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Abstract

Background: Case-control studies are generally designed to investigate the effect of exposures on the risk of a
disease. Detailed information on past exposures is collected at the time of study. However, only the cumulated
value of the exposure at the index date is usually used in logistic regression. A weighted Cox (WC) model has been
proposed to estimate the effects of time-dependent exposures. The weights depend on the age conditional
probabilities to develop the disease in the source population. While the WC model provided more accurate
estimates of the effect of time-dependent covariates than standard logistic regression, the robust sandwich variance
estimates were lower than the empirical variance, resulting in a low coverage probability of confidence intervals.
The objectives of the present study were to investigate through simulations a new variance estimator and to
compare the estimates from the WC model and standard logistic regression for estimating the effects of correlated
temporal aspects of exposure with detailed information on exposure history.

Method: We proposed a new variance estimator using a superpopulation approach, and compared its accuracy to
the robust sandwich variance estimator. The full exposure histories of source populations were generated and
case-control studies were simulated within each source population. Different models with selected time-dependent
aspects of exposure such as intensity, duration, and time since cessation were considered. The performances of the
WC model using the two variance estimators were compared to standard logistic regression. The results of the
different models were finally compared for estimating the effects of correlated aspects of occupational exposure to
asbestos on the risk of mesothelioma, using population-based case-control data.

Results: The superpopulation variance estimator provided better estimates than the robust sandwich variance
estimator and the WC model provided accurate estimates of the effects of correlated aspects of temporal patterns
of exposure.

Conclusion: The WC model with the superpopulation variance estimator provides an alternative analytical
approach for estimating the effects of time-varying exposures with detailed history exposure information in
case-control studies, especially if many subjects have time-varying exposure intensity over lifetime, and if only one
control is available for each case.
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Background
Population-based case-control studies are widely used in
epidemiology to investigate the association between en-
vironmental or occupational exposures over lifetime and
the risk of cancer or other chronic diseases. Many of the
exposures of interest are protracted and a huge amount
of information is often retrospectively collected for
each subject about his/her potential past expo-
sure over lifetime. For example, for occupational
exposures, the whole occupational history is usually
investigated for each subject, and different methods
exist to estimate the average dose of exposure at each
past job [1-3]. However, only the cumulated estimated
dose of exposure at the index age (age at diagnosis
for cases and at interview for controls) is usually used
in standard logistic regression analyses. Such ap-
proach does not use the (retrospective) dynamic in-
formation available on the exposure at different ages
during lifetime.
A time-dependent weighted Cox (WC) model has re-

cently been proposed to incorporate this dynamic infor-
mation on exposure, in order to more accurately
estimate the effect of time-dependent exposures in
population-based case-control studies [4]. The WC
model consists in using age as the time axis and
weighting cases and controls according to their case-
control status and the age conditional probabilities of
developing the disease in the source population. The
weights proposed in the WC model are therefore time-
dependent and estimated from data of the source popu-
lation. A simulation study showed that the WC
model improved the accuracy of the regression
parameters estimates of time-dependent exposure
variables as compared with standard logistic regres-
sion with fixed-in-time covariates [4]. However, the
average robust sandwich variance estimates based on
dfbetas residuals [5] were systematically lower than
the empirical variance of the parameter estimates,
which resulted in too narrow confidence intervals
(CI) and low coverage probabilities [4].
There is an extensive statistical literature on the

weighted analyses of cohort sampling designs (see
among many others [6-10]). A population-based case-
control study can be seen as a nested case-control
study within the source population of cases and
controls, and can therefore fit in this general cohort
sampling design framework. Population-based case-
control studies can also be seen as a survey with
complex selection probabilities [11-14] and this is the
general framework that we use in this paper. Specific-
ally, we consider the superpopulation approach
developed by Lin [13] who proposed a variance esti-
mator that accounts for the extra variation due to
sampling the finite survey population from an infinite
superpopulation. As a result, the Lin variance estima-
tor accounts for the random variation from one sur-
vey sample to another and from one survey
population to another, as opposed to the robust sand-
wich variance estimator that accounts only for the
random variation from one survey sample to another.
In the context of population-based case-control study,
the case-control sample could be considered as the
survey sample, the source population as the finite
survey population, and the population under study as
the infinite superpopulation.
The asymptotic properties of the Lin variance estima-

tor have been investigated and a small simulation study
has been conducted to investigate these properties in fi-
nite samples [13]. The results indicated that the
superpopulation variance estimates were closer to the
true variance than the robust sandwich variance
estimates. However, the simulation study considered
only fixed-in-time covariates and simple selection prob-
abilities that did not reflect the more complex sampling
scheme of population-based case-control studies. It is
therefore unclear how the superpopulation variance esti-
mator would perform for the estimation of the effects of
time-dependent covariates using the specific estimated
time-dependent weights proposed in the WC model [4].
In addition, for further applications to population-based
case-control data, it would be important to clarify the
performance of the WC model, as compared with stand-
ard logistic regression analyses, for estimating the effects
of several correlated temporal patterns of protracted
exposures. Indeed, the effects of temporal patterns of
exposures such as intensity, duration, age at first expos-
ure, and time since last exposure are often of great
interest from an epidemiological point of view [15],
but they need to be carefully adjusted for each other
to avoid residual confounding [16]. Such adjustment
induces correlation between covariates and it is im-
portant to investigate how it affects the proposed
estimators.
The first objective of the present study is to investigate

through extensive simulations the accuracy of the Lin
variance estimator for estimating the effects of time-
varying covariates in case-control data, using the weights
proposed in the WC model [4]. The second objective is
to compare the estimates from the WC model and
standard logistic regression for estimating the effects of
selected correlated temporal aspects of exposure with
detailed information on exposure history. The next
section introduces the WC model and the robust and
Lin’s variance estimators. The different approaches
are then compared through simulations and using
data from a large population-based case-control study
on occupational exposure to asbestos and pleural
mesothelioma (PM).
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The regression model and the variance estimators
The WC model
The Cox proportional hazards model specifies the haz-
ard function as

λ t x tð Þj Þ ¼ λ0 tð Þ exp x tð Þ0β� �
;

�
where λ0 is the baseline hazard, x(t) is the vector of
observed covariate values at time t and β is the vector of
unknown regression parameters. In the context of a
population-based survey with complex sampling design
[5], the estimator of β is the solution of the pseudo-
maximum likelihood equation

U βð Þ ¼
Xn
i¼1

ωiδi xi tið Þ �
Ŝ

1ð Þ
ti; β̂
� �

Ŝ
0ð Þ

ti; β̂
� �

8<
:

9=
; ¼ 0; ð1Þ

where n is the sample size, ωi is the sampling weight for
subject i, δi = 1 if subject i is the case diagnosed at age ti
and 0 otherwise, and

Ŝ
0ð Þ

t; β̂
� �

¼
Xn
j¼1

ωjYj tð Þ exp xj tð Þ0β̂
n o

;

Ŝ
1ð Þ

t; β̂
� �

¼
Xn
j¼1

ωjYj tð Þxj tð Þ exp xj tð Þ0β̂
n o

;

with Yj(t) = 1 if the subject j is at risk at time t (i.e. tj ≥ t),
0 otherwise.
In the WC model proposed for case-control data [4], t

is age and the sampling weight ω of each subject
depends on age and on his case-control status. Specific-
ally, the weight for each subject i at age t is given by

ωi tð Þ ¼
1� π tð Þ
π tð Þ � ncases tð Þ

ncontrols tð Þ if subject i is a control selected
at age t or at a later age

1 if subject i is a case diagnosed
at age t or at a later age;

8>><
>>:

ð2Þ
where π(t) is the probability to develop the disease at
age t or at a later age in the source population, ncases(t)
is the number of cases diagnosed at age t or at a later
age in the case-control study, and ncontrols(t) is the num-
ber of controls selected at age t or at a later age in the
case-control study as well. If the WC model is used to
analyze data from a nested case-control study, the age
conditional probabilities π(t) in Equation (2) can directly
be estimated from the full enumerated cohort. Left-
truncation at age at entry into the cohort should be
performed to account for delayed entry [17]. If the WC
model is used to analyze population-based case-control
data, π(t) can be estimated from health statistics on the
population under study, as shown in our application on
PM in the section following simulations. The weights
equal 1 for cases because all the eligible cases of the
source population (or in the cohort) are usually included
in the case-control study. If the sampling probabilities of
cases do not equal 1, then weights in Equation (2)
should be adjusted accordingly.
The weights defined in Equation (2) can be implemented

in any statistical software that handles time-dependent
weights in the Cox model, such as the coxph function
in R or the SAS PROC PHREG function.

The variance estimators

The robust sandwich variance estimator for β̂ in Equa-
tion (1) as proposed by Binder [5] for finite population-
based surveys is given by

V̂ 1 β̂
� �

¼ I�1 β̂
� � Xn

i¼1

ωiûi β̂
� �n o⊗2

" #
I�1 β̂
� �

ð3Þ

where I β̂
� �

is the observed information matrix obtained

by evaluation of this expression ∂Û βð Þ
∂β β¼β̂

��� , a⊗ 2 = aa0, and

ûi β̂
� �

¼ δi xi tið Þ �
Ŝ
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1ð Þ
tj; β̂
� �

Ŝ
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The robust variance estimator in Equation (3) can be

rewritten as V̂ 1 β̂
� �

=D’D where D is the dfbetas

residuals [18] vector from the Cox model including the
weights ω that can depend on time as those defined in
Equation (2), as suggested in Barlow [19]. As indicated
by Therneau and Li [20] and by Barlow et al. [21], the
robust sandwich variance estimate from Equation (3)
can directly be obtained with R using the commands

M1 < −coxph(Surv(start,stop,event) ~ x + cluster(id),
weights = weight)
V1 < − M1$var

with the vector of weights derived from Equation (2) for
the WC model.

The robust variance estimator V̂ 1 β̂
� �

accounts for the

variability due to sampling the case-control sample from
the source population. To account for the extra variabil-
ity due to sampling the source population from the
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(infinite) superpopulation, we propose to use the Lin
variance estimator [13] that turned out to consist in
adding the naïve variance estimator to the robust vari-

ance estimator V̂ 1 β̂
� �

. The Lin variance superpopu-

lation estimator is thus given by

V̂ 2 β̂
� �

¼ V̂ 1 β̂
� �

þ I�1 β̂
� �

: ð5Þ

With R, the superpopulation variance estimate from
Equation (5) can simply be obtained using the command

V2 <- V1 + M1$naive.var

All along this paper, the WC model using the robust

variance estimator V̂ 1 β̂
� �

in Equation (3) will be

denoted by WC1, while the WC model using the Lin’s

superpopulation variance estimator V̂ 2 β̂
� �

in Equation

(5) will be denoted by WC2. While WC1 and WC2
models give identical estimated exposure effects, they
yield different standard errors and thus CI.

Simulations
Overview of the simulation design
The main objective of the simulation study was to evaluate
the performance of Lin’s superpopulation variance estima-

tor V̂ 2 β̂
� �

in Equation (5) with the time-dependent

weights defined in Equation (2), for the estimation of the
effects of time-varying exposures in case-control studies.
In particular, we compared the coverage probability of the
95% CI resulting from the WC2 model, as compared to
the WC1 model and standard logistic regression. We were
specifically interested in the effects of exposure intensity,
duration, age at first exposure and time since last expos-
ure. These inter-related aspects of exposure are of interest
in many epidemiological applications but induce some
statistical analytical issues because of correlation and
time-dependency.
We generated 1000 source populations of 1000 or 5000

individuals each, and within each source population, we
simulated a case-control study. The age at event for each
subject in each source population was generated from a
standard Cox model with time-dependent covariates,
using a permutation algorithm described elsewhere and
assuming Weibull marginal distribution of age at event
[4,22,23]. Three Cox models of interest from an epi-
demiological point of view were simulated. Model 1
included intensity and duration of exposure only. Model
2 included age at first exposure in addition to intensity
and duration. Model 3 was similar to Model 2 but used
time since last exposure instead of age at first exposure.
The distribution of the exposures variables were chosen

to be close to the observed distributions of occupational
asbestos exposure variables in our case-control data on
PM [15] described in the application section. Specifically,
the ages at first and at last exposure were generated for all
subjects from lognormal distributions. The exposure in-
tensity at each age was generated from a linear function of
age. Parameters for the random intercept and slope were
chosen such that either 85% of subjects had a constant in-
tensity, 6% a highly increasing, 6% a moderately decreas-
ing, and 3% a moderately increasing intensity over lifetime
(Scenario A); or 50% a highly increasing and 50% a moder-
ately decreasing intensity over lifetime (Scenario B).
Scenario A reflects our real case-control data on occupa-
tional exposure to asbestos. The exposure intensity at each
age was represented in all our models by a variable that
equaled the cumulated value of intensity at that age
divided by the total duration of exposure at that age. This
exposure intensity variable is equivalent to the mean index
of exposure (MIE) variable introduced in the application
section. The exposure intensity, as well as duration and
time since last exposure, were time-dependent in all our
true Models 1–3. The true effects β of each exposure vari-
able in Models 1–3 were fixed to values that ranged from
weak to strong effects: 0.41 to 1.39 for intensity, 0.01 to
0.05 for duration, −0.01 to −0.11 for age at first exposure,
and 0.01 to 0.04 for time since last exposure. These beta
correspond to hazard ratios of 1.5 to 4.0 for one standard
deviation (i.e. 1.0 fiber/ml) increase in exposure intensity,
hazard ratios of 1.2 to 2.0 for one standard deviation in-
crease (i.e. 14 years) in duration of exposure, hazard ratios
of 0.9 to 0.4 for one standard deviation (i.e. 8 years) in-
crease in age at first exposure, and hazard ratios of 1.2 to
1.8 for one standard deviation (i.e. 14 years) increase in
time since cessation of exposure.
Censoring for age at event in the source population

was independently generated from a uniform distribu-
tion such that the event rate was about 10% in each
source population of 1000 subjects, and 2% in each
source population of 5 000 subjects. Each subject of the
source population who had the event of interest was
selected as a case in the case-control dataset. The event
rates in the source population thus implied that we had
about 100 cases in each case-control data set. For each
case, 1, 2, or 4 controls were randomly selected with re-
placement among subjects at risk at the case’s event age,
which corresponds to 1:1, 1:2, or 1:4 individual matching
on age, respectively. On average, each case-control
dataset was therefore made of about 100 cases and 100,
200, or 400 controls.

Analytical methods used to analyze the simulated
data
Each case-control sample was analyzed using four re-
gression models (WC1 and WC2 models and two stand-
ard logistic regression models) that were correctly
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specified in terms of the exposure variables included. In
the WC1 and WC2 models, the exposure variables were
time-dependent, and the probability π(t) was the propor-
tion of subjects in the source population who had an
event at age t or at a later age among those at risk at age
t. We assumed that all subjects of the population source
were followed-up since birth, implying that age at event
did not have to be left-truncated in WC1 and WC2. For
comparison purpose, conditional logistic regression
(CLR) was used as the standard analytical method for in-
dividually matched case-control studies. Unconditional
logistic regression (ULR) including age as a continuous
covariate in addition to the exposure variables, was also
used as the standard alternative analytical approach. For
both ULR and CLR, the time-dependent covariates were
fixed at their observed value at the age at event for cases
or selection for controls. Because controls were selected
among subjects at risk at the ages where each case
occurs, all the exponential of the regression parameter
estimates can be interpreted as the source population
rate ratio estimates [24].
Statistical criteria used to compare the performance of
the different estimators
For each of the four regression models WC1, WC2,
CLR, and ULR, we calculated the relative bias of the re-

gression parameter estimator β̂ associated with each ex-
posure variable, as compared with the true effect β of

that exposure variable, 1
1000

X1000
i¼1

β̂i � β

β

 !
, where β̂i is the

parameter estimate of the model based on the ith case-
control dataset (i = 1, . . ., 1 000). To evaluate whether
the relative bias was not partly due to a bias generated
in the population source data, we also derived the rela-

tive bias as compared with the estimated effect β̂Cox

of the well specified time-dependent Cox model using

the full population source data, 1
1000

X1000
i¼1

β̂i � β̂Cox;i

β̂Cox;i

 !
. We

also derived the root mean squared error (RMSE)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂
β � β
� �2

þ var β̂
� �q

, where �̂
β is the mean of the 1 000

parameter estimates β̂i. The empirical relative efficiency of
each regression parameter estimator was computed as
the ratio of the empirical variance of the Cox model

using the full source population data, var β̂Cox

� �
, to the

empirical variance of the parameter estimates var β̂
� �

.

The average of the 1000 standard errors s β̂
� �

(ASE)

was compared to the empirical standard deviation of the

1000 β̂ estimates (SDE). We also calculated the coverage
probability as the proportion of samples for which the

95% CI of β, β̂ � 1:96� s β̂
� �

, included the true value β.
Simulation results
Table 1 shows the results of the four analytical methods
(WC1, WC2, CLR, ULR) for strong effects of exposure
intensity and duration in Model 1. Table 2 shows the
results for strong effects of i) intensity, duration, and age
at first exposure in Model 2, and ii) intensity, duration,
and time since cessation in Model 3. The results tended
to be similar for weaker effects.
As suggested by the ratio ASE/SDE, the superpopulation

variance estimator (WC2) tended to give estimates that
were closer to the true variance than the robust variance
estimator (WC1) that systematically under-estimated the
true variance. Despite the superpopulation variance esti-
mator tended to overestimate the true variance for the ef-
fect of exposure intensity when the population was made
of 1000 subjects only (Tables 1 and 2), the coverage rates
from WC2 were systematically much closer to the nom-
inal level of 95% than those from the WC1 model. For
each scenario of intensity pattern (Scenario A or B), the
ratio ASE/SDE and the coverage rate for the effects of in-
tensity and duration were similar in Models 2–3 as
compared with Model 1 (Table 2 versus Table 1),
suggesting that additional adjustment for correlated
covariates does not affect the performance of the different
variance estimators.
While the relative biases from all analytical models

(WC, ULR and CLR) tended to be low and of the same
magnitude in all scenarios, the relative efficiency as
compared to the Cox model estimated on the full popu-
lation source, as well as the accuracy in terms of RMSE,
tended to be different. Indeed, in all scenarios with 1:1
case:control ratio within population source of 1000
subjects, the regression coefficient estimator from the
WC models was much more efficient and thus also more
accurate than that from CLR and ULR (Tables 1 and 2).
As expected, the relative efficiency from all models
estimated using 100 cases and 100 controls, as compared
to the Cox model estimated on the full population
source, decreased when the population size increases.
For example, the relative efficiency of the WC for inten-
sity with pattern B decreased from 0.59 to 0.20 when the
population size increased from 1000 to 5000 subjects
(Table 1). As expected as well, increasing the number of
controls from 100 to 200 or 400 for a given population
size (5000 in Table 1) strongly increased the relative effi-
ciency of ULR and CLR but only moderately increased
the relative efficiency of the WC models. For example,
the relative efficiency for intensity with pattern B
increased from 0.10 to 0.36 for CLR while only from
0.20 to 0.37 for the WC model (Table 1). Because the
WC model used controls at different ages for which they
were selected in the 1:1 case-control scenario, using add-
itional controls in the 1:2 or 1:4 case:control ratio
scenarios added relatively less information in this model



Table 1 Simulation results for Model 1 for 1:1, 1:2, or 1:4 matched case-control data including about 100 cases arising
from populations of 1000 or 5000 subjects, based on 1000 replications
Population

size
Case:

control ratio
Intensity

patterns (a)
Exposure
variables

β Method (b) Relative
bias (%) (c)

Relative bias /
Cox pop (%) (c)

Relative
efficiency (d)

RMSE ×
10-3 (e)

ASE/
SDE (e)

Cov.
rate (e)

1 000 1:1 A Intensity 1.39 WC1 2.9 2.4 0.61 158 0.87 89.1

WC2 - - - - 1.17 97.5

CLR 5.9 5.5 0.14 327 0.95 96.5

ULR −2.6 −3.0 0.31 218 0.97 93.1

Duration 0.05 WC1 3.3 2.0 0.41 14 0.82 88.3

WC2 - - - - 1.08 97.1

CLR 6.2 4.6 0.19 20 0.96 95.7

ULR −5.3 −6.6 0.35 15 1.03 95.1

1:1 B Intensity 1.39 WC1 2.6 2.7 0.59 158 0.88 89.9

WC2 - - - - 1.18 98.7

CLR 3.4 3.4 0.14 315 0.94 94.9

ULR −3.8 −3.7 0.31 219 0.98 92.0

Duration 0.05 WC1 2.0 2.4 0.45 14 0.79 88.3

WC2 - - - - 1.04 96.1

CLR 1.9 2.2 0.21 21 0.94 94.2

ULR −8.6 −8.3 0.39 16 0.99 93.4

5 000 1:1 B Intensity 1.39 WC1 7.3 9.3 0.20 254 0.72 76.1

WC2 - - - - 0.85 85.6

CLR −0.9 0.7 0.10 325 0.87 89.8

ULR −3.3 −1.7 0.23 219 0.92 91.8

Duration 0.05 WC1 1.6 7.0 0.17 28 0.79 89.0

WC2 - - - - 0.90 93.0

CLR −15.7 −12.5 0.19 27 0.92 90.8

ULR −15.4 −11.9 0.32 22 0.94 90.4

1:2 B Intensity 1.39 WC1 −0.3 1.6 0.25 203 0.78 86.7

WC2 - - - - 0.93 92.8

CLR −3.0 −1.2 0.22 218 0.98 93.1

ULR −3.5 −1.7 0.34 181 0.96 91.8

Duration 0.05 WC1 −3.4 1.3 0.27 22 0.85 89.2

WC2 - - - - 1.00 94.5

CLR −10.0 −6.5 0.33 21 0.95 92.3

ULR −10.2 −6.5 0.45 18 0.96 93.3

1:4 B Intensity 1.39 WC1 −5.3 −3.6 0.37 191 0.80 85.0

WC2 - - - - 0.99 91.5

CLR −3.9 −2.2 0.36 187 0.93 89.8

ULR −3.6 −1.8 0.47 164 0.93 91.0

Duration 0.05 WC1 −10.6 −6.5 0.39 19 0.86 88.9

WC2 - - - - 1.06 94.6

CLR −11.1 −7.3 0.49 17 0.95 91.7

ULR −10.9 −6.9 0.58 16 0.95 92.6

(a) Exposure intensity was either constant over lifetime for 85% of the subjects, highly increasing for 6%, moderately decreasing for 6%, and moderately
increasing intensity for 3% (Scenario A); or, was highly increasing for 50% and moderately decreasing for 50% (Scenario B).
(b) WC1, weighted Cox models with robust sandwich variance; WC2, weighted Cox model with superpopulation variance; CLR, conditional logistic regression on
age; ULR, unconditional logistic regression adjusted for age as a continuous covariate.
(c) Relative bias as compared to the true effect and as compared to the estimated effect of the Cox model using the full population source data. Each of these
two bias was the same for WC1 and WC2 since these models used the same regression parameter estimator β̂ .
(d) Relative efficiency as compared to the Cox model estimated on the full population source. This quantity was the same for WC1 and WC2 since these models
used the same regression parameter estimator β̂ .
(e) RMSE, root mean squared error (same for WC1 and WC2 which used the same regression parameter estimator β̂); ASE, average of the 1000 standard errors
s β̂
� �

; SDE, empirical standard deviation of the 1000 β̂ estimates; cov. rate, coverage rate of the 95% confidence interval of β̂ .
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Table 2 Simulation results for Models 2 and 3 for 1:1 matched case-control data including about 100 cases arising
from a population of 1000 subjects, based on 1000 replications
Model Intensity

patterns (a)
Exposure
variables

β Method (b) Relative
bias (%) (c)

Relative bias /
Cox pop (%) (c)

Relative
efficiency (d)

RMSE ×
10-3 (e)

ASE/
SDE (e)

Cov.
rate (e)

2 A Intensity 1.39 WC1 3.7 2.7 0.60 164 0.86 91.1

WC2 - - - - 1.18 98.3

CLR 9.5 8.3 0.09 435 0.82 96.3

ULR −2.9 −3.9 0.28 230 0.97 94.1

Duration 0.05 WC1 1.5 1.9 0.44 16 0.80 88.5

WC2 - - - - 1.05 95.7

CLR 4.9 4.7 0.13 29 0.84 95.5

ULR −11.9 −11.8 0.36 19 1.01 93.6

Age at first exposure −0.11 WC1 4.7 3.1 0.44 32 0.79 86.3

WC2 - - - - 1.04 95.3

CLR 9.9 7.7 0.18 50 0.92 95.1

ULR 0.4 −1.2 0.39 33 1.00 95.1

B Intensity 1.39 WC1 3.1 2.8 0.64 161 0.88 90.1

WC2 - - - - 1.19 98.4

CLR 6.9 6.5 0.10 405 0.84 94.1

ULR −4.4 −4.7 0.32 229 0.98 93.3

Duration 0.05 WC1 1.3 1.3 0.49 16 0.82 90.4

WC2 - - - - 1.09 96.5

CLR 5.6 5.0 0.17 27 0.91 95.0

ULR −12.7 −12.8 0.37 19 1.00 92.9

Age at first exposure −0.11 WC1 3.6 2.8 0.51 30 0.83 89.8

WC2 - - - - 1.09 96.5

CLR 7.7 6.1 0.17 53 0.87 94.7

ULR −1.7 −2.6 0.40 34 0.99 95.5

3 A Intensity 1.39 WC1 3.4 3.0 0.58 165 0.84 90.3

WC2 - - - - 1.13 97.0

CLR 6.0 5.5 0.14 333 0.92 95.9

ULR −1.5 −1.9 0.33 213 0.99 94.2

Duration 0.05 WC1 0.3 0.0 0.47 23 0.80 88.7

WC2 - - - - 1.05 96.1

CLR 5.2 5.3 0.24 32 0.93 95.1

ULR −2.7 −2.7 0.40 24 0.98 95.1

Time since cessation 0.04 WC1 0.8 2.3 0.43 27 0.78 87.3

WC2 - - - - 1.02 95.9

CLR 8.0 4.2 0.24 36 0.93 95.4

ULR 2.9 −6.0 0.38 28 0.97 95.2

B Intensity 1.39 WC1 2.9 3.0 0.63 160 0.88 90.4

WC2 - - - - 1.18 98.8

CLR 4.6 4.6 0.15 326 0.92 95.9

ULR −2.8 −2.7 0.36 208 1.02 93.7

Duration 0.05 WC1 −0.7 1.1 0.44 23 0.79 86.9

WC2 - - - - 1.04 95.9

CLR −1.8 0.6 0.24 31 0.94 95.4

ULR −7.7 −6.2 0.39 25 0.98 94.5
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Table 2 Simulation results for Models 2 and 3 for 1:1 matched case-control data including about 100 cases arising
from a population of 1000 subjects, based on 1000 replications (Continued)

Time since cessation 0.04 WC1 −1.2 11.2 0.46 26 0.82 88.7

WC2 - - - - 1.07 95.4

CLR −0.3 9.5 0.25 35 0.97 95.6

ULR −2.3 −13.2 0.40 27 1.01 95.6

(a) Exposure intensity was either constant over lifetime for 85% of the subjects, highly increasing for 6%, moderately decreasing for 6%, and moderately
increasing intensity for 3% (Scenario A); or, was highly increasing for 50% and moderately decreasing for 50% (Scenario B).
(b) WC1, weighted Cox models with robust sandwich variance; WC2, weighted Cox model with superpopulation variance; CLR, conditional logistic regression on
age; ULR, unconditional logistic regression adjusted for age as a continuous covariate.
(c) Relative bias as compared to the true effect and as compared to the estimated effect of the Cox model using the full population source data. Each of these
two bias was the same for WC1 and WC2 since these models used the same regression parameter estimator β̂ .
(d) Relative efficiency as compared to the Cox model estimated on the full population source. This quantity was the same for WC1 and WC2 since these models
used the same regression parameter estimator β̂ .
(e) RMSE, root mean squared error (same for WC1 and WC2 which used the same regression parameter estimator β̂); ASE, average of the 1000 standard errors
s β̂
� �

; SDE, empirical standard deviation of the 1000 β̂ estimates; cov. rate, coverage rate of the 95% confidence interval of β̂ .
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than in ULR and CLR. As a result, ULR and CLR be-
came more accurate in terms of RMSE than the WC
models when four controls were selected for each case.
Interestingly, CLR did not perform better in terms of

both bias and RMSE than ULR, despite individual matching
of cases and controls. ULR was actually systematically more
efficient than CLR. This result may be consistent with our
previous results where we found that CLR might have diffi-
culty in separating the effects of correlated time-dependent
variables [23]. Indeed, the correlation between each pair of
the four exposure variables (intensity, duration, age at first
exposure and time since last exposure) as well as with age
at the index date, ranged between −0.679 and +0.453. The
correlation also affected both the WC and ULR parameter
estimators as suggested by the slightly higher RMSE in
Models 2 and 3 (Table 2) as compared with Model 1
(Table 1) for the effects of intensity and duration, but it
affected them less than the CLR estimator.

Application to occupational exposure to asbestos and
pleural mesothelioma
Mesothelioma is a rare tumor mostly located in the pleura
and usually caused by exposure to asbestos. The role of
the different temporal patterns of occupational exposure
to this substance has still to be explored using appropriate
statistical methods accounting for individual changes over
time in the exposure intensity [15]. It is therefore of inter-
est to apply the proposed estimators to estimate the mutu-
ally adjusted effects of exposure intensity, duration, age at
first exposure, and time since last exposure, and to com-
pare the results to those from standard logistic regression
analyses that do not dynamically account for within
subjects changes over time of exposure intensity.

Data source
The data came from a large French population-based
case-control study described in Lacourt et al. [15]. Cases
were selected from a French case-control study
conducted in 1987–1993 and the French National
Mesothelioma Surveillance Program in 1998–2006.
Population controls were frequency matched to cases by
sex and year of birth within 5 years group. Occupational
asbestos exposure was evaluated for each subject with a
job-exposure matrix (JEM) which allowed us to derive
the mean index of exposure (MIE) that was used in the
regression models to represent intensity of exposure, as
in Lacourt et al. [15]. The MIE at age t was given by

MIE tð Þ ¼
XL
l¼1

dl � pl � fsl � islð Þ þ fal � ialð Þ½ �
 !

=
XL
l¼1

dl

where L is the total number of jobs exposed to asbestos till
age t; dl the duration (in years) of job l, pl the probability
of asbestos exposure for job l, fsl and isl the frequency and
intensity of asbestos exposure due to specific task of job l,
respectively, fal and ial the frequency and intensity of as-
bestos exposure due to environment work contamination
of job l, respectively. For each job, the probability was
derived from the percent of workers exposed in the
considered job code, the frequency from the percent of
work time, and the intensity from the concentration of as-
bestos fibers in the air expressed as fibers per milliliter
(f/ml). See Lacourt et al. [15] for more details. An ever
exposed subject to asbestos was a subject who had at least
one job with a probability pl different from zero.
Because our objective was to accurately investigate the

effects of the quantitative time-related aspects of occupa-
tional exposure, all our analyses were restricted to subjects
ever exposed to asbestos (68.9% in males and 20.9% in
females). In addition, because the sample size for females
was too small to ensure adequate statistical power and ac-
curate estimates in separate multiple regression analyses
of this group [15], the analyses were restricted to males
ever exposed to asbestos, i.e. to 1041 male cases and 1425
male controls. The distribution of age and the asbestos ex-
posure characteristics at the time of diagnosis for cases
and interview for controls are shown in Table 3. The dis-
tribution of the patterns of intensity over lifetime was



Table 3 Mean and standard deviation of age and
asbestos exposure variables at the time of diagnosis/
interview for ever exposed males
Characteristics Cases Controls

(n = 1 041) (n = 1 425)

Age at diagnosis / interview (years) 67.0 (10.0) 65.9 (6.3)

Year of birth 1 931.1 (10.0) 1 931.0 (9.3)

Age at first exposure (years) 21.0 (7.1) 22.6 (8.1)

Mean exposure intensity over lifetime
(fibers/ml) (a)

0.62 (1.43) 0.21 (0.44)

Total exposure duration (years) 27.8 (12.9) 25.0 (14.1)

Time since last exposure (years) 16.9 (13.4) 17.4 (14.6)

Results from the French case-control study on mesothelioma, 1987–2006.
(a) Measured by the mean index of exposure (MIE).
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similar to the one described in scenario A of the simula-
tion, with 85% of subjects with almost constant asbestos
exposure intensity over lifetime.
Analytical methods used to analyze the case-control data
on pleural mesothelioma
To derive the weights proposed in the WC models
(Equation 2), we first estimated the age-conditional
probabilities π(t) of developing PM in the French male
general population. These estimated probabilities were
derived from published estimated sex- and age-specific
incidence rates of PM per 100000 person-years in France
in 2005 [25]. We assumed that these estimated incidence
rates applied to our source population and that they
were appropriate during the whole life of our subjects.
The results are shown in Table 4 for males. As in the
Table 4 Estimated male age-conditional probabilities
used in the weights of the WC models to analyze the
French case-control study of on mesothelioma
Age t p(t) (a) π(t) (b)

0-44 0.1 0.000942

45-49 0.4 0.000941

50-54 1.2 0.000937

55-59 2.8 0.000925

60-64 5.2 0.000897

65-69 8.0 0.000845

70-74 10.5 0.000765

75-79 13.2 0.000660

80-84 15.2 0.000528

85-89 14.5 0.000376

90-94 11.6 0.000231

95 or more 11.5 0.000115

(a) p(t) are estimated male age-specific incidence rates of pleural
mesothelioma per 100 000 person-years in France in 2005 [25].
(b) π(t) are estimated male age-conditional probabilities of developing
pleural mesothelioma within residual lifetime after age t, calculated
as π tð Þ ¼ 1�

Y
l≥t

1� p lð Þð Þ.
simulation study, standard errors for the WC model
were then derived using the two variance estimators

V̂ 1 β̂
� �

and V̂ 2 β̂
� �

, resulting in the WC1 and WC2

models, respectively.
For comparison purpose, the data were further

analyzed with ULR which is the standard method to
analyze frequency matched case-control data, as well as
with CLR. Age was the time axis in WC1 and WC2
models, and a continuous covariate in ULR and CLR.
We did not perform left-truncation in WC1 and WC2
models thus assuming that all subjects of the population
source were passively followed-up for PM since birth.
The matching factor, birth year, was a quantitative
covariate in WC1, WC2, and ULR, and was the stratifi-
cation variable (in 5 years groups) in CLR. Using each of
the four approaches (WC1, WC2, CLR and, ULR), we
estimated the effects of intensity and duration of occu-
pational asbestos exposure, the age at first exposure, and
time since last exposure, using the same combination of
quantitative exposure variables as in Models 1–3 of the
simulation study. All the effects of these variables were
therefore assumed to be linear. Despite our recent
results that suggested that these effects were not linear
on the logit of PM [15], we used quantitative variables in
order to facilitate the comparison of the estimates from
the four different analytical approaches. The resulting
estimates should therefore be used only for methodo-
logical comparison purpose and not as substantive epi-
demiological results. As in the simulation study, all the
exposure variables were time-dependent in WC1 and
WC2 models, and fixed at their value at the age at diag-
nosis or interview for ULR and CLR.

Results
Table 5 shows the estimated effects of the selected quan-
titative asbestos exposure variables on the risk of PM,
using the four analytical approaches (WC1, WC2, CLR,
and ULR) and Models 1–3. The estimated effects are

shown in terms of exp β̂
� �

, i.e. estimated hazard ratios

for WC1 and WC2 and estimated odds ratios for ULR
and CLR. These estimated effects were calculated for an
increase of about one standard deviation of the exposure
variable, i.e. 1 fiber/ml for asbestos exposure intensity,
14 years for duration, 8 years for age at first exposure,
and 14 years for time since last exposure.
As expected, the associations between all asbestos ex-

posure variables and PM were significant with each of
the four analytical approaches (Table 5). Specifically, in-
creasing intensity or duration increased significantly the
risk of PM, when adjusted or not on either age at first
exposure or time since last exposure. Because the rela-
tive variation in the estimated effects of duration be-
tween Model 3 and Model 1 was higher than between



Table 5 Estimated effect of occupational asbestos exposure in males ever exposed (1041 cases and 1425 controls),
using the WC models and logistic regression and assuming linear effects of quantitative exposure variables

Model Exposure variables (a) Unit Method (b) exp β̂
� �

(c) 95% CI

1 Intensity 1.0 fiber/ml WC1 1.75 1.66 1.84

WC2 - 1.65 1.85

CLR 2.55 2.29 2.83

ULR 2.33 2.14 2.54

Duration 14 years WC1 1.32 1.24 1.40

WC2 - 1.23 1.41

CLR 1.18 1.12 1.24

ULR 1.17 1.12 1.23

2 Intensity 1.0 fiber/ml WC1 1.73 1.64 1.82

WC2 - 1.63 1.83

CLR 2.49 2.24 2.76

ULR 2.31 2.12 2.52

Duration 14 years WC1 1.19 1.12 1.27

WC2 - 1.11 1.28

CLR 1.08 1.02 1.14

ULR 1.10 1.05 1.15

Age at first exposure 8 years WC1 0.63 0.58 0.68

WC2 - 0.57 0.70

CLR 0.66 0.61 0.72

ULR 0.77 0.73 0.82

3 Intensity 1.0 fiber/ml WC1 1.74 1.65 1.83

WC2 - 1.64 1.84

CLR 2.53 2.28 2.82

ULR 2.33 2.14 2.53

Duration 14 years WC1 1.90 1.68 2.14

WC2 - 1.64 2.19

CLR 1.41 1.27 1.57

ULR 1.41 1.29 1.53

Time since last exposure 14 years WC1 1.55 1.37 1.75

WC2 - 1.34 1.79

CLR 1.24 1.11 1.39

ULR 1.25 1.14 1.37

Results from the French case-control study on mesothelioma, 1987–2006.
(a) All the exposure variables were time-dependent in WC1 and WC2 models, and fixed at their value at diagnosis/interview in CLR and ULR. Intensity was
measured by the mean index of exposure (MIE).
(b) WC1, weighted Cox models with robust sandwich variance; WC2, weighted Cox model with superpopulation variance; Both WC1 and WC2 used age as the
time axis and included birth year as a quantitative covariate; ULR, unconditional logistic regression including age at diagnosis/interview and birth year as
quantitative covariates; CLR, conditional logistic regression stratified on birth year group (5 years), and including age at diagnosis/interview as a
quantitative covariate.
(c) Hazard ratio estimates for WC1 and WC2 (same value for WC1 and WC2) and odds ratio estimates for CLR and ULR, adjusted for age and birth year, and
corresponding 95% confidence interval (CI).
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Model 2 and Model 1, time since last exposure (in
Model 3) seems to be a more important confounder
than age at first exposure (in Model 2) in the relation
between duration and PM. Estimates from Model 2 sug-
gest that the later a subject is first occupationally
exposed to asbestos, the smaller his risk of PM is. All
the estimated effects of time since cessation indicate that
risk continues to increase after the cessation of expos-
ure, as in many other studies [15,26,27].
The 95% CI from WC1 and WC2 were almost identical

(Table 5), suggesting that the robust variance estimates
from WC1 was very close to the superpopulation variance
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estimates from WC2. This is likely due to the fact that the
disease (PM) was very rare as shown in Table 3, as
opposed to our simulation study where the overall event
rates were about 10% and 2%.
The strongest contrasts between the estimates from

the WC models and ULR or CLR were for the effect of
exposure intensity. Indeed, the estimated effect of inten-
sity was systematically weaker with the WC models than
with ULR or CLR, with even non overlapping 95% CI.
Note that, as for Scenario A in our simulation study,
CLR provided the strongest estimates for the strong ef-
fect of intensity. By contrast, for the effects of duration,
age at initiation, and time since last exposure, the
strongest estimates were provided by the WC models,
but the discrepancies with ULR and CLR were weaker
than for intensity.
There are different potential explanations for the dis-

crepancies between the results from the Cox (WC1 and
WC2) and logistic (CLR and ULR) models. First the ad-
justment for age was largely different in the two series of
models. While age was the time axis in the Cox models,
and was therefore adequately adjusted for in both WC1
and WC2, it was included as a continuous covariate in
both logistic models. This assumed that its effect was
linear on the logit, which is actually not true [15]. Thus
there may be some residual confounding by age in both
CLR and ULR. Second, because controls of the case-
control study on PM were selected from members of the
general French population at calendar times that can
possibly differ from the period of case’s recruitment, the
case-control odds ratio estimate from ULR and CLR
may estimate a different quantity than the hazard ratio
estimate from the Cox model. Indeed, the hazard func-
tion in the Cox models provides a dynamic description
of how the instantaneous risk of getting PM varies over
the age. The exponential of regression parameter can be
interpreted as a hazard ratio, which is equivalent to the
rate ratio that would be obtained from a cohort design.
If the controls of the case-control study on PM were
randomly selected from the member of the population
who were at risk at each age a case occurs (as in our
simulation study), then the estimated odds ratio that
would be obtained from ULR and CLR could also be
interpreted as a rate ratio that would be obtained from a
cohort design. However, this was not the way controls
were selected in the case-control study on PM, and it is
therefore difficult to directly compare odds ratio
estimates obtained from ULR and CLR, and hazard ratio
estimates obtained from WC1 and WC2.

Discussion
Our simulation results suggest that the superpopulation
variance estimator [13] provides adequate coverage
probabilities of the CI when using the time-dependent
weights proposed in the WC model to estimate the effect
of time-varying exposures in case-control studies. Indeed,
our simulation results shows much better coverage prob-
abilities of the CI resulting from the superpopulation esti-
mator than those resulting from the robust variance
estimator. However, our application to PM suggests that
the two variance estimators give similar 95% CI when the
disease is very rare. This is consistent with the results of
Lin [13] who showed that the use of finite-population vari-
ance estimator (i.e. robust variance) results in reasonable
coverage probabilities if the inclusion probabilities are low,
but poor coverage probabilities if the inclusion probabil-
ities are high. It should be noted that both robust and
superpopulation variance estimators are easy to imple-
ment using most statistical softwares.
Our simulation results also confirmed that the WC

model is an alternative method for estimating the effects
of time-varying exposure variables in case-control studies.
In particular, when compared to standard logistic regres-
sion that did not dynamically account for the different
values of covariates over lifetime, the WC model tended to
provide more accurate estimates of the effects of variables
for which an important percentage of subjects had time-
varying values over lifetime, such as intensity. However,
the superiority of the WC did not persist when more than
one control were selected from the risk set. Our results
also suggest that the estimates from the WC model are
not more affected by correlations between time-
dependent covariates included in the model than logistic
regression with fixed-in-time covariates. Note that the
modelling of the exposure in the WC model could further
be improved by incorporating some more complex func-
tion of the trajectory of the exposure over time that have
recently been proposed [28-30].
The application of the WC model requires estimating

the age-conditional probabilities in the source population
for population-based case-control studies, or in the full
cohort for nested case-control studies. In our application
to population-based case-control data on PM, these prob-
abilities were estimated from health statistics on the gen-
eral French male population. Yet, our analyses were
restricted to ever exposed males only who have much
higher probability to develop PM than the general French
male population. Further studies are needed to investigate
the impact of biased estimates of the age-conditional
probabilities on the WC estimates. Accounting for uncer-
tainty in the weight estimates could further improve the
variance estimator [31]. In addition, controls in our case-
control data set on PM were frequency matched to cases
on birth year. To account for this stratification variable in
the design, we included it as a covariate in the WC
models. However, it would be interesting to consider
accounting for this frequency matching variable in the
weights of the WC models [12], and to investigate the
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performance of the resulting estimators through simula-
tion of frequency matched case-control data. This would
be all the more important that frequency matching is
largely used in population-based case-control studies. It
should also be mentioned that depending on the controls
selection strategy, hazard ratio estimates from the WC
model may not measure the same quantity as odds ratio
estimates from the logistic regression. While the hazard
ratio from the WC model estimates a rate ratio, the odds
ratio may estimate another quantity depending on the
control selection strategy [24].
The WC model with time-dependent variables requires

also information on the values of the covariates at each
event time, so at each age of diagnosis in cases. Such infor-
mation may be missing, and different approaches could be
considered to impute these values. However, further stud-
ies are needed to assess the impact of measurement
errors of the time-dependent covariate values. Indeed,
missmodeling the covariates has already been shown to in-
duce bias in sandwich variance estimator based on dfbetas
of unweighted Cox model for nested case-control analysis
[32]. A variance estimator based on Schoenfeld residuals
provided better variance estimates for severe model
misspecification [32]. It may be of interest to further in-
vestigate such an estimator for misspecified time-
dependent covariates in the WC model. Some further joint
modelling between the WC model and the time-
dependent covariate process could also be investigated as
an alternative, especially for internal time-dependent ex-
posure variables [33]. However, in most case-control stud-
ies on occupational exposures, the occupational history is
sufficiently well investigated to allow the elaboration of
quite accurate time-dependent covariates, as in our appli-
cation on asbestos and PM.

Conclusion
We believe that the WC model using the superpopulation
variance estimator may provide a potential alternative ana-
lytical method for case-control analyses with detailed in-
formation on the history of the exposure of interest,
especially if a large part of the subjects has a time-varying
exposure intensity over lifetime, and if only one control is
available for each case.
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