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ABSTRACT

MAP kinase phosphatase-1 (MKP-1) controls
nuclear MAP kinase activity with important
consequences on cell growth or apoptosis.

MKP-1 transcription is initiated constitutively but
elongation is blocked within exon 1. It is unclear
how induction of MKP-1 is controlled. Here, we
report that the transcriptional elongation factors
P-TEFb, DSIF and NELF regulate MKP-1 transcrip-
tion in the pituitary GH4C1 cell line. Prior to
stimulation, DSIF, NELF and RNA polymerase Il
(pol Il) associate with the promoter-proximal region
of the MKP-1 gene upstream of the elongation block
site. Thyrotropin-releasing hormone (TRH) leads to
recruitment of P-TEFb along the whole gene and
a marked increase of DSIF and pol Il downstream
of the elongation block site, whereas NELF remains
confined to the promoter-proximal region.
5,6-Dichloro-1-3-p-ribofuranosylbenzimidazole

(DRB) an inhibitor of P-TEFb eliminated TRH stimula-
tion of MKP-1 transcription. DRB specifically
inhibited TRH-induced recruitment of DSIF and
P-TEFb to the MKP-1 gene. Furthermore, DRB
treatment eliminated TRH-induced progression
along the MKP-1 gene of pol Il phosphorylated
on Ser-2 of its CTD. These results indicate that
P-TEFb is essential for gene-specific stimulated
transcriptional elongation in mammalian cells via
mechanisms which involve the activation of the
DSIF-NELF complex and Ser-2 phosphorylation
of pol Il.

INTRODUCTION

MAP kinase phosphatase-1 (M KP-1) gene is an immediate
early gene (IEG) induced by various extra-cellular

stimulations. Expressed in the nucleus, MKP-1 controls
the ERK MAP kinase, a key signaling enzyme which
activates cell growth, cell differentiation and apoptosis (1).
Recent reports show that MKP-1 is involved in cardiac
hypertrophy and tumorigenesis as well as monocyte/
macrophage chemotaxis (2-4). Furthermore, MKP-1
mRNA as well as protein is over-expressed at different
stages of Dbreast and prostate carcinoma (5-8).
These findings underline the importance of MKP-I
for the cellular patho-physiology of many diseases.
Hence, understanding how MKP-I transcription is
controlled may also be interesting for the medical field,
in particular to understand emergence and progression
of breast and prostate cancers.

Eukaryotic gene transcription requires, on the one
hand, mechanisms which recruit RNA polymerase II
(pol II) and the transcription factors needed to start
transcription; on the other hand, complex mechanisms are
needed to assure the output of correctly processed
mRNA. Induction of most genes is achieved by stimulat-
ing mechanisms of transcription initiation. Studies on
transcription control focus in general on the gene
promoter, normally with the aim to identify the
responsive elements which may explain induction of
transcription. These promoter elements bind transcription
factors needed to initiate gene transcription. The MKP-1
gene promoter comprises the calcium-cAMP response
element CRE, E-box and GC-boxes. These response
elements are targets of signaling via MAP kinase cascades,
protein kinase C, cAMP, Ca’®", glucocorticoids and
retinoic acids which are indeed controlling MKP-1
expression (9-17).

We have reported earlier that the response elements
in the MKP-1 promoter favor initiation of transcription
already in resting cells, and that transcription of the
MKP-1 gene is mainly controlled at the level of
transcriptional elongation (18). In resting cells, pol II
transcribing the MKP-1 gene is arrested within 300 bp
downstream from the transcription start site (18),
unless  extra-cellular  stimuli  trigger mechanisms
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permitting transcription to proceed. These observations
suggest that the level of MKP-I mRNA is mostly
regulated via mechanisms which control elongation
of transcripts, splicing, capping and polyadenylation.
Although this is also the case for many other IEGs (19),
it is at present largely unknown how signaling controls
such mechanisms. Indeed, the control of elongation
and of RNA processing has been considered so far
mainly important to coordinate progressing elongation
with  splicing and capping of the nascent
transcripts (20). Here, we address the new question
of how intracellular signals enhance transcriptional
elongation of the MKP-1 gene and thereby induce its
expression.

The C-terminal domain (CTD) of a large subunit
of pol II appears to be controlling elongation of
transcripts, splicing, capping and polyadenylation
(21-24). The CTD includes 52 repeated YSPTSPS motifs
which are extensively phosphorylated and
dephosphorylated at second and fifth serine (Ser-2
and Ser-5, respectively) during the transcription cycle
of pol II (21-24). So far, various kinases which
phosphorylate the CTD have been reported; among
them positive elongation factor b (P-TEFb) has been
studied most extensively.

In in vitro transcription systems, DRB sensitivity-
inducing factor (DSIF) and negative elongation factor
(NELF) can arrest elongation of transcripts by pol II
soon after transcriptional initiation. When CTD of pol II
is phosphorylated by P-TEFDb, negative regulation
by DSIF-NELF is overcome and elongation resumes
(25-30). This mechanism established for in vitro tran-
scription is reminiscent of transcriptional regulation
involving a <block to elongation> in eukaryotic cells.
Indeed, in Drosophila cells, NELF, DSIF and P-TEFDb
associate with promoter-proximal regions of immediately
responsive heat shock genes, suggesting that these factors
regulate transcriptional elongation machinery of IEGs
(31-33). A decisive role in the p53 transcriptional
program in vivo has been demonstrated for P-TEFb
(34). NELF has been shown to regulate immediate
early expression of the junB gene (35). DSIF being
phosphorylated by P-TEFb on its C-terminal repeats
(CTRs) is important to allow progression of pol II along
the IEG c¢-fos demonstrated in vivo by Chromatin
immunoprecipitation (ChIP) (36). How the three elonga-
tion factors operate jointly when regulating the tran-
scription of a mammalian IEG in vivo remains to be
addressed.

In this article, we examined whether the transcriptional
elongation of the MKP-1 gene is also under the control
of the DSIF-NELF complex and P-TEFb in vivo.
We investigated how these factors are distributed on the
MKP-1 gene prior to and during thyrotropin-releasing
hormone (TRH) stimulation of pituitary cells, using ChIP
assay and quantitative real-time PCR. Our results show
that P-TEFb modulates the DSIF-NELF complex
and mediates stimulated transcriptional elongation of
the MKP-1 gene, presumably through Ser-2 phosphoryla-
tion of pol II CTD.

MATERIALS AND METHODS
Cell culture and stimulation

Rat pituitary GH4CI cells were usually grown in Ham’s
F-10 Gluta Max medium (GIBCO) containing 2.5% (v/v)
fetal bovine serum (FBS) and 15% (v/v) horse
serum at 37°C in a humidified atmosphere of 5% CO,.
For induction of MKP-1 transcription, GH4C1 cells were
incubated in Ham’s F-10 Gluta Max serum-free medium
(SFM) for 24h and then stimulated by TRH (Roche)
at 100nM for 0-48min in the absence of serum.
For inhibition of P-TEFb, GH4C1 cells were incubated
with 30uM 5,6-dichloro-1-B-D-ribofuranosylbenzimida-
zole (DRB) (Sigma) for 2h prior to TRH treatment.

RNA preparation and real-time RT-PCR analysis

Nascent transcripts were prepared as described earlier
(37). Total RNA was extracted with an acid phenol/
guanidinium reagent (TRI-Reagent; Molecular Research
Center) according to the manufacturer’s instructions.
Nascent transcripts and total RNA were quantified by
TagMan RT-PCR (Applied Biosystems) as described
earlier (18) using the following primers and TagMan
probes: MKP-1 exon 1; forward primer 5-GGGACGCG
CGGTGAAG-3, reverse primer 5-GATCTTGTG
CGGTTTTTTGTGG-3, TagMan probe 5-FAM
(6-carboxyfluorescein)-CCTAAGTCCTCAAGTGCTCG
CTGATCCTAATCT-TAMRA  (6-carboxytetramethyl-
rhodamine)-3’, MKP-I exon 2; forward primer
5Y-GAAGCGTTTTCGGCTTCCT-3', reverse primer
S-TCCGGATTCTGCACTGTCA-3', TaqMan probe
5-FAM-TCAGCCTCCCGCTGAGTACTAGTGTGC-
TAMRA-3', MKP-1 exon 4; forward primer 5-CCCTG
TTCACCCCACGAA-3, reverse primer 5-GCAGCTCG
GAGAGGTTGTG-3, TagMan probe 5-FAM-TGCCC
TGAACTACCTTCAAAGCCCCA-TAMRA-3', MKP-1
exon 1-2; forward primer 5-CGCGCTCCACTCAAGTC
TTC-3', reverse primer 5-GGTGGACTGTTTGCTGC
ACA-3', TagMan probe 5-FAM-AGCCGAAAACGCT
TCATATCCTCCTTGG-TAMRA-3',  glyceraldehyde-
3-phosphate  dehydrogenase (GAPDH) exon 2-3;
forward primer 5-ATGGTGAAGGTCGGTGTGAAC-
3/, reverse primer 5Y-GAAGGCAGCCCTGGTAACC-3".
For normalization, amplification of 18S rRNA was
performed under the standard condition by using 18S
rRINA Predeveloped Assay Reagent (Applied Biosystems).

Chromatin immunoprecipitation (ChIP) assay

GHA4C1 cells were grown on 5 x 107 cells in 175 cm? flasks.
Prior to stimulation, the cells were incubated with SFM
for 24 h. Chromatin of cells stimulated by TRH for the
indicated times was cross-linked by incubation for 1h
at 4°C with a final concentration of 1% formaldehyde.
The cells were washed twice with ice-cold phosphate-
buffered saline (PBS), then they were scrapped in PBS with
I mM phenylmethylsulfonyl fluoride (PMSF) and col-
lected by centrifugation. The cells were lysed in the
cell lysis buffer (10mM Tris pH 8.1, I mM EDTA, 0.5%
NP-40, 1 mM PMSF, 50 mM NaF, 1 mM ortho-Vanadate,
I pg/ml  Aprotinin, 1pg/ml Leupeptin) and then



centrifuged to collect nuclei. The nuclei were further
lysed in the nuclear lysis buffer (10 mM Tris pH 8.1, | mM
EDTA, 0.5M NacCl, 1% Triton, 0.5% deoxycholate, 0.5%
Sarcosyl, ImMPMFS, 50mMNaF, 1mM ortho-
Vanadate, 1pg/ml Aprotinin, |pg/ml Leupeptin) and
spun down. The pelleted chromatin was suspended in
the sonication buffer (10mM Tris pH 8.1, I mM EDTA,
100mM NaCl) and fragmented with a Branson sonifier
250 to less than 1kb on average. The amount of
chromatin was estimated based on the DNA concentra-
tion measured by OD at 260 nm. The chromatin extracts
(50 pg of DNA content) diluted in RIPA buffer (1%
TritonX-100, 0.1% SDS, 0.1% deoxycholate, 140 mM
NaCl, I mM EDTA, 10mM Tris-HCI pH 8.0, ImM
PMSF) were pre-cleared with Protein A-Sepharose beads
(Amersham-Pharmacia) for 1 h and then incubated with
5-10pg of antibody at 4°C overnight. Protein A-
Sepharose beads (40 pl, 50% slurry) were then added to
the mixture for 3h at 4°C. The beads were washed five
times with RIPA buffer, one time with LiCl buffer (0.25M
LiCl, 0.5% NP-40, 0.5% deoxycholate, 1mM EDTA,
10mM Tris-HCI pH 8.0), and two times with TE buffer.
The precipitated DNA-protein complexes were subjected
to reverse cross-linking by overnight incubation at 65°C
with proteinase K and 10% SDS. The DNA purified by
phenol extraction and ethanol precipitation was dissolved
in §mM NaOH and used as a template for quantitative
real-time PCR. Real-time PCR was performed with 5 pl of
DNA solution. PCR reactions were carried out in a final
volume of 25ul with 250nM primer pairs and SYBR
Green PCR Master Mix (Applied Biosystems) or with
250nM primer pairs, 250nM Taqman probes and
Universal PCR master mix (Applied Biosystems).
Real-time PCR was performed in triplicates in 96-well
plates with ABPrism 7700 Sequence Detection System
(Applied Biosystems). Each experiment was performed
at least three times. Immuno-precipitated DNA was
expressed as a percentage of input DNA. The percent
input for <mock> ChIP (no primary antibody) was
maximally 0.05% of input DNA in all the conditions
examined. Antibodies used in this experiment were as
follows: an anti-cyclin T1 polyclonal antibody (H-245)
(Santa Cruz Biotechnology), an anti-Spt5 monoclonal
antibody (BD Biosciences), an anti-NELF-A polyclonal
antibody (A-20) (Santa Cruz Biotechnology), an anti-pol
II polyclonal antibody (N-20) (Santa Cruz Biotechnology)
and anti-pol II monoclonal antibodies (HS5 and H14)
(Convance).

Primers and TagMan probes used in this experiment
were as follows: MKP-1 exon 1; forward primer 5-GGGA
CGCGCGGTGAAG-3, reverse primer 5-GATCTTG
TGCGGTTTTTTGTGG-3', TagMan probe 5-FAM-
CCTAAGTCCTCAAGTGCTCGCTGATCCTAATCT-
TAMRA-3" MKP-1 exon 1b; forward primer 5-CTTCTG
GATTGTCGCTCCTTCT-3, reverse primer 5-CGTTC
ACTGAGCCCACGAT-3, MKP-1 exon 4; forward
primer  5-CCCTGTTCACCCCACGAA-3, reverse
primer 5-GCAGCTCGGAGAGGTTGTG-3', TagMan
probe  5-FAM-TGCCCTGAACTACCTTCAAAGCC
CCA-TAMRA-3, GAPDH 5'; forward primer 5-CTCT
CTGCTCCTCCCTGTTCTA-3, reverse primer 5-CTG

Nucleic Acids Research, 2006, Vol. 35, No.3 1009

GCACTGCACAAGAAGA-3, GAPDH 3; forward
primer 5-GGGCAGCCCAGAACATCA-3, reverse
primer 5-CCGTTCAGCTCTGGGATGAC-3', TagMan
probe 5-FAM-CCCTGCATCCACTGGTGCTGCC-
TAMRA-3'.

RESULTS

TRH induces rapidly a marked and sustained increase in the
rate of M KP-1 transcription

The induction of the MKP-1 gene by TRH is reflected by a
progressive increase in transcription rate (Figure 1).
Nascent transcripts reached maximal levels between 12
and 24min. Elevated nascent transcript levels are
sustained for at least 48 min. The kinetics of the increase
in nascent transcripts indicates a very rapid acceleration of
MKP-1 transcription rate. To monitor nascent transcripts
by RT-PCR, random primers are used for reverse
transcription, an approach which favors long transcripts.
Indeed, the data in Figure 1 do not clearly indicate a
higher abundance of the very short transcripts which
would be anticipated if a block to elongation in exon 1
would stop transcription as was suggested from in vitro
investigations (e.g. 18). In spite of this, the immediate
onset of the rise in transcriptional rate is consistent with
the proposal that MKP-1 transcription does not need to
be initiated de novo.

Dynamic redistribution of RNA polymerase II on the
MKP-1 gene during stimulation of its transcription

Density of pol IT on the MKP-1 gene was quantified by
ChIP using an antibody against the N-terminal region
of Rbp-1, the largest subunit of pol II (Figure 2B).
For this purpose, we prepared cross-linked and
fragmented chromatin from GH4Cl1 cells collected at
various times following TRH stimulation and immuno-
precipitated the DNA fragments associated with pol II.
DNA corresponding to the MKP-I gene was then
quantified by real-time PCR. Using three primer sets
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Figure 1. MKP-I nascent transcripts after induction by TRH.
Nascent transcripts of MKP-I were purified from chromatin
prepared from GH4Cl cells collected at various times after stimula-
tion of 100nM TRH. Transcripts which include MKP-I exon 1, exon
2 and exon 4 sequences were quantified by real-time RT-PCR.
A typical experiment repeated twice (mean=+SD in triplicates) is
shown.
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Figure 2. Association of pol II, NELF, DSIF and P-TEFb with the MKP-I gene. (A) Rat MKP-1 genomic locus with the primer positions. (B-E)
Distributions of pol II and elongation factors on the MKP-1 gene. ChIP assay was performed with an anti-pol II (N-20) (B), an anti-NELF-A (C),
an anti-Spt5 (D) and an anti-cyclin T1 antibody (E) with chromatin prepared at various time points of TRH stimulation. Density on the MKP-1 gene
was quantified by real-time PCR and presented as a percentage of input. A typical experiment (mean £ SD, n=23) repeated three times is shown.
(F) Suppression of MKP-1 transcription by DRB an inhibitor of P-TEFb. Cells were incubated with or without 30 uM DRB for 2 h prior to TRH
stimulation. Total RNA was extracted 24 and 48 min after TRH, and transcripts of the MKP-1 were quantified by real-time PCR. A typical

experiment repeated three times (mean £ SD in triplicates) is shown.

amplifying two exon 1 and an exon 4 regions (Figure 2A),
this ChIP design yielded the relative density of pol II and
of the elongation factors on three important sectors of
the MKP-1 gene: the exon | primer set, centered at +58
representing the sector adjacent to the transcription start
site upstream of the <block to elongation>; the exon
Ib primer set, centered at 4257 which is around
the <block to elongation>; the exon 4 primer set,
centered at +2076, representing the 3’ region of the
MKP-1 gene.

In resting cells, pol II is already strongly associated
with exon 1 and to a lesser extent with exon 1b and least
with exon 4. During acute TRH induction (12 min) pol II

is strongly recruited to all the three sectors tested.
The strongest relative increase in pol II (4-fold) is seen
on exon 4. In the stimulated steady state, the elevated
transcription rate (Figure 1) corresponds to a marked
presence of pol Il on exon 4 maintained for 48 min.
These dynamic changes in pol I density along the MKP-1
gene during the different phases of TRH induction
suggest that initiation of transcription and elongation of
transcripts are independently regulated. Furthermore,
the marked presence of pol Il on exon 1 prior to any
stimulation is consistent with the proposed <block to
elongation> in the middle of exon 1 arresting pol II in
resting cells (18).



Differential association of NELF, DSIF and P-TEFb with
the pol II complex transcribing the MKP-1 gene in vivo

To address the role of negative (NELF, DSIF) and
positive (P-TEFD) transcription factors in the induction
of the MKP-1 gene, we determined the in vivo association
of NELF, DSIF and P-TEFb with the MKP-1 gene during
stimulation of its transcription. Density of the elongation
factors was assessed with ChIP using antibodies against
NELF (NELF-A), DSIF (Spt5) and P-TEFb (cyclin T1).

First, we focused on the negative clongation factor
NELF which consists of four subunits (A, B, C or D and
E), all required for NELF to function as a negative
elongation factor (28-30). We examined the association
of NELF by using an anti-NELF-A antibody (Figure 2C).
In resting cells, NELF was associated with the MKP-1
gene at exon 1 and also exon Ib regions. NELF
association with exon 1 increased only very slightly
during TRH stimulation. There was no specific associa-
tion of NELF with the exon 4 of the MKP-1 gene
(compare specific versus mock in Figure 2C) regardless
of TRH stimulation. Thus, NELF is never recruited to
the 3’ region and functions mainly at the promoter-
proximal regions of the MKP-1 gene.

DSIF which consists of Spt5 and Spt4 is reported to
cooperate with NELF as a negative regulator for the
arrest of pol II in vitro (28-30). Notably however,
the distribution of DSIF assessed by ChIP using an anti-
Spt5 antibody was markedly different from that of NELF
(Figure 2C versus 2D). In resting cells, DSIF was present
atexon 1 and exon 1b and to a lesser extent even at exon 4.
In contrast to NELF the distribution of which did not
change after TRH stimulation, DSIF density changed
markedly and dynamically during TRH stimulation. On
exon 1b and exon 4, DSIF density was more than doubled
at the peak of transcriptional rate (12min). Even at the
steady state of sustained stimulated transcription (48 min),
DSIF on exon 1b and exon 4 was still significantly
increased over resting levels. Taken together, these results
lead us to postulate that NELF and DSIF act as a
complex at the promoter-proximal region to arrest pol II
elongation in resting cells; TRH stimulation separates the
complex. Strikingly, the dynamics of redistribution of
DSIF on the MKP-1 gene were very similar to that of total
pol II (Figure 2B versus 2D), suggesting that following its
dissociation from NELF, DSIF remains associated with
pol II on the transcribed MKP-1 gene during transcrip-
tional elongation.

P-TEFb which consists of cyclin T1 and the cyclin-
dependent kinase 9 (CDKJ9) plays a key role during the
stimulation of elongation. Indeed, in vitro it has been
shown to phosphorylate both the CTD of pol II and the
CTRs of Spt5 eliminating thereby the negative action of
the DSIF-NELF complex on transcriptional elongation
by pol II (36, 38-45). The distribution of P-TEFb on the
transcribed MKP-1 gene was assessed by ChIP assay
with an anti-cyclin T1 antibody (Figure 2E). A small
amount of P-TEFb was present on all regions (exon 1,
exonlb and exon 4) prior to TRH stimulation. TRH
caused a marked recruitment to all parts of the gene.
P-TEFb was recruited most abundantly at the peak
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of transcriptional rate (12min); subsequently P-TEFDb
density was reduced but its levels at the steady-state rate of
transcription (48 min) remained significantly elevated over
the initial levels prior to TRH stimulation. Densities of
pol II and P-TEFb change with similar dynamics
(Figure 2E versus 2B). This is consistent with a continuous
association of pol II and P-TEFb during stimulated
transcription of MKP-1. The data on P-TEFb recruitment
are strongly suggesting that P-TEFb plays its role to favor
transcriptional elongation also in intact cells in vivo.

The CDKY inhibitor DRB represses M KP-1 transcription

To examine whether CDKO9 activity of P-TEFD is required
for the induction of MKP-I transcription in vivo, protein
kinase activity of CDK9 was inhibited by DRB. As
reported earlier (18) and expected from Figure 1, MKP-1
mRNA levels were dramatically increased by TRH
stimulation: 25- and 15-fold over basal at 24 and 48 min
after stimulation, respectively (Figure 2F). However, in
GH4Cl cells treated with DRB prior to TRH stimulation,
the induction of MKP-I mRNA was almost completely
suppressed such that the levels in the presence of DRB
24 min after TRH stimulation were only 10% of the levels
reached in cells in which CDK9 was not inhibited.
This result clearly shows that CDK9 in P-TEFb is
essential for the induced transcription of MKP-1 gene.

A gene-specific mechanism controls stimulated recruitment
of elongation factors to the MKP-1 gene

To examine whether TRH stimulated specifically the
recruitment of elongation factors to the MKP-I gene,
we assessed densities of pol II and P-TEFb also on the
housekeeping gene GAPDH. P-TEFb densities on
GAPDH were found lower, unaffected by TRH stimula-
tion and insensitive to inhibition of CDK-9 by DRB
(see supplementary data). However, the low levels
of P-TEFb correspond to similarly low levels of
pol II. Thus mechanisms which control transcription
elongation involving elongation factors such as P-TEFb
are likely common to all genes. However, the rapid and
reversible recruitment of eclongation factors upon cell
stimulation occurs specifically on induced genes such
as MKP-1.

DRB inhibits the association of P-TEFb and DSIF,
but not of NELF to the MKP-1 gene

To assess the role of CDKY activity, we further
investigated the density of NELF, DSIF and P-TEFb
on the MKP-1 gene during TRH stimulation under DRB
treatment. DRB had no significant effect on the distribu-
tion of NELF which functions at the promoter-proximal
region (Figure 3A). In contrast, the association of DSIF
with the MKP-1 gene was very sensitive to DRB
(Figure 3B). While the density of DSIF on exon 1 was
essentially unaffected by DRB treatment neither in basal
nor in stimulated conditions, DSIF densities at exon
1b and exon 4 after TRH stimulation were reduced to less
than 50% of control by DRB. CDKO9 activity is thus
not important for the recruitment of DSIF to exon 1 of
MKP-1; however the marked TRH-induced recruitment
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Figure 3. DRB inhibits recruitment of P-TEFb and dynamic redis-
tribution of DSIF on the MKP-I gene. Densities of NELF, DSIF and
P-TEFb on the MKP-1 gene were assessed at various time points of
TRH stimulation in the absence (filled bars) or presence (hatched bars)
of DRB. ChIP assay was performed with an anti-NELF-A (A), an anti-
Spt5 (B) and an anti-cyclin T1 antibody (C). Density on the MKP-1
gene was analyzed by real-time PCR and presented as a percentage
of input. A typical experiment (mean &+ SD, n=3) repeated three times
is shown.

of DSIF to exon 1b and exon 4 which is associated
with stimulated transcriptional elongation depends upon
CDKJ9 activity.

DRB also significantly decreased TRH-induced
recruitment of P-TEFDb to the whole of the MKP-1 gene.
Whereas P-TEFb densities in resting cells were not
affected by DRB, the recruitment induced by the
stimulation was reduced to less than 30% of control by
DRB (Figure 3C). Therefore, kinase activity of CDK9
is essential for the induced recruitment of the whole
P-TEFb complex to the MKP-1 gene. DRB by inhibiting
CDKY inhibits the association of P-TEFb with pol II
and thereby the progression of pol II as well as the

progression of DSIF with pol II and P-TEFb to the
downstream parts of the MKP-1 gene.

Dynamics of phosphorylation of Ser-2 of pol II CTD upon
TRH stimulation are linked to transcriptional elongation

To study the effects of CTD phosphorylation by P-TEFb
in the context of MKP-1 transcriptional elongation, we
investigated distribution of CTD-phosphorylated pol II
on the MKP-1 gene in the presence or absence of DRB. As
shown in Figure 4A, in resting cells condition,
the association of total pol II was unaffected by DRB.
At the peak of transcriptional rate 12min after TRH
stimulation, the recruitment of total pol II at exon 1
region was suppressed only slightly by DRB (~20% less
than the condition without DRB treatment). In contrast,
the association of total pol II with the exon 1b and
exon 4 regions was markedly reduced by DRB to around
one-third of the corresponding controls, indicating
that transcriptional elongation by pol II induced
by TRH stimulation was attenuated in the presence
of DRB.

The distribution of pol II phosphorylated on the Ser-5
residues of the CTD was assessed by ChIP using the
H14 antibody which recognizes the phospho-Ser-5
CTD heptad repeats (Figure 4B). The distribution
of Ser-5-phosphorylated CTD was almost identical to
that of total pol II regardless of DRB treatment.
This result suggests that the decreased association of
Ser-5-phosphorylated CTD along the gene following DRB
treatment reflects strictly the reduction of total pol II.
Consistent with this, the constitutive association of pol 11
Ser-5-phosphorylated on its CTD with the region
upstream of the <block to elongation> (exon 1) should
not be significantly affected by DRB, which is indeed
the case.

In contrast, the distribution of Ser-2-phosphorylated
CTD was quite different from that of total pol II
(Figure 4C versus 4A). ChIP assay using a phosphorylated
Ser-2-specific antibody showed that pol-II-associated exon
1 is not Ser-2-phosphorylated prior to stimulation
(Figure 4C, compare signal to mock). At the peak of
transcriptional rate 12 min after TRH, Ser-2 phosphoryla-
tion was substantial on pol II situated along the whole of
the MKP-1 gene, but most abundant at the exon 4 region.
DRB prevented completely the Ser-2-phosphorylation
of pol II associated with the MKP-1 gene. The essential
role of P-TEFb for MKP-I transcriptional elongation
(Figure 2F), and the dynamics of Ser-2 phosphorylation
of pol II transcribing the MKP-I gene (Figure 4) are
strong indicators for an essential role of Ser-2 phosphor-
ylation for stimulated transcriptional elongation on the
MKP-1 gene in vivo. Consistent with earlier studies
in yeast attesting to the importance of Ser-2 phosphoryla-
tion for elongation (40), this suggests that P-TEFDb
phosphorylation of Ser-2 is a key control element for
pol II transcription of MKP-I and probably other
genes which are regulated at the elongation steps in
mammalian cells.
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Figure 4. Phosphorylation by P-TEFb of Serine-2 in the CTD pol II
is essential for transcriptional elongation. The density of total and
CTD-phosphorylated pol II on the MKP-1 gene was assessed at various
time points of TRH stimulation in the absence (filled bars) or presence
(hatched bars) of the DRB. ChIP assay was performed with specific
anti-pol Il antibodies: (A) an anti-pol II antibody (N-20), which
recognizes N-terminal region of pol II; (B) an anti-pol II antibody
(H14), directed against phospho-Ser-5 CTD; and (C) an anti-pol II
antibody (HS), directed against phospho-Ser-2 CTD. Density on the
MKP-1 gene was quantified by real-time PCR and is presented as a
percentage of input. A typical experiment (mean £ SD, n=3) repeated
three times is shown.

DISCUSSION

Biochemical data shows that the DSIF-NELF complex
can induce the arrest of pol II, and P-TEFb allows pol 11
to override such negative regulation in vitro (25-30).
However, it is less clear how and for what genes the
DSIF-NELF complex functions in vivo. The association
of NELF, DSIF and P-TEFb with pol II transcribing heat
shock genes in Drosophila has been demonstrated (31-33).
More recently, Yamada er al. showed that Spt5
phosphorylation is important for EGF activation of
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c-fos transcription (36). Here, we provide the first evidence
that the DSIF-NELF complex regulates the elongation by
pol II of the MKP-1 gene in mammalian cells. Our data
strongly support a central role of P-TEFb as a positive
elongation factor acting by modulating the function of
the DSIF-NELF complex causing its dissociation and
the association of DSIF with pol II during stimulated
transcriptional elongation in vivo.

Association of the DSIF-NELF complex and P-TEFb
at the promoter-proximal region

The MKP-1 promoter functions as a constitutive
promoter, and MKP-I transcription is presumably
controlled at the level of transcriptional elongation
(17,18,46). In the absence of stimulation, MKP-I
transcription is prematurely arrested within the first
exon. This finding led to the hypothesis of a <block to
elongation>, a notion that has remained without any
molecular equivalent so far. Here, we asked which factors
regulate positively and negatively the transcriptional
elongation of the MKP-I gene? Since pol II cannot
progress on some model genes in vitro when it is paused
by the negative elongation factors, DSIF and NELF
(26,28-30), these were prime candidate negative regula-
tors. Indeed, the DSIF-NELF complex associated with
MKP-1 gene in basal condition in vivo. The limited
association of P-TEFb with the MKP-I gene in basal
conditions (Figure 2E) and a powerful and gene-specific
inhibition of induced MKP-I transcription by DRB
(Figures 2F and 3) are in agreement with a model whereby
the DSIF-NELF complex arrests pol II on the MKP-1
gene preventing elongation as long as P-TEFb is either not
activated, or inhibited by DRB (26,28-30).

Nuclear run-on experiments have localized the
presumed <block to elongation> at around 300 bp down-
stream from the transcription start site of the M KP-1 gene
(18); given the bias of in vitro elongation of transcripts,
this technique may not correspond to the most frequent
arrest position of pol II (19). Indeed, our ChIP data
indicated that prior to stimulation, the DSIF-NELF
complex is found preferentially in the promoter-proximal
region (Figures 2 and 3). Therefore, the inhibitory
DSIF-NELF complex would function at the promoter-
proximal region in vivo similar to its behavior in vitro (28).
Upon TRH stimulation, P-TEFb is recruited to the
promoter-proximal region (Figures 2 and 3), suggesting
that P-TEFDb enables pol II to override the arrest
by the DSIF-NELF complex. P-TEFb and DSIF-
NELF acting upstream leaves the question open whether
the <block to elongation> contains any regulatory
sequences.

A dual role of DSIF

DSIF does not only functions as a negative elongation
factor. Spt4 and Spt5 are essential for transcription and
cellular viability in yeast (47-50). DSIF localizes at a
large number of transcriptionally active chromosomal
sites on polytene chromosomes in Drosophila (31-33).
DSIF is necessary for appropriate RNA splicing and
transcriptional termination (51,52). Additionally, DSIF
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prevents premature RNA release by cooperating with
human immunodeficiency virus (HIV) type 1 Tat in vitro
(53). Thus DSIF also functions  positively
during transcriptional elongation. Spt5 is phosphorylated
by P-TEFb on its CTR (36,39,42). Phosphorylation of
the threonine 4 residues has been shown to be critical
for processive transcriptional elongation. Over-expression
of exogenous Spt5S mutated at the threonines in the
CTR reduces EGF induced c-fos gene transcription by
pol II in vivo (36). Since c-fos transcription is controlled
at the elongation steps (46) this strongly suggests that after
phosphorylation by P-TEFb of Spt5, DSIF becomes a
positive elongation factor. We show here that endogenous
DSIF migrates along the MKP-I gene after TRH
stimulation. TRH-induced association of DSIF with
downstream parts of the MKP-I gene was suppressed
by DRB (Figure 3), whereas the presence of DSIF on
the promoter-proximal region was not affected by the
blockade of P-TEFb. Thus DSIF plays a dual role
for elongation switching from a negative to a positive
function as a consequence of the P-TEFb-dependent
phosphorylation of the CTR of Spt5.

The dynamic redistribution of DSIF along the MKP-1
gene is in marked contrast to the static presence of NELF
on the MKP-1 promoter-proximal regions. NELF is
neither affected by TRH stimulation, nor by the inhibition
of CDK9 by DRB. While it has been reported that
NELF-E is phosphorylated by P-TEFb (54), our data
underline that NELF functions only as a negative
regulator at the promoter-proximal region on the
MKP-1 gene irrespective of the action of P-TEFb.
The data of our in vivo study is consistent with the
model proposed earlier derived mainly from in vitro data
(36) in which the DSIF-NELF complex would function
as a negative regulator at the promoter-proximal region
in basal condition, whereas DSIF detached from NELF
and phosphorylated on its CTR would favor stimulated
transcription.

During stimulated transcriptional elongation, the C-terminal
domain of pol II is phosphorylated by P-TEFb on Serine-2
residues

Phosphorylation of the CTD of pol II is of key importance
for the control of RNA production and maturation. The
CTD is a lengthy extension consisting of multiple repeats
of a seven amino acid motif which includes five potential
phosphate acceptor sites. CTD is an essential element for
most of the steps leading to mature mRNA. Specific
phosphorylation of the CTD characterizes the pol II in
various stages of progression from the promoter to the
end of the transcribed gene. In view of the complexity of
potential CTD phosphorylation pattern, the term ‘CTD-
code’ has been coined (55) to illustrate that each of the
multiple functions assigned to the CTD could require
its specific pattern of multiple phosphorylation. Here,
we concentrated on the phosphorylation of the serines in
position 2 and 5 (Ser-2 and Ser-5) and its relation
to stimulated elongation involving CDK9, the kinase in
P-TEFb. Our data show very clearly that in the context of
stimulated elongation in vivo, CDK9 phosphorylates

mainly the Ser-2 residues on pol II which transcribes the
MKP-1 gene (Figure 4). Indeed, we find Ser-2 phosphory-
lated pol II on the downstream parts of the MKP-1 gene
only during stimulated transcriptional elongation, but
neither in the basal state nor when CDKDY is inhibited by
DRB. In contrast, Ser-5 phosphorylation is found prior to
stimulation on the pol IT on exon 1 of the MKP-1 gene in a
manner independent of DRB. Distribution pattern of
Ser-5-phosphorylated pol II change in parallel to the
distribution pattern of total pol II upon stimulation with
TRH; as DRB inhibits elongation both total pol II and
Ser-5 phosphorylated pol II are reduced in parallel
downstream of the <block to elongation>. In marked
contrast, DRB inhibition of CDK9 completely prevents
Ser-2 phosphorylation, reducing ChIP with the HS5
antibody to the level of mock IP.

Taken together, our data are thus consistent with the
proposal made earlier that phosphorylation of Ser-5
and Ser-2 of CTD are responsible for pol II initiation
and elongation, respectively (20-24). Note that these
findings do not define the <CTD code> which will
<unlock> blocked elongation, but they strongly suggest
that phospho-Ser-2 is a necessary feature.

Continuous regulatory input by P-TEFb associated with
elongating pol I1

The precise mechanisms which link signaling cascades
to elongation control via the three factors P-TEFD,
DSIF and NELF remain to be established. Possibilities
for gene-specific recruitment of elongation factors (e.g. 34)
have been recently reviewed (56) and include interactions
with RNA-binding proteins or with DNA-binding
transcription factors such as NFxB (57) or the estrogen
receptor (58).

The TRH-induced association of P-TEFb with exon 1b
and exon 4 regions suggests that P-TEFb regulates pol 11
elongation along the MKP-I gene by migrating together
with pol II after its recruitment to the promoter-proximal
region. Against a hypothetical background of constitutive
dephosphorylation of both pol II CTD (23) and Spt5 CTR
the continuous presence of P-TEFb in the transcribing
complex would assure a continuous regulatory input and
as a result finely tuned transcriptional rates. Alternatively,
P-TEFb may be required for the recruitment and
phosphorylation of proteins involved in RNA splicing,
capping and polyadenylation.

CONCLUSIONS

In Figure 5, we present a model of how transcriptional
elongation of the MKP-I gene involves the elongation
factors NELF, DSIF and P-TEFb. In basal condition,
the DSIF-NELF complex arrests pol II elongation at
the promoter-proximal region. TRH stimulation results
in the recruitment of P-TEFb which will phosphorylate
CTR of Spt5S and Ser-2 of pol II CTD, resulting in
the functional change of DSIF and release of pol II from
the arrest. P-TEFb and DSIF detached from NELF
move together with pol II probably to promote further
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Figure 5. A model for the mechanisms by which the DSIF-NELF complex and P-TEFb control MKP-I transcription. In basal condition, the DSIF-
NELF complex associates with pol II arrested in the promoter-proximal region. TRH stimulation induces recruitment of P-TEFb to the pol II
complex resulting in phosphorylation of the CTR of Spt5 and of the CTD of pol II. This leads to the dissociation of the DSIF-NELF complex and
the progression of pol II elongation. P-TEFb and DSIF remain associated with pol II during elongation of the transcript, possibly contributing also

to the control of RNA processing and maturation.

elongation of transcripts and processing of nascent
RNA into mature mRNA.
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