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Coding and decoding libraries of sequence-defined
functional copolymers synthesized via
photoligation
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Designing artificial macromolecules with absolute sequence order represents a considerable

challenge. Here we report an advanced light-induced avenue to monodisperse sequence-

defined functional linear macromolecules up to decamers via a unique photochemical

approach. The versatility of the synthetic strategy—combining sequential and modular

concepts—enables the synthesis of perfect macromolecules varying in chemical constitution

and topology. Specific functions are placed at arbitrary positions along the chain via

the successive addition of monomer units and blocks, leading to a library of functional

homopolymers, alternating copolymers and block copolymers. The in-depth characterization

of each sequence-defined chain confirms the precision nature of the macromolecules.

Decoding of the functional information contained in the molecular structure is achieved via

tandem mass spectrometry without recourse to their synthetic history, showing that the

sequence information can be read. We submit that the presented photochemical strategy is a

viable and advanced concept for coding individual monomer units along a macromolecular

chain.
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T
he coding and decoding of information into synthetic
molecules is one of the key challenges of contemporary
macromolecular chemistry. In the course of evolution,

nature has developed finely adjusted tools for information coding,
decoding, translation and correction. Despite the enormous
progress made in the synthesis of defined macromolecular
structures since the formulation of Staudinger’s macromolecular
hypothesis almost 100 years ago, macromolecular chemists have
just started to develop the tools required to mimic nature’s
precision that is inherent to biomolecules such as DNA, proteins
or glyco-sequences. Although these key molecules execute specific
functions in biological processes—heredity and information
storage for DNA1,2, enzymatic activity for proteins3 or cell
communication for sugar motifs4—it is evident that perfect
sequence order in an ensemble of identical macromolecules is
their common defining element. Designing viable approaches
to synthetic macromolecules with ‘sequence-controlled’ (low
dispersion coupled with some statistical fuzziness regarding
the placement of the monomer units) or ‘sequence-defined’
(no dispersion and 100% accurate placement of the monomers
along the chain) order is thus the key to modern macromolecular
chemistry. The synthesis of sequence-defined macromolecules—
as defined above—represents the far greater challenge than
the generation of sequence-controlled species5. Generating an
ensemble of perfectly sequence-defined identical macromolecules
containing exactly the same chemical information at the
molecular scale—in contrast to existing avenues to disperse and
irregularly coded species when compared with natural
analogues—via a simple process constitutes a key technological
gate for data storage, biological and material applications, yet
requires reaction concepts that provide perfect yields and
orthogonality under equimolar reaction conditions. Although
solid-state peptide synthesis was introduced by Merrifield6—the
first example of a true synthetic sequence-defined peptide—
macromolecular chemists have initially focused on and developed
a diverse number of solution-based polymerization strategies for
imparting a certain level of control over statistical polymerization
processes and exploited these for controlling the order of the
building blocks (sequence-controlled polymers)7–20. In addition,
the advent of modular synthetic strategies21–24 has contributed
significantly towards achieving a high level of control over
macromolecular formation processes.

Although these advances of limiting the statistical nature of
polymerization processes are impressive and led to fine examples
of sequence-controlled polymers7,11,13,15,16, only few sequence-
defined examples have been reported that reach the precision
level of nature25. Directly inspired by biologically accessible DNA
systems—for example, nucleobase-coded chains—sequence-
defined macromolecules have been synthesized employing
template-based coding strategies26–29 or via the generation of
regulated sequence alternating thymine hybrid polymers30, as
well as the design of reactions with iterative protection/
deprotection steps on supports31,32. Further, bulk reactions
have been conducted in flow systems based on iterative
synthesis33. In addition, iterative exponential growth can lead
to sequence-defined macromolecules34–36. In parallel, strategies
involving the consecutive insertion of single monomer units
(vinyl or acrylate) based on radical processes started to emerge
for the synthesis of sequence-defined polymers37,38. Further,
notable synthetic strategies towards sequence-defined polymers
conducted in bulk include the use of thiolactones39–41 and multi-
component reactions42–44. Concomitant to the development of
new synthetic approaches to sequence-defined polymers, selected
applications of such molecules are emerging, for example,
bio-inspired structures for which high sequence definition is
essential45,46. For potential data storage applications, solid

support-based systems have emerged featuring monomer units
with unreactive variable alkyl groups47 and block copolymer
phase separation based on sequence-defined oligomers has been
demonstrated as well36. The herein proposed synthetic strategy
based on photoreactive synthons offers significant applications of
the functional sequence-defined macromolecules ranging from
mild bioconjugation to base materials for advanced precision
photoresists for, for example, direct laser writing48 or precision
network formation for nuclear magnetic resonance (NMR)
orientation media49,50. Critically, photochemistry offers the
opportunity to broaden the chemical diversity in the design of
sequence-defined macromolecules. Although we herein offer a
proof-of-concept study, we submit that the synthetic protocols
are amenable to scale up in photoflow systems51.

The synthesis of sequence-defined macromolecules in bulk
requires highly efficient reaction systems. As a consequence, most
reports rarely describe a variation of the sequence order and/or
the incorporated functionalities to generate highly diverse
libraries of sequence-defined macromolecules and subsequently
exploit this diversity to decode the coded chemical information52.
Herein, we demonstrate how highly efficient photochemical
reactions combined with a simple macromolecular design concept
can lead to functional sequence-defined linear macromolecules.
To achieve this diversity, we built on our initial approach for
photochemical sequence control53, simplifying the concept
while concomitantly showing its power to generate an entire
sequence-defined polymer library. The simplicity and versatility
of the photoreactions are such that the sequence order and
functionality within the chains can be arbitrarily varied.
Our approach rests on a sole photochemical reaction relying
on benzaldehyde species, which when irradiated lead to
reactive dienes (so-called ‘photo-caged dienes’)54 with an
ortho-quinodimethane structure. Combined with ene reactive
functional molecules, we reach diverse decamers from a library of
six monomers. We evidence that the photochemical coding leads
to a strictly monodisperse character after each synthetic step,
evidenced via size-exclusion chromatography (SEC) and
mass-spectrometric tools (matrix-assisted laser desorption/
ionization–time-of-flight mass-spectrometry, MALDI–ToF).
Owing to the absolute control over the sequence order, the
chemical history—which the macromolecules experienced during
the photochemical coding process—can be decoded via mass-
spectrometric defragmentation experiments (MALDI–ToF–ToF).
Such an in-depth characterization of selected macromolecules does
not only evidence the successful synthesis of the desired
structures but also constitutes a fundamental example of
artificial sequence-defined macromolecules’ ability to be
employed for coding and decoding chemical information.

Results
Photochemical concepts for sequence-defined macromolecules.
The photoreaction generating the sequence-defined macro-
molecules is based on a monomer library (Fig. 1a), in which each
monomer carries a photoreactive benzaldehyde function as well
as an ene functionality required for the photochemically induced
Diels–Alder reaction. Contrary to our previous report—which
employed two monomer types with separate diene and dienophile
functions53—the herein presented monomers entail a dual diene/
dienophile character. For example, monomer 1 (denoted M1)
includes on the one hand the benzaldehyde moiety reacting as
diene under ultraviolet irradiation from its ortho-quinodimethane
state and on the other hand a furan-protected maleimide. The
lysine-derived methyl ester monomer 2 (denoted M2) and the
poly(ethylene glycol) containing monomer 3 (denoted M3) follow
the same concept as monomer 1. Monomers 4–6 (denoted M4,
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Figure 1 | Strategies towards sequence-defined homopolymers and alternating block (co)polymers. (a) Synthesized monomers with diverse spacers:

1 (hexyl chain), 2 (lysine-methyl ester function), 3 (poly(ethylene glycol (PEG) chain), 4 (lysine-based monomer with alcohol function), 5 (lysine-based

monomer with adamanthyl function), 6 (lysine-based monomer with fluorobenzyl function). (b) Sequential synthesis of symmetrical dimers 7a and 10a,

tetramers 7b (homopolymer), 9a and 10b (alternating polymers), and hexamers 7c (homopolymer) and 8a, 9b and 10c (copolymers). (c) Synthesis of

dimer blocks 7d, 9c and 10d with locked/unlocked function for modular ligation. (d) Synthesis of decamers as homopolymers 7 and copolymers 8–10

varying in composition and topology. (i) dry DCM, l¼ 365 nm, 45 min; (ii) 115 �C, vacuum, overnight, dark; (iii) p-TosOH, TMOF, 40 �C, overnight, dry

MeOH, dark. Overall yield for monomer 1 (23.1%), 2 (20.8%), 3 (48.2%), 4 (32.4%), 5 (43.7%) and 6 (42.5%).
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M5 and M6, respectively) introduce further functionalities for
sequence-controlled coding, while resting on the same synthetic
concept as monomers 1, 2 and 3. The synthetic strategy to
introduce the different monomer functionalities is based on a
lysine precursor featuring orthogonal protecting groups, that is,
fluoromethoxycarbonyl and tert-butyloxycarbonyl, in the a- and
e-positions. After an initial condensation with the free carboxylic
group of the protected amino acid with the corresponding
amino derivatives, the different functional monomers are
obtained with acceptable yields between B23 and 44% (refer to
the Supplementary Methods section and the Supplementary
Figs 1–32, as well as the caption of Fig. 1).

Exploiting sequential and modular strategies. Our synthetic
strategy to achieve high-molecular-weight molecules with defined
sequence order with a limited number of synthetic steps rests on
the combination of sequential and modular strategies based on
locking and unlocking the diene and dienophile groups of each
monomer on demand in an orthogonal manner. The use of a
symmetrical starting core (1,6-hexylbismaleimide, denoted X in
the polymer chain) contributes to a rapid molecular weight
growth. For example, considering the synthesis of homopolymer
7 (denoted (M1)5-X-(M1)5), the first photoreaction conducted
between 1,6-hexylbismaleimide (276.29 g mol� 1) with two
monomer units 1 (516.58 g mol� 1) leads to the linear
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Figure 2 | SEC traces of successively synthesized sequence-defined polymers. (a) Homopolymer 7; (b) block copolymer 8 (monomer 2 placed at the

third position); (c) alternating block copolymer 9 (monomer 2 placed at the second and fourth position); (d) alternating block copolymer 10 (monomer 2

placed at the first, third and fifth position). All SEC traces are recorded in THF. The core molecule (1,6-hexylbismaleimide X) as well as monomers 1 and 2

are also represented. The overall isolated yield is determined from the monomer to the respective decamer: 7 (1.0%), 8 (1.1%), 9 (1.4%) and 10 (4.0%).

Shown here and in all figures are weight distributions, which are however identical to the number distributions given the monodisperse nature of the

macromolecules.
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symmetrical molecule 7a of molecular weight 1309.46 g mol� 1

(Fig. 1b). A subsequent thermal treatment enables further
photoligations with the monomer when the maleimide terminus
is deprotected. Repeating this cycle to the third sequence order
in a sequential manner, the polymer chain is extended monomer
unit after monomer unit to generate the tetramer 7b ((M1)2-X-
(M1)2) and hexamer 7c ((M1)3-X-(M1)3) of molecular weights
2206.48 and 3103.50 g mol� 1, respectively. The concomitant
modular strategy provides an efficient way for increasing the
molecular weight of the polymer by ligating the symmetrical
linear molecule with a previously synthesized dimer. One
monomer unit 1 (with locked maleimide group) is ligated to a
second monomer unit after the selected transformation of the end
groups: the ultraviolet-active benzaldehyde moiety is locked as an
acetal function, whereas the maleimide function is thermally
unlocked (compound 1d). The complementary unlocked groups
of 1 (benzaldehyde) and 1d (maleimide) react under light
irradiation to form the dimer 7d ((M1)2) bearing a furan-
protected maleimide and a benzaldehyde group, after the mild
hydrolysis of the labile acetal function (Fig. 1c). Consequently, the
photoreaction between two dimer blocks 7d (965.10 g mol� 1)
with the symmetrical chain 7c, obtained after a preliminary
thermal treatment, leads to the decamer 7 ((M1)5-X-(M1)5) of
molecular weight 4897.54 g mol� 1 after only four photoreactions
(Fig. 1d) with an overall isolated yield of 1.0% from the monomer
to the final decamer. The low yield results from necessary
purification via column chromatography in the early sequence
orders, because each photoreaction requires absolute stoichio-
metry and the bifunctional core undergoes an intermolecular
photo-induced side reaction (maleimide–maleimide coupling
under ultraviolet irradiation) for the first sequence order, leading
to a loss of overall efficiency. However, for the fifth sequence
order the difference in solubility of the homo-decamer 7
compared with the hexamer 7c and dimer blocks 7d enables
purification via precipitation circumventing column purification.

Both sequential and modular strategies can be employed to
design more complex copolymers, varying the position of

monomer 2 within the homopolymer chain to provide the three
additional decamers 8, 9 and 10 (Fig. 1d). Here, the sequential
alternation of 1 and 2 at the first, second and third sequence
position diversifies the composition and topology of the
symmetrical hexamers (corresponding respectively to 8a, 9b
and 10c) with molecular weights in the same order of magnitude
as 7c. The modular chain extension with the dimer blocks 7d, 9c
and 10d (the two last dimers resulting from the ligation of 1 and
2, conducted with a locked benzaldehyde function as for 7d)
results in symmetrical decamers: 8 featuring monomer 2 at the
third position, 9 and 10 as completely alternating structures with
monomers 1 with 2 (1 placed at first, third and fifth position for
9, second and fourth position for 10).

By inspecting the SEC traces at each synthetic step of the
decamers 7–10 (Fig. 2), one can observe the expected decrease in
retention volume (corresponding to a molecular weight increase)
from the monomer units and core molecule to the successive
symmetrical dimers, tetramers and hexamers resulting from the
sequential approach, as well as the non-symmetrical dimer block
following the modular strategy. The observed molecular weights
relative to a polystyrene (PS) calibration and the chromatogra-
phically observed dispersity of the chains (1.01 for di-, tetra- and
hexamers; 1.02–1.03 for decamers), as well as further character-
ization conducted via NMR spectroscopy and mass spectrometry
(refer to Supplementary Figs 40–115) confirms the success of the
photochemical synthetic strategy.

Functional sequence-defined macromolecules. Importantly,
our synthetic concept can be extended to monomers bearing
functionalities attached at the a-position of the lysine-based
monomer, leading to multifunctional sequence-defined macro-
molecules. The combination of monomers 2 and 4–6 was
performed via the sequential and modular synthesis as for the
decamer 7. One type of sequence has been realized (Fig. 3a):
starting from the symmetrical 1,6-bismaleimide core, the chain is
extended sequentially with 2 (methyl ester function) via photo-
ligation, followed by thermal deprotection and photoligation
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Figure 3 | Design of sequence-defined multifunctional polymers. (a) Sequential and modular approach for the synthesis of the functional octamer 11.

(b) SEC traces (weight distribution) of the synthesized building blocks for the functional sequence-defined polymer. (c) MALDI–ToF spectra of the

intermediates. The indicated increase of m/z corresponds to the addition of two fragments of molecule 4 (þ 1,240 m/z) and of the dimers 11b

(þ 2,426 m/z). The MALDI–ToF spectra are depicted in different m/z ranges: 800–4,000 (dimers 10a and 11b, tetramer 11a), 3,500–6,500 (octamer 11).

(i) Dry DCM, l¼ 365 nm, 45 min, (ii) 115 �C, vacuum, overnight, dark; (iii) p-TosOH, TMOF, 40 �C, overnight, dry MeOH, dark.
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with 4 (alcohol function) to afford the tetramer 11a, denoted
(M4M2)-X-(M2M4). To perform the modular ligation, the dimer
block 11b was synthesized from 5 (adamanthyl function) and 6
(fluorobenzyl function). Subsequently, 5 underwent—before the
photoreaction with 6—a thermal treatment unlocking the
maleimide group and the locking of the photoenol group via
acetalization (5e). The evolution of retention time and the
monodisperse character of the molecular weight distribution
confirm the successful synthesis of the multifunctional
octamer 11, denoted (M6M5M4M2)-X-(M2M4M5M6) (Fig. 3b).
The MALDI–ToF mass spectra (Fig. 3c) of the prepared species
additionally evidence the monodisperse character of the
synthesized sequence-defined macromolecules and the successful
sequential/modular chain extension with an increase of the
m/z values congruent with the addition of the functional
monomer and dimer units.

Non-symmetrical sequence-defined macromolecules. Further,
the modular strategy was also exploited to generate
non-symmetrical sequence-defined macromolecules (Fig. 4a).
Following a similar locking/unlocking strategy to generate the

dimer 7d from monomer 1, the dimer 12a (denoted (M3)2) was
synthesized from monomer 3 and the transformed compound 3d
(furan-deprotected and acetalized). The subsequent chain exten-
sion of the dimer with a third monomer unit 3—in the form of
3d—led to the trimer 12b (denoted (M3)3). The photoligation of
the transformed dimer from the lock/unlock strategy 12c and
unchanged trimer 12b—both entities of respectively 1007.09 and
1509.60 g mol� 1—succeeded in a single synthetic step resulting
in the pentamer 12 (denoted (M3)5) with 2470.62 g mol� 1

molecular weight. The monodisperse character of the different
synthetic step as well as the modular ligation of dimer and trimer
blocks was confirmed via SEC (Fig. 4b) and mass spectrometry
(Fig. 4c), demonstrating the versatility of photoreactions and
the feasibility in constituting with low synthetic efforts a,
o-functional linear macromolecules.

Decoding sequence-defined macromolecules. The verification of
the sequence order represents no specific challenge as long as the
chemical history of the sequence-defined macromolecules is
known. However, with no access to the synthetic history of the
sequence-defined macromolecules, decoding the chain structure
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Figure 4 | Modular synthesis of pentameric homopolymer. (a) Sequential and modular approach for the synthesis of the a,o-functional pentamer 12.

(b) SEC traces (weight distribution) of the synthesized building blocks for the sequence-defined pentamer. (c) MALDI–ToF spectra of the intermediates.

The indicated increase of m/z corresponds to the addition of one fragments of molecule 3 (þ480 m/z) and of the dimer 12a (þ961 m/z). The spectrum

from 12 results from different counterions (Hþ , Naþ and Kþ adducts) and fragmentation pathways (loss of furan end group). The MALDI–ToF spectra are

depicted in different m/z ranges: 800–4,000 (dimers 12a and trimer 12b) and 2,000–4,000 (pentamer 12). More information can be found in the

Supplementary Figs 130–147. (i) Dry DCM, l¼ 365 nm, 45 min; (ii) 115 �C, vacuum, overnight, dark; (iii) p-TosOH, TMOF, 40 �C, overnight, dry MeOH,

dark. The overall isolated yield is determined from monomer to decamer 12 as close to 2.5%.
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becomes highly challenging, similar to what is required for
naturally occurring biomolecules (see below). The use of mass
spectrometric tools is essential to follow the evolution of the
molecular weight increase along the defined polymer chain
extension and to elucidate the composition of a given molecule.
The overlaid MALDI–ToF spectra of the successive chain
extension of the first-order dimers (7a and 10a) to the
copolymers 7–10 confirm the expected molecular weight
increase—extending the chain monomer unit after monomer
unit—as well as the monodispersity of each compound (Fig. 5). In
this context it is interesting to note that the SEC trace of 10
(Fig. 2d) shows a tailing of the molecular weight distribution,
leading to a slight increase of dispersity from the third to the fifth

sequence (1.01 to 1.03). However, inspection of Fig. 5 indicates
for the same compound a single molecular peak, attesting the
species monodispersity. The tailing in the SEC trace may be
associated with the particularly rich lysine composition of 10,
leading to an adsorption-driven column interaction.

Nevertheless, decoding the chemical information stored in the
sequence-defined molecules without relying on past-synthetic
evidence is—in the current case—possible by MALDI–ToF–ToF
experiments. Despite the limitation of this technique to relatively
low mass (ca. 3,000 m/z), the identification of fragments from the
hexamers 7c, 8a, 9b and 10c gives ready access to their
composition and topology. Indeed, the fragmentation behaviour
of the two hexamers 8a and 9b with identical mass is all the more
interesting, as they differ in topology (monomer 2 is placed at the
third position in the polymer chain in 8a, whereas it can be found
in the second position in 9b). Despite the complex MALDI–ToF–
ToF spectra, the sequence order can be decoded (Fig. 6) and a
fragmentation mechanism for the hexamers (7c, 8a, 9b and 10c)
is proposed (refer to Supplementary Figs 148–159 for details).
Fragments of the monomer units 1 and 2 can be identified as well
as a specific fragmentation pattern. Indeed, owing to the
symmetry of the hexamers, monomer units located at the chain
termini fragment preferentially. The known symmetry of the
molecules thus eases the interpretation of the spectra and leads to
the identification of three consecutive monomer units present in
one constituting arm. This behaviour enables to differentiate both
hexamers 8a and 9b. For 8a, the first fragment located at the third
position (chain terminus) can be assigned to monomer 2. For
smaller m/z values, the molecule releases only fragments typical
of 1, corresponding to the presence of 1 at the second and first
position. In the case of 9b, the first fragment identified is derived
from 1, hence localized at the third position in the sequence,
whereas monomer 2 is assigned at the second position due the
symmetric structure of the molecule. Fragments appearing at
smaller m/z values correspond to a monomer present at the first
position in the sequence and are clearly identified as monomer 1.

Discussion
We introduce a versatile photochemical platform for generating a
library of functional sequence-defined macromolecules with
varying length, composition and topology. Based on a combina-
tion of sequential and modular light-induced approaches,
precision homo-, co- and block copolymers are reported,
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entailing the synthesis of several functional building blocks ready
to be combined on demand. Owing to the absolute control of the
monomer order within the polymer chain—monomer unit after
monomer unit—the macromolecules are as monodisperse and
feature absolute chain-end fidelity. Although the synthetic
strategy offers a unique photochemical access route to
sequence-defined macromolecules, the in-depth characterization
of the sequence order, for example, the composition and the
topology, requires multiple analytical tools when considering
molecules with unknown chemical history. The present study
provides a methodology to code and, to a certain extent, decode
chemical information contained in photochemically prepared
sequence-defined macromolecules, in some cases without
recourse to the synthetic history. From a more general point of
view, photochemistry provides a wide variety of efficient and
orthogonal reactions ideal for sequencing light-triggered mono-
mers into polymer chains, thus coding information. We hope that
the current photochemical technology platform will pave the way
for activities into mimicking selected features of nature’s
macromolecules such as writing and transcripting information
or possibly even self-replication based on photochemical
processes.

Methods
General. Supplementary Methods and characterization of the intermediate and
final compounds are described in detail in the Supplementary Information section.
For all molecular analytical data (NMR, mass spectrometry (MS) and ultaviolet–
visible analysis) of the compounds refer to Supplementary Figs 1–147 and
Supplementary Tables 1–28. The principle of the photoreaction and the schematic
drawings of the photoreactor are depicted in Supplementary Figs 37–39. The
tandem MALDI-ToF-ToF data are represented in the Supplementary Figs 148–159
and the Supplementary Tables 29–32.

Size-exclusion chromatography. SEC measurements were performed on a
TOSOH Eco-SEC HLC-8320 GPC System, comprising an autosampler, a SDV
5 mm bead size guard column (50� 8 mm, PSS) followed by three SDV 5 mm
columns (300� 7.5 mm, subsequently 100, 1,000 and 105 Å pore size, PSS) and a
differential refractive index detector using tetrahydrofuran (THF) as the eluent at
30 �C with a flow rate of 1 ml min� 1. The SEC system was calibrated using linear
PS standards ranging from 266 to 2.52 106 g mol� 1. Calculation of the molecular
weight proceeded via the Mark–Houwink–Sakurada parameters for PS in THF at
30 �C, that is, K¼ 13.63 10� 3 ml g� 1, a¼ 0.714.

NMR spectroscopy. 1H NMR spectroscopy, H-H proton correlation spectroscopy
and C-H correlation spectroscopy (heteronuclear multiple-quantum correlation)
were performed on a Bruker AM 500 spectrometer (500 MHz for 1H/125 MHz for
13C/470 MHz for 19F). The analytes were dissolved in CDCl3 and the residual
solvent peaks were employed for shift correction. The following abbreviations
were used to describe peak patterns when appropriate: s (singlet), d (doublet),
dd (doublet of doublets), ddd (doublet of doublets of doublets), t (triplet),
q (quadruplet), dt (doublet of triplet), td (triplet of doublet), tt (triplet of triplet),
qd (quadruplet of doublet), dtq (doublet of triplet of quadruplet), tdd (triplet of
doublet of doublet) and m (multiplet). For compounds 2, 4–6 and 4c–6c, a signal
splitting of analogous carbon atoms (noted with a star * in 13C NMR spectroscopy)
occurred due to a high rotation barrier of the maleimide-N-C5. Consequently,
two mirror symmetric conformational isomers are present and the atoms do not
have the same electronic environment. This phenomenon is observed for all the
synthesized monomers in the 13C NMR spectra. The effect is too weak to be
detected in 1H NMR spectroscopy.

Electrospray ionization MS analysis. A Q Exactive (Orbitrap) mass spectrometer
(Thermo Fisher Scientific, San Jose, CA, USA) equipped with a HESI II probe was
employed to record high resolution electrospray ionization–MS. Calibration was
carried out in the m/z range 74–1,822 using premixed calibration solutions
(Thermo Fisher Scientific). A constant spray voltage of 4.7 kV and a dimensionless
sheath gas of 5 were employed. The S-lens RF level was set to 62.0, while the
capillary temperature was set to 250 �C. All samples were dissolved at a con-
centration of 0.05 mg ml� 1 in a mixture of THF and MeOH (3:2) doped with
100mmol sodium trifluoroacetate and injected with a flow of 5 ml min� 1.

Ultraviolet–visible spectroscopy. Ultraviolet–visible spectroscopy was conducted
on a Varian Cary 300 Bio spectrophotometer. The samples were dissolved with a
concentration of 0.04 mg ml� 1 in dry dichloromethane (DCM).

Spectrophotometry to determine the source emission spectrum. The source
emission spectrum was measured in the 200–800 nm range with an ultraviolet–
visible spectrometer SR600 (Model 840 320, Opystec Dr Gröbel) calibrated to the
National Metrology Institute of Germany (Physikalisch-Technische Bundesanstalt)
and equipped with a linear silicon photodiode array. Measurements were per-
formed with a resolution of 0.6 nm. The emission spectrum was registered after a
dark measurement and results from the averaging of 20 spectra employing an
integration time of 400 ms. The probe was placed at the identical distance
employed for irradiating the reaction samples.

MALDI–ToF–MS analysis. The mass spectra were obtained using MALDI–ToF.
An Autoflex III instrument (Bruker Daltonics, Bremen, Germany) equipped with a
smartbeam Nd:YAG laser (355 nm, 200 Hz) was employed. A 1:1 mixture of
2,5-dihydroxybenzoic acid and 2-cyano-3-(4-hydroxyphenyl)acrylic acid, freshly
dissolved in THF, was used as the matrix solution (40 mg ml� 1). Analyte samples
were obtained as THF solutions without the concentration control. Analyte/matrix
mixtures (1/3, v/v) were obtained immediately before the on-target deposition. The
mixtures were applied on a stainless steel target, pre-washed with pure THF, in
three successive deposition air-drying steps (0.3 ml each time). After the deposition,
the entire target was additionally dried under the elevated air flow in the flow
bench (15 min). All operations were performed at ambient temperature and
extensive exposure to light was avoided at all stages. Depending on the required
m/z range, both linear and reflection positive-ion measurement modes were used.
Calibration of the measurement methods before measurements was carried out
following the manufacturer’s procedures. The spectra were acquired and processed
with the ‘Compass 1.3 for flex’ software package from Bruker.

Tandem MALDI–ToF–MS analysis. An Autoflex III MALDI–ToF mass
spectrometer (Bruker Daltonics, Germany) was employed for the tandem MS/MS
measurements. The system is equipped with a laser operating at 355 nm with a
frequency of 200 Hz. Fragmentation was performed using the so-called LIFT mode.
Precursor ions were selected and, after collision-induced dissociation using argon
as collision gas, formed fragment ions were accelerated in a second ToF unit.
For sample preparation solutions of polymer (2 mg ml� 1) and DCTB
(trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile) matrix
(20 mg ml� 1) were mixed (1/10, v/v). 1 ml of the resulting solution was deposited
on the stainless steel target plate and, after air drying, inserted into the mass
spectrometer.

Flash chromatography. Flash chromatography was performed on an Isolera
Biotage One (OS 578). The fractions were collected via a ultraviolet detector
(254 nm). A SNAP Ultra (10 g) cartridge was employed for the purification in
direct mode and a SNAP C18 (12 g) cartridge for the reverse mode (both column
volume of 15 ml). The analyte was dried on an adapted short pre-column before
purification.

Preparative HPLC. Preparative HPLC was conducted with a Jasco LC-2000 Plus
Series system equipped with two PU 2,087 Plus pumps (flow up to 50 ml min� 1)
and a diode array detector (MD-2010 Plus 195–650 nm). The purification of the
compounds was performed in reverse phase mode with a 218TP Vydac C18
column (22� 250 mm, Grace Davison Discovery Science).

Data availability. All data are available from the authors upon reasonable request
addressed to C.B.-K.
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