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Abstract: The importance of transcriptional regulation of host genes in innate immunity against viral
infection has been widely recognized. More recently, post-transcriptional regulatory mechanisms
have gained appreciation as an additional and important layer of regulation to fine-tune host
immune responses. Here, we review the functional significance of alternative splicing in innate
immune responses to viral infection. We describe how several central components of the Type
I and III interferon pathways encode spliced isoforms to regulate IFN activation and function.
Additionally, the functional roles of splicing factors and modulators in antiviral immunity are
discussed. Lastly, we discuss how cell death pathways are regulated by alternative splicing as well
as the potential role of this regulation on host immunity and viral infection. Altogether, these studies
highlight the importance of RNA splicing in regulating host–virus interactions and suggest a role in
downregulating antiviral innate immunity; this may be critical to prevent pathological inflammation.
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1. Introduction

The host response to viral infection is multifaceted and incorporates the induction
of an antiviral transcriptional program, including the expression of interferons (IFNs)
and cytokines, and the activation of cell death pathways (apoptosis, necroptosis, and
pyroptosis). Among these pathways, many steps are tightly regulated at several levels to
ensure tissue homeostasis. In this review, we discuss the functional roles of alternative
splicing and various spliced isoforms in shaping host immunity against viral infection.

Pre-messenger RNA splicing is an important RNA maturation step that involves
the joining of exons and removal of introns. The overwhelming majority of transcripts
produced by RNA polymerase II (RNAP II), including most mRNAs, contain introns and
thus must be spliced. Splicing is carried out in cell nuclei by one of two macromolecular
ribonucleoprotein complexes, known as the major and the minor spliceosomes [1]. It is
estimated that more than 90% of expressed human genes undergo alternative splicing
(AS) [2], which enables single genes to generate multiple distinct mRNAs that can encode
distinct proteins, thus greatly expanding proteome complexity. Many types of AS events
have been described, and they primarily include cassette exons, mutually exclusive exons,
alternative 5′ splice site use, alternative 3′ splice site use, and intron retention. AS events
can be regulated in a spatiotemporal-dependent manner [1] by the combined action of
cis-elements (e.g., exon splicing enhancers (ESEs)) and trans-factors (e.g., RNA binding
proteins) [3]. Aberrant splicing has been linked to many diseases [4,5], further underscoring
the importance this highly regulated process. AS and mRNA isoforms play important roles
in virtually all cellular processes and pathways, and it is thus not surprising that both have
been noted to be critical for an effective antiviral response.

Cells 2021, 10, 1720. https://doi.org/10.3390/cells10071720 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0001-8538-1997
https://doi.org/10.3390/cells10071720
https://doi.org/10.3390/cells10071720
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10071720
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells10071720?type=check_update&version=1


Cells 2021, 10, 1720 2 of 12

2. Alternative RNA Splicing and Its Isoforms in Type I and III IFN Responses

The antiviral response initiates when cellular pattern recognition receptors (PRRs)
detect pathogen-associated molecular patterns (PAMPs). Cytosolic retinoic acid-inducible
gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA-5) sense double-
stranded RNA (dsRNA) (RIG-I specifically detects 5′-triphosphate or 5′-diphosphate of
RNA molecules) and undergo conformational changes to associate with the downstream
mitochondrial antiviral signaling protein (MAVS). Subsequently, MAVS associates with
TANK Binding Kinase 1 (TBK1) and I-kappa-B kinase epsilon (IKKε), promoting the
phosphorylation of interferon regulatory factor 3 (IRF3) and interferon regulatory factor 7
(IRF7). These two transcription factors translocate to the nucleus and drive the transcription
and production of Type I and Type III interferon (IFN) mRNAs. The cytosolic DNA
sensor, cyclic GMP-AMP synthase (cGAS), can detect DNA in the cytoplasm as PAMP,
when DNA viruses infect cells and produce the cyclic dinucleotide 2′,3′-cyclic GMP–AMP
(2′,3′-cGAMP) [6]. This secondary messenger in turn activates ER-resident stimulator of
interferon genes (STING) and leads to TBK1-dependent IRF3 phosphorylation for Type I
and III IFN production. It is important to note that cGAS has been shown to also respond
to RNA virus infection, probably due to the cytoplasmic release of host mitochondrial
DNA [7]. Additionally, membrane-bound Toll-like receptor 3 (TLR3) can recognize dsRNA
in the endosomal compartments. Ligand detection by TLR3 triggers its association with
the TIR-domain-containing adapter-inducing interferon-β (TRIF) adaptor and induces
TBK1/IKKε-dependent IRF3 phosphorylation. All of these processes culminate in the
transcriptional induction of Type I and III IFN genes and the production of these IFNs
(Figure 1).
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Newly synthesized Type I and III IFNs are secreted and activate downstream signaling
in both autocrine- and paracrine-dependent manners. These two classes of IFNs bind to
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different membrane receptors. Type I IFNs bind to interferon alpha and beta receptor
subunits 1 and 2 (IFNAR1 and IFNAR2), whereas Type III IFNs utilize the interferon
lambda receptor 1 (IFNLR1) and interleukin 10 receptor subunit beta (IL10-RB) [8]. Once
these receptors bind to their ligands, conformational changes recruit intracellular kinases
that subsequently phosphorylate signal transducer and activator of transcription 1 (STAT1)
and signal transducer and activator of transcription 2 (STAT2). Phosphorylated STAT1 and
STAT2 associate with interferon regulator factor 9 (IRF9) to form the ISGF3 complex that
translocates to the nucleus and activates hundreds of IFN stimulated genes (ISGs) to
establish a cellular antiviral state.

PRR genes encode several splice variants to regulate their functions. A splice variant
of RIG-I lacking exon 2 has been reported to be expressed along with the full-length
isoform after IFN-β treatment and Sendai virus (SeV) infection [9]. This splice variant has a
deletion in its N-terminal CARD domain, and this deletion prevents RIG-I ubiquitination by
tripartite motif containing 25 (TRIM25), a pre-requisite for RIG-I activation. As a result, this
splice variant was shown to act as a dominant negative form of RIG-I. Ectopic expression
of this RIG-I splice variant inhibits SeV-induced IFN-β transcription. TLR3 was shown to
have several isoforms [10,11]. An isoform that lacks the trans-membrane domain and most
of the original intracellular TIR domain plays an inhibitory role in the IFN response [10].
The negative regulatory effects of this TLR3 isoform may be caused by competition for
ligand binding because this TLR3 isoform has dsRNA binding sites, whereas it lacks the
cytoplasmic TIR domain required for signal transduction. These PRR isoforms suggest the
existence of a negative feedback loop that fine-tunes the antiviral IFN response.

Key signaling effector proteins downstream to the viral sensors in Type I and Type
III responses express various AS isoforms as well, and many of them act in dominant
negative fashion. Multiple isoforms of MAVS were observed: MAVS 1a, 1b, and 1c [12].
MAVS 1a is produced from exon 2 skipping and encodes a truncated MAVS due to a pre-
mature stop codon. This truncated protein has an intact N-terminal CARD domain, and
its overexpression blocks IFN-β transcription, presumably by sequestering TNF receptor-
associated factor 2 (TRAF2) proteins. MAVS1b, lacking exon3, also encodes a truncated
protein by a premature stop codon due to the frameshift. However, this MAVS1b is
able to activate IFN-β transcription and inhibit vesicular stomatitis virus (VSV) replication,
suggesting a bidirectional mechanism by which MAVS activity is regulated. Additionally,
STING, the cGAS downstream effector, has a spliced isoform, termed MRP [13]. As
compared with STING, MRP does not contain exon 7 and thus does not have a C-terminal
TBK1 interacting domain. It was shown that MRP can dimerize with STING and block
STING-TBK1 interaction. This interference in STING-TBK association explains why MRP
inhibits STING-mediated IFN-β transcription. In line with this finding, MRP knock-down
reduces VSV replication, presumably by de-repressing host IFN responses. Intriguingly,
although MRP blocks STING-mediated IFN signaling pathway induced by SeV infection,
MRP enhances the herpes simplex virus type 1 (HSV-1)-induced IFN response. Thus, it
appears that MRP plays different roles in response to RNA and DNA virus infections.
TRIF is a critical adaptor for the TLR3-initiated signaling pathway. A splice variant that
lacks central TIR domain, termed TRIS, was observed in a wide spectrum of cell lines [14].
Previous studies have demonstrated that TRIF is associated with TLR3 through their
respective TIR domains [15]; therefore, a TIR-deficient TRIS would be expected to act as an
inhibitor of the TLR3-mediated signaling. However, TRIS overexpression, though to a lesser
degree than TRIF, activates IFN-β transcription and knock-down of TRIS reduced poly
(I:C)-induced IFN-β transcription. These results suggest a surprising, yet nonredundant,
role for TRIS in TLR3-mediated signaling. Tumor necrosis factor receptor-associated
factor 3 (TRAF3) is an accessory protein in RIG-I-MAVS pathways and undergoes AS in
T-cells [16]. This exon 8 skipping event in TRAF3 is primarily mediated by CUGBP Elav-
Like Family Member 2 (CELF2) and heterogeneous nuclear ribonucleoprotein C (hnRNP
C) proteins [17]. Nonetheless, the role of this AS event in host antiviral response remains
to be determined.
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Novel spliced isoforms of TBK1 and IKKε have also been identified to play nega-
tive regulatory roles during the IFN response. TBK1s, a TBK1 spliced transcript variant,
lacks exon 3–6, which encodes a serine/threonine kinase domain mediating IRF3 and
IRF7 phosphorylation. Additional functional and biochemical assays show that TBK1s
inhibits IFN-β transcription by blocking the interaction between RIG-I and MAVS [18].
Intriguingly, TBK1s is not abundantly expressed in uninfected cells. Upon SeV infection,
particularly at later time points, TBK1s expression becomes more prominent. This delayed
upregulation suggests that the cells have evolved a strategy to negatively regulate IFN
activation once a viral infection is cleared. Additionally, a spliced isoform is observed
upon Influenza A virus (IAV) infection, but its functional significance remains to be char-
acterized [19]. Regarding IKKε, this gene expresses two spliced variants, IKKε sv1 and
IKKε sv2, that differ in the carboxyl regions, as compared with full-length IKKε [20]. Both
IKKε sv1 and sv2 form dimers with full-length IKKε and inhibit full-length IKKε-induced
IRF3 signaling, including its role in promoting antiviral activity. Interestingly, Dengue virus
(DENV) infection was observed to upregulate the expression of these two isoforms [21],
suggesting that this flavivirus has evolved the capacity to interfere with innate immunity
by regulating AS.

Multiple isoforms of IRF3 and IRF7 have been characterized in mammals. IRF3a
is an IRF3 AS variant [22,23] that utilizes an alternative exon 3a and produces an N-
terminal truncated protein due to the use of a different start codon. IRF3a does not
have a functional DNA binding domain and, therefore, fails to bind to IFN-β promoter.
Therefore, IRF3a inhibits IRF3 transcriptional activity [22]. The second spliced isoform,
IRF3-CL, is a transcript derived from an alternative 3′ splice site, 16 nucleotides upstream
of exon 7 of the major IRF3 transcript [24]. IRF3-CL shares the N-terminal region with
IRF3, but differs at the C-termini. This isoform negatively regulates IRF3 activity and
is expressed ubiquitously. By contrast, expression of IRF3-nirs3 is limited to specific
tissues [25]. This isoform appears to be expressed in human hepatocellular carcinoma cells,
but not in primary human hepatocytes. IRF-nirs3 transcripts do not contain exon 6, and
this exclusion results in a protein that lacks the central IRF association domain, which
is critical for its homodimerization or heterodimerization with IRF3 or other IRFs. As
expected, the overexpression of IRF3-nirs3 repressed IFN-β transcription and facilitated
viral replication [25]. Additional IRF3 spliced isoforms are identified with varying degrees
of capabilities in inhibiting IRF3-mediated IFN-β transcriptional activation [26]. Lastly,
heterogeneous nuclear ribonucleoprotein A1(hnRNPA1) and serine- and arginine-rich
splicing factor 1 (SRSF1) were shown to promote the inclusion of exon 2 and exon 3 of IRF3
and to generate the full-length IRF3 that is required for IFN-β transcriptional activation [27].
Depletion of either hnRNPA1 or SRSF1 causes a reduction in poly (I:C) induced IFN-β
activation. More recently, IRF7 expression was shown to be regulated by the intron retention
mechanism through the BUD13 protein [28]. BUD13 represses intron 4 retention in the
IRF7 transcript. As a result, a mature IRF7 transcript is produced, and the IRF7 protein is
translated to support the IFN response. In support of this observation, the knock-down
of BUD13 increases intron retention of the IRF7 transcript, which appears to be degraded
via nonsense-mediated decay (NMD). Consequently, the IRF7 protein level is reduced to
facilitate viral replication [28]. Several other IRF7 transcript variants have been reported,
and some may be induced by respiratory syncytial virus (RSV) infection [29,30].

Most Type I IFN genes are intron-less, whereas Type III IFN genes usually have
multiple introns, suggesting a potential regulatory mechanism by AS. A recently discovered
IFNL4, a Type III IFN, is encoded by a gene comprising five exons, and several transcript
variants have been observed [31]. Functional characterization shows that full-length
IFNL4 isoforms, but not shorter ones, exhibit antiviral activity [32]. Surprisingly, genetic
variants in exon 1 that negatively correlate with the expression of functional IFNL4 are
associated with Hepatitis C virus (HCV) clearance [31,33].

Type I and III IFN proteins exert their functions (e.g., triggering the production
of antiviral ISGs) by binding to their respective receptors, which are expressed as var-
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ious isoforms. IFNAR1 and IFNAR2 form a receptor complex for Type I IFNs, and IF-
NAR2 produces three mRNA AS variants, including two membrane-bound isoforms
(IFNAR2b and 2c) and a soluble isoform (IFNAR2a) [34]. Transfection of human IFNAR1
and IFNAR2c, but not IFNAR2b, reconstituted the antiviral IFN response [35]. This is
consistent with the data that IFNAR2b may act as a dominant, negative regulator of IFN
responses [36]. Multiple splice variants of IFNLR1, with which IL-10RB forms the Type III
IFN receptor, have been described in human cells [37–39]. Membrane-bound IFNLR1 is
a functional receptor subunit, whereas a soluble spliced isoform, which lacks exon 6 en-
coding transmembrane domain, serves as a dominant negative form. The addition of
recombinant soluble IFNLR1 reduced Type III IFNs-induced ISG transcription in peripheral
blood mononuclear cells (PBMC) and in Huh7.5 cells [40].

Following the binding of Type I and III IFNs to their receptors, phosphorylated
STAT1 and STAT2 ultimately translocate to the nucleus driving ISG expression. STAT1 has
two isoforms [41], alpha and beta, which differ at the C-terminal trans-activation domain.
Initially, STAT1 alpha was considered to be the only functional isoform, and STAT1 beta
presumably acts as a dominant negative regulator [42,43]. Nevertheless, recent studies
suggest that STAT1 alpha and beta activate an overlapping, but non-redundant, set of genes
that are important in regulating immunity [44]. In addition to these two isoforms, Epstein–
Barr virus (EBV) SM proteins associate with the host splicing factor SRSF3 and promote
the usage of a cryptic 5′ splice site, generating the STAT1 alpha′ transcript variant [45,46].
The role of the STAT1 alpha′ transcript, and whether or not it is translated, is yet unclear.
Given the importance of STAT1 and STAT2 in driving ISG expression for antiviral state
establishment, aberrant splicing of these genes has been linked with impaired immunity
and severe viral illness [47–49]. For example, homozygous mutation leading to STAT1 exon
3 skipping results in its reduced expression and phosphorylation. Patients homozygous for
this mutation display profound susceptibility to infection [49]. A mutation in intron 4 of
STAT2 causes aberrant splicing and probably results in NMD. STAT2 protein expression is
not detectable in homozygous patient cells, and the exogenous expression of STAT2 rescues
the phenotype and induces an antiviral state [48].

Evidence showing that ISG function is regulated by AS is starting to emerge. OAS1 is
a key component in the RNaseL 2-5A antiviral system. A recent report shows that the
Oas1g (a mouse homolog of human OAS1) gene has an alternative 5′ splice site in the intron
between exon 3 and exon 4, and the use of this alternative 5′ splice leads to a non-functional
mRNA variant that is destined for degradation [50]. Interestingly, the removal of this
alternative 5′ splice site increases Oas1g expression and inhibits viral infection. MxA is
another well-known ISG that restricts various viruses. Intriguingly, HSV-1 viral infection
induces the production of varMxA [51]. This transcript has exons 14–16 deleted and
encodes a protein that supports HSV-1 replication. The appearance of MxA exon exclusion
isoforms was also observed in DENV-infected cells [21]. Its regulatory function on DENV
replication awaits further investigation.

In summary, various isoforms of key components in Type I and Type III IFN responses
are expressed to regulate innate immunity in the host response (Figure 1). It is intriguing
that most AS events downregulate the antiviral response, suggesting that posttranscrip-
tional regulation works to balance the transcriptional upregulation of the antiviral state.
This would imply that defects in the post-transcriptional regulation of the antiviral innate
immune response would lead to autoimmunity and pathological inflammatory conditions.

3. Other Innate Immune Pathways Impacted by Alternative RNA Splicing

The promyelocytic leukemia (PML) protein, a member of the TRIM protein family, is a
key component of structures known as PML nuclear bodies that have an important role
in innate immune signaling [52,53]. The PML gene consists of nine exons and undergoes
extensive AS, generating several transcript variants [54]. These isoforms share amino-
terminal regions but differ at the C-terminus. Importantly, they appear to have differential
roles in modulating the IFN response. PML isoform IV has been reported to enhance the
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activity of IRF3, thereby participating in IFN-β production during VSV infection [55]. In
line with this finding, the overexpression of PML isoform IV is sufficient to suppress DENV
replication [56]. Similarly, PML isoform II promotes IFN-β activation [57] and achieves this
enhancement by associating with various transcriptional complexes. Depletion of PML
isoform II reduced IRF3 and STAT1 recruitment to the IFN-β promoter and ISRE elements,
respectively. By contrast, unlike PML isoform II, the knock-down of PML isoform V did not
have an impact on poly (I:C)-triggered IFN-β activation, suggesting that PML isoform V is
not required for this regulation of the IFN response [57]. Interestingly, herpes simplex virus
type 2 (HSV-2) infection caused a switch of PML isoform II to PML isoform IV by increasing
the use of intron 7a through viral ICP27 proteins [58]. This is well in line with a viral
strategy to antagonize the host IFN response for viral replication since isoform II, as well as
isoform IV, promotes IFN-β activation. The restoration of PML isoform II in PML-knocked-
down cells, however, facilitates HSV2 replication. The depletion of PML isoform II by
siRNA reduced HSV2 infectivity, suggesting PML isoform II is a pro-HSV2 factor. These
results suggest a complex and perhaps paradoxical role of PML in host–virus interactions.

Zinc finger protein (ZFR) participates in several cellular functions and is a potent
splicing modulator. ZFR controls IFN signaling by preventing aberrant splicing and the
nonsense-mediated decay of histone variant macroH2A1 mRNAs [59]. In ZFR-expressing
cells, ZFR promotes the usage of macroH2A1 exon 6a, leading to the production of full-
length macroH2A1, which represses the IFN-β promoter and prevents transcriptional
activation. In ZFR-depleted cells, mutually exclusive usage of exon 6b results in a spliced
transcript destined for NMD. As a consequence, the IFN-β promoter is released from
repression and can be accessible to transcription factors for gene expression. Consistently,
either knock-down ZFR or macroH2A1 enhances IFN-β transcription. Furthermore, ZFR
depletion restricts viral replication [59].

hnRNP M belongs to the family of ubiquitously expressed heterogeneous nuclear
ribonucleoproteins (hnRNPs) and impacts pre-mRNA processing and several other aspects
of mRNA metabolism and transport. Recently, hnRNP M was shown to possess immune-
suppressing capability via distinct mechanisms. Firstly, this protein interacts with RIG-I
to impair immune sensing [60]. Moreover, hnRNP M promotes intron retention to reduce
IL-6 transcript abundance. Overall, as a consequence, the depletion of hnRNP M dampens
host immunity and facilitates viral replication [61].

4. Alternative Splicing Regulates Host Cell Death Pathways Activated during
Viral Infection

Several cell death programs have been described, and the molecular mechanisms of
these programs are overlapping, yet quite divergent [62]. Here, we discuss AS regulation
of apoptosis, necroptosis, and pyroptosis in the context of host–virus interactions (Figure 2).
Viruses interact extensively with cellular intrinsic and extrinsic apoptotic pathways [63,64],
and the spliced isoforms of apoptotic factors can play a key role in determining cell
fate [65,66]. Apoptosis is generally conceived as a non-inflammatory type of programmed
cell death, characterized by morphological changes, including cell shrinkage, nuclear con-
densation, and plasma membrane blebbing. Intrinsic apoptosis is primarily controlled
at the mitochondria. The disturbance of intracellular homeostasis (e.g., DNA damage or
oxidative stress) and pro-apoptotic stimuli results in the induction of mitochondrial outer
membrane permeabilization (MOMP) by the proteins BAX or BAK. In the absence of apop-
totic stimuli, these proteins are sequestered in an inactive state by anti-apoptotic members
of the BCL2 family of proteins. MOMP releases cytochrome c into the cytoplasm and
triggers the formation of the apoptosome protein complex containing apoptotic protease
activating factor 1 (APAF1) and caspase 9, a member of cellular cysteine-aspartic proteases.
Activated caspase 9 then cleaves caspases 3 and 7, which triggers a pathway leading to
cell death. Interestingly, viral infection activates non-transcriptional IRF3–Bax interactions
and causes MOMP and cell death [67,68]. Viral infection can also trigger extrinsic apopto-
sis [63]. The extrinsic pathway is primarily initiated by binding of ligands to various death
receptors, activating caspase 8, and leading to the activation of caspase 3 and apoptosis.
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A key host factor in regulating this pathway is the FLICE-like inhibitory protein (cFLIP).
Human cFLIP has 14 exons and gives rise to three major isoforms cFLIPL, cFLIPS, and
cFLIPR [69]. Both cFLIPS and cFLIPR are shown to block apoptosis [69–71], while cFLIPL’s
role in regulating apoptosis is dependent on its local availability and concentration [72].
In addition to regulating apoptosis, cFLIPL has recently been shown to inhibit IRF3 and
IRF7 transcriptional activation, suggesting the critical role of cFLIP in the host’s response
to viral infection [73,74]. Splicing regulatory mechanisms by which various cFLIP isoforms
are generated are currently being revealed. A 21-bp insertion in the 3′UTR of the fifth
exon in the cflar gene causes preferential splicing to cFLIPL [75]. Intriguingly, this effect
was mainly observed in liver tissue, suggesting that additional tissue-specific trans-acting
factors are important to modulate this splicing process. In addition, a single nucleotide
polymorphism is reported to dictate whether cFLIPR or cFLIPS is produced [76]. It is
important to note that though cFLIPS inhibits apoptosis, it promotes another programmed
cell death, termed necroptosis [70].
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Necroptosis is an inflammatory type of cell death, characterized by cell swelling,
loss of plasma membrane permeability, and the release of cytosolic contents into the
extracellular space [77]. Some viral infections trigger necroptosis through membrane-
bound receptors (e.g., TLR3 [78,79]) or cytosolic sensors (e.g., ZBP1 [80–82]), and culminate
with the activation and phosphorylation of mixed lineage kinase domain-like protein
(MLKL), which forms a homotrimeric complex that translocates to the plasma membrane,
where it forms a pore and induces cell lysis [83,84]. MLKL has two isoforms, MLKL1 and
MLKL2 [85]; MLKL2 is a more potent necroptosis inducer than MLKL1 [86]. This increase
in activity can be attributed to the altered domain structure of MLKL2. MLKL2 lacks
exons 4-8 and, thus, MLKL2 does not have most of the C-terminal pseudokinase domain
that is believed to serve as a suppressing function. Additional key components in the
necroptosis pathway include receptor-interacting serine/threonine-protein kinase 1 (RIPK1)
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and receptor-interacting serine/threonine-protein kinase 3 (RIPK3), and both genes have
been reported to encode transcript variants. CRISPR whole-genome screening identified
PTBP1 as a novel regulator of RIPK1 splicing in necroptosis [87]. PTBP1 suppresses
an alternative exon inclusion between the canonical exons 4 and 5 and promotes full-
length RIPK1 protein expression for cell death induction. In line with PTBP1-mediated
exon skipping, a signature CU-rich tract in the intron adjacent to the 3′ splice site was
identified [87]. Lastly, RIPK3 has two splice variants, RIPK3 beta and RIPK3 gamma, both of
which appear to suppress cell death [88].

Pyroptosis, which is also an inflammatory form of cell death, is induced by inflam-
masome activation and is critical for the antiviral response [89,90]. This death pathway
is initiated by the detection of PAMPs or danger-associated molecular patterns (DAMPs)
by inflammasome proteins, most of which are members of the Nod-like receptor (NLR)
family [91]. Subsequently, the recruitment of adaptor apoptosis-associated speck-like pro-
tein containing a CARD (ASC) and caspase 1 forms an inflammasome protein complex.
Activated caspase 1 would cleave gasdermin D (GSDMD), releasing the GSDMD-N do-
main. The GSDMD-N domain translocates to the plasma membrane and oligomerizes to
generate membrane pores. This pore formation disrupts the osmotic potential, resulting
in cell swelling and eventual lysis. In addition, active caspase-1 processes pro-IL-1β and
pro-IL-18 to bioactive forms, promoting inflammation. Among many NLRs, NLR family
pyrin domain containing 3 (NLRP3) is important in antiviral response [89], and it was
recently shown to be regulated at the splicing level. A novel NLRP3 spliced variant that
lacks exon 5 encodes a fraction of the LRR domain [92]. Deletion of this region abolishes
its interaction with the NIMA-related kinase 7 (NEK7) protein, the binding of which is a
prerequisite of NLRP3 activation, and thus makes NLRP3 ∆exon5 inactive. Another critical
component in the inflammasome is the adaptor ASC, composed of an N-terminal PYD
domain for association with the NLR proteins, a linker region, and a C-terminal CARD
domain for interaction with the caspase proteins. A spliced variant of ASC-b lacks exon 2,
encoding the linker, and is able to activate NLRP3 inflammasome [93]. In line with this, a
patient harboring this ASC exon 2 deletion exhibits a higher level of IL-1β protein in the
serum [94]. Another spliced isoform ASC-c has a deletion in the PYD domain. It acts as a
dominant negative regulator and reduces NLRP3 activation [93].

5. Conclusions

Viral infection triggers myriads of cellular events in the host. Most earlier studies have
focused on the role of transcription in setting up the cellular antiviral response. In this
review, we discuss the underexplored role of AS in regulating the host response during viral
infection. Most AS regulatory events discovered to date appear to negatively modulate
the antiviral response. This would imply that defects in the post-transcriptional regulation
of the antiviral innate immune response would lead to autoimmunity and pathological
inflammatory conditions. With the advent of next-generation sequencing, novel discoveries
have been made to delineate how the host splicing machinery is modulated during viral
infection [95,96]. It is evident that AS plays critical roles in the regulation of a productive
innate immune response; however, the functional significance of many novel AS isoforms
and the regulatory mechanisms by which these spliced variants are generated remain
incompletely understood. Further investigation should explore AS as an important layer of
regulation of virus–host interactions and potentially identify novel targets for therapeutic
development to treat infectious diseases.
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