and socket wall, with the inner Nyglass layup separating the liner and sensor during contact.
Additionally, this distance prevented deformation of the sensor itself during the tests. The signal
amplitude was sensitive to changes in liner compression. An increase in the compressive stress to
250 kPa increased the signal amplitude from the uncompressed state by 8.7% (Figure A6). The change
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in counts at a fixed distance because of compression indicates that when participant session data
are calibrated from counts to millimeters, negative distance measurements may occur. With further
characterization, this response to compression may allow proximity counts to be converted to pressure;
however, because participants wore socks over the liner during the test sessions, more investigation is
required to characterize the sensor response to compression of socks in conjunction with the liner.Sensors 2018, 18, x FOR PEER REVIEW  15 of 17 
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