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In this study, micromechanical modeling will be performed for composite materials containing 
fillers oriented randomly in the matrix. The purpose of this study is to derive more general 
and explicit solutions for the effective thermal and electromagnetic properties of such composite 
materials without restricting the properties and shapes of the fillers. For this purpose, it is assumed 
that the physical properties of the filler are the same anisotropic properties as orthorhombic 
materials, and the shape of the fillers is ellipsoidal. This model is analyzed by micromechanics 
combining the Eshelby’s equivalent inclusion method with the self-consistent method or the 
Mori-Tanaka’s theory. Solutions of the effective thermal and electromagnetic properties both for 
composite materials containing many kinds of fillers with different shapes and physical properties 
and for polycrystalline materials can be also derived. Using the obtained solutions, the effect of the 
shape, the anisotropy, and the volume fraction of the filler on the effective thermal conductivity 
is examined for the carbon filler / polyethylene and the two types of quartz particles (and voids) / 
polyethylene. As a result, for the carbon filler / polyethylene, it is found that the effective thermal 
conductivity of the material when the shape of the filler is flat is about 20% higher than that when 
the shape of the filler is fibrous. Furthermore, when the shape of the carbon filler is flat, the result 
when the carbon filler is assumed to be isotropic is significantly different from that when the filler 
is assumed to be anisotropic. From the above, when the filler is oriented randomly in the material, 
it is found that simultaneously considering not only the shape of the filler but also its anisotropic 
properties is important to accurately evaluate the effective physical properties of the composite 
material. For two types of quartz particles (and voids) / polyethylene materials, the experimental 
result agrees better with the result of the Mori-Tanaka’s theory than that of the self-consistent 
method, even if the volume fraction of the filler is more than 50%. From the above results, it is 
found that the analytical solutions of this study can generally explain the experimental results 
and can be applied to actual materials.

1. Introduction

Most of the practical composite materials in which fillers are dispersed in the matrix are produced by pressing and heating SMC 
(sheet molding compound) or BMC (bulk molding compound) placed in a mold. Short fibers, particles, and flakes are used as fillers of 
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SMC or BMC. This molding method is already widely used in industrial products. In recent years, the movement to apply 3D printing 
technology to the fabrication of parts made from composite materials is progressive, since there is little material loss and parts 
with complicated shapes can be manufactured. For example, fused deposition modeling (FDM) as one of the 3D printing technology 
can produce a part made from a composite material by stacking resin filaments containing metal or ceramic fillers. By using this 
molding technology, it is possible to create parts with optimal values of mechanical, thermal, and electromagnetic properties [1]. 
In these composite materials, from the view point of material design, the properties of the entire material should be homogeneous

and isotropic. Therefore, composite materials are manufactured in such a way that the fillers are oriented randomly and dispersed 
uniformly in the resin matrix. The development of analytical tools that can accurately and quickly obtain the effective physical 
properties of composite materials containing such randomly oriented fillers will play increasingly an important role in the future.

There are many analytical studies on the thermal and electromagnetic properties of two-phase composites composed of fillers 
and a matrix [2]. For these material properties, approaches based on homogenization theory and numerical analysis such as the 
finite element method are available. Some analyses use the finite element method for effective thermal conductivity and dielectric 
constants of the materials containing spherical fillers or fibrous ones [3] [4]. However, such numerical approaches require a huge 
number of element divisions to represent the three-dimensional structure of materials, and it takes a long time to calculate these 
effective physical properties of the materials. In addition, it has the disadvantage that the influence of the shape of the filler on the 
effective physical properties of a material cannot be easily handled. Therefore, homogenization theory may be an available analytical 
method for the design of practical materials. As homogenization theories used widely, there are the variational principle, the Mori-

Tanaka’s theory [5], the self-consistent method [6], the differential scheme [7] and so on. Using the variational principle, Hashin 
et al. derived solutions for the upper and lower bounds of the effective magnetic permeability for multiphase composite materials 
in which fillers are randomly oriented in the matrix [8]. Benvaniste derived the effective thermal conductivity of a particulate 
composite, by using the generalized self-consistent method and the Mori-Tanaka theory [9]. As the analysis using the Mori-Tanaka’s 
theory, Hatta et al. derived the solution of the effective thermal conductivity of composite materials when the filler is isotropic and 
its shape is spheroidal [10]. In this analysis, Hatta et al. applied the Eshelby’s equivalent inclusion method to problems of heat 
conduction and derived the Eshelby’s tensor for these problems [11] [12]. Regarding the analysis using the self-consistent method, 
Kanaun et al. derived the solution of the effective thermal and electromagnetic properties when the physical property of the filler 
is isotropic and its shape is spherical [13]. However, these analyzes are limited to cases where the physical properties of fillers are 
isotropic and their shapes are spheroidal or spherical.

Regarding the shape of the filler, experimental results have been reported that the thermal conductivity of the composite material 
varies significantly due to the subtle differences in the shape of the filler [14] [15] [16]. Regarding the anisotropy of fillers, there 
are some fillers whose properties are anisotropic, depending on their structure resulting from the manufacturing method of fillers. 
Carbon fibers are the typical example [17] [18]. Therefore, it is desirable to derive an analytical solution of the effective properties 
of composite materials that can handle simultaneously arbitrary shapes and anisotropy of fillers.

From the above, the purpose of this study is to obtain more general solutions to the effective thermal and electromagnetic 
properties of composite materials containing filler oriented randomly in the material. In this analysis, without loss of generality, it 
is assumed that the physical properties of the filler are the same anisotropic properties as orthorhombic materials, and the shape 
of fillers is arbitrary ellipsoidal. This model is analyzed by micromechanics combining the Eshelby’s equivalent inclusion method 
with the self-consistent method or the Mori-Tanaka’s theory. In addition, the analysis of effective thermal and electromagnetic 
properties for composite materials containing many kinds of fillers whose properties and shapes are different from each other and for 
polycrystalline materials will be also performed. Furthermore, by using solutions obtained in this analysis, it is performed to calculate 
the effect of the shape, the anisotropy, and the volume fraction of fillers on the effective thermal conductivity, and to examine the 
usefulness of derived solutions by comparing these analytical results with experimental ones.

2. Analysis of effective thermal and electromagnetic properties of composite materials containing ellipsoidal fillers 
oriented randomly

In this chapter, effective thermal conductivity, permittivity (dielectric constant), electrical conductivity, and magnetic permeabil-

ity of composite materials containing ellipsoidal fillers oriented randomly are examined. The ranks of tensors related to fields and 
physical properties in these problems are all the same, that is, the tensor of fields is first-order and that of property is second-order. 
Moreover, the constitutive equation and equilibrium one are expressed in the same form. Thus, by this analogy, if one of these 
physical properties can be solved, all other properties can be automatically found by a simple substitution of symbols [19]. Here, we 
take the dielectric problem as an example.

2.1. Analysis by the self-consistent method

2.1.1. Analytical model

Fig. 1 shows a composite material containing randomly oriented ellipsoidal fillers in the matrix, and the fillers are shown as the 
shaded area. Fillers are classified according to their orientation, and regions of fillers and the entire material are denoted by Ω(𝑖) and 
𝐷 respectively. A global coordinate system 𝐺𝑥𝑖 is taken along the direction of the dielectric flux 𝐷0

𝑖
acting externally on the material, 

and a local coordinate system 𝐿(𝑖)𝑥𝑖 is taken along the direction of the principal semi-axis of a filler Ω(𝑖) as shown in Fig. 1. From 
now on, we will add 𝐺 or 𝐿(𝑖) to the left shoulder of the symbols for field quantities to indicate that they are quantities related to the 
2

global coordinate system or the local coordinate one. All fillers have the same ellipsoidal shape, and the axial length of fillers in the 
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Fig. 1. Composite material containing many ellipsoidal fillers oriented randomly.

Fig. 2. Model smeared out with unknown effective dielectric constant in the 
global coordinate system.

Fig. 3. Model smeared out with unknown effective dielectric constant in the 
local coordinate system.

direction of 𝐿(𝑖)𝑥𝑖 is denoted by 𝑎Ω
𝑖

. In addition, all fillers have the same permittivity as an orthorhombic material, as shown in the 
following equation

𝜺
𝐷Ω =

⎡⎢⎢⎣
𝜀𝐷Ω
11 0 0
0 𝜀𝐷Ω

22 0
0 0 𝜀𝐷Ω

33

⎤⎥⎥⎦ . (1)

The permittivity of the matrix is denoted by 𝜀𝐷 and it’s isotropic. In addition, the eigen electric field 𝐸𝑝Ω
𝑖

is given in the region 
of filler Ω(𝑖), and its magnitude is assumed to be the same for all fillers. This electric field corresponds to the residual strain in the 
elastic problem, but we do not mention what the source of this is. 𝑓(𝑖) is the volume fraction of filler Ω(𝑖) in the material, and 𝑓 is 
the total volume fraction of fillers. That is, 𝑓 =

∑𝑛

𝑖=1 𝑓(𝑖).

Fig. 2 shows the model in which the material surrounding a filler Ω(𝑖) shown in Fig. 1 is replaced by a material with unknown 
effective permittivity 𝜀𝐷

. Note that the property of the entire material is macroscopically isotropic because the fillers are randomly 
oriented in the material. Furthermore, the external dielectric flux 𝐺𝐷0

𝑖
in Fig. 2 is transformed into 𝐿(𝑖)𝐷0

𝑖
that is the quantity in the 

local coordinate system 𝐿(𝑖)𝑥𝑖 taken along the direction of the principal semi-axis of the filler Ω(𝑖). This model is shown in Fig. 3. 
Analysis of the model in Fig. 2 requires coordinate transformation for the Eshelby tensor that appears in the equivalent equation 
shown later, and cannot derive smartly the solutions of the equivalent equation. Therefore, in this analysis, the model in Fig. 3 will 
be used as the analytical model.

2.1.2. Analysis of effective permittivity

The equivalent equation for the filler Ω(𝑖) shown in Fig. 3 is given by{ }

3

𝐿(𝑖)𝐷0
𝑖
+ 𝐿(𝑖)𝐷∞

𝑖
= 𝜀𝐷Ω

𝑖𝑗

𝐿(𝑖)
𝐸𝑗 + (𝑆Ω

𝑗𝑘
−𝐼𝑗𝑘) 𝐿(𝑖)𝐸∗∗Ω(𝑖)

𝑘
+ 𝐿(𝑖)𝐸∗Ω(𝑖)

𝑗
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= 𝛿𝑖𝑗 𝜀
𝐷{𝐿(𝑖)

𝐸𝑗 + (𝑆Ω
𝑗𝑘
−𝐼𝑗𝑘) 𝐿(𝑖)𝐸∗∗Ω(𝑖)

𝑘

}
, (2)

where 𝐿(𝑖)𝐷∞
𝑖

is the eigen dielectric flux in the region Ω(𝑖), 𝐿(𝑖)𝐸∗∗Ω(𝑖)
𝑖

is the sum of the eigen electric field 𝐸𝑝Ω
𝑖

and the unknown 
equivalent eigen electric field 𝐿(𝑖)𝐸∗Ω(𝑖)

𝑖
that substitutes for the difference in permittivity between the filler and the matrix. That is, 

𝐿(𝑖)𝐸∗∗Ω(𝑖)
𝑖

is expressed as

𝐿(𝑖)𝐸∗∗Ω(𝑖)
𝑖

= 𝐸
𝑝Ω
𝑖

+ 𝐿(𝑖)𝐸∗Ω(𝑖)
𝑖

. (3)

Since the eigen electric field 𝐸𝑝Ω
𝑖

is usually considered to be a quantity given along the direction of the principal semi-axis of Ω(𝑖), 
the left shoulder of 𝐸𝑝Ω

𝑖
is not attached with 𝐿(𝑖) representing the local coordinate system. The unknown quantity to be derived is 

the equivalent eigen electric field 𝐿(𝑖)𝐸∗Ω(𝑖)
𝑖

, but to simplify the derivation of Eq. (2), 𝐿(𝑖)𝐸∗∗Ω(𝑖)
𝑖

in Eq. (3), that is sum of 𝐸𝑝Ω
𝑖

and 
𝐿(𝑖)𝐸∗Ω(𝑖)

𝑖
, will be obtained as the unknown quantity.

𝑆Ω
𝑖𝑗

is the Eshelby tensor of region Ω and given by

𝐒Ω =
⎡⎢⎢⎣
𝑆Ω
11 0 0
0 𝑆Ω

22 0
0 0 𝑆Ω

33

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝐻Ω

1 0 0
0 𝐻Ω

2 0
0 0 𝐻Ω

3

⎤⎥⎥⎦ . (4)

𝐻Ω
𝑖

is called the geometrical factor and the relation 𝐻Ω
1 + 𝐻Ω

2 + 𝐻Ω
3 = 1 holds [20]. Geometrical factors for various shapes of filler 

are given in Appendix A. 𝐼𝑖𝑗 is the identity matrix, and 𝐿(𝑖)𝐸𝑖 is the electric field occurred over the material by 𝐿(𝑖)𝐷0
𝑖
. Substituting 

Eqs. (1) and (4) into Eq. (2), and solving for the equivalent eigen electric field, we obtain

𝐿(𝑖)𝐸∗∗Ω(𝑖)
1 = −𝐴Ω

1 (
𝐿(𝑖)𝐸1 −𝐿Ω

1 𝐸
𝑝Ω
1 ) , (5)

where

𝐿Ω
1 =

𝜀𝐷Ω
11

𝜀𝐷Ω
11 − 𝜀

𝐷
, 𝐴Ω

1 = 1
𝐿Ω
1 +𝐻Ω

1 − 1
. (6)

Components 2 and 3 can be found by substituting 2 or 3 for subscript 1 in Eqs. (5) and (6). The total electric field 𝐿(𝑖)𝐸𝑡𝑜𝑡𝑎𝑙
𝑖

in region 
Ω(𝑖) in the local coordinate system is given from Eqs. (2), (4) and (5) as follows:

𝐿(𝑖)𝐸𝑡𝑜𝑡𝑎𝑙
𝑖

= 𝐿(𝑖)𝐸𝑖 + 𝑆Ω
𝑖𝑗

𝐿(𝑖)𝐸∗∗Ω(𝑖)
𝑗

.

∴ 𝐿(𝑖)𝐸𝑡𝑜𝑡𝑎𝑙
1 = (1 −𝐻Ω

1 𝐴Ω
1 )

𝐿(𝑖)𝐸1 +𝐿Ω
1 𝐻Ω

1 𝐴Ω
1 𝐸

𝑝Ω
1 . (7a)

The total dielectric flux 𝐿(𝑖)𝐷𝑡𝑜𝑡𝑎𝑙
𝑖

in the region Ω(𝑖) in the local coordinate system is obtained from Eqs. (1), (2) and (7a) as follows:

𝐿(𝑖)𝐷𝑡𝑜𝑡𝑎𝑙
𝑖

= 𝐿(𝑖)𝐷0
𝑖
+ 𝐿(𝑖)𝐷∞

𝑖
= 𝜀𝐷Ω

𝑖𝑗
(𝐿(𝑖)𝐸𝑡𝑜𝑡𝑎𝑙

𝑗
−𝐸

𝑝Ω
𝑗

) .

∴ 𝐿(𝑖)𝐷𝑡𝑜𝑡𝑎𝑙
1 = 𝜀𝐷Ω

11

{
(1 −𝐻Ω

1 𝐴Ω
1 )

𝐿(𝑖)𝐸1 − (1 −𝐿Ω
1 𝐻Ω

1 𝐴Ω
1 )𝐸

𝑝Ω
1

}
. (8a)

Representing Eqs. (7a) and (8a) as matrix form,

𝐿(𝑖)𝐄𝑡𝑜𝑡𝑎𝑙 = 𝐏Ω 𝐿(𝑖)𝐄− 𝐏𝑝Ω𝐄𝑝Ω , (7b)

𝐿(𝑖)𝐃𝑡𝑜𝑡𝑎𝑙 = 𝜺
𝐷Ω(𝐿(𝑖)𝐄𝑡𝑜𝑡𝑎𝑙 −𝐄𝑝Ω) = 𝜺

𝐷Ω
{
𝐏Ω 𝐿(𝑖)𝐄− (𝐏𝑝Ω − 𝐈)𝐄𝑝Ω

}
, (8b)

where 𝐈 is the identity matrix, and 𝐏Ω and 𝐏𝑝Ω are given by

𝐏Ω =
⎡⎢⎢⎣
𝑃Ω
11 0 0
0 𝑃Ω

22 0
0 0 𝑃Ω

33

⎤⎥⎥⎦ , 𝐏𝑝Ω =
⎡⎢⎢⎢⎣
𝑃

𝑝Ω
11 0 0
0 𝑃

𝑝Ω
22 0

0 0 𝑃
𝑝Ω
33

⎤⎥⎥⎥⎦ , (9a)

𝑃Ω
11 = 1 −𝐻Ω

1 𝐴Ω
1 = 𝜀

𝐷

𝐻Ω
1 𝜀𝐷Ω

11 + (1 −𝐻Ω
1 )𝜀

𝐷
, 𝑃

𝑝Ω
11 = −𝐿Ω

1 𝐻Ω
1 𝐴Ω

1 = −
𝐻Ω

1 𝜀𝐷Ω
11

𝐻Ω
1 𝜀𝐷Ω

11 + (1 −𝐻Ω
1 )𝜀

𝐷
. (9b)

Next, we consider equations of coordinate transformation for the electric field and dielectric flux from the global coordinate 
system to the local coordinate one, or vice versa. Let 𝐿𝐄 and 𝐿𝐃 denote the electric field and the dielectric flux in the local coordinate 
system, and 𝐺𝐄 and 𝐺𝐃 denote them in the global coordinate system. Then, equations of coordinate transformation are expressed by

𝐿𝐄 = 𝒍
𝐺𝐄 , 𝐿𝐃 = 𝒍

𝐺𝐃 , (10a)

𝐺𝐄 = 𝒍
𝑡 𝐿𝐄 = 𝒍

−1 𝐿𝐄 , 𝐺𝐃 = 𝒍
𝑡 𝐿𝐃 = 𝒍

−1 𝐿𝐃 , (10b)

where 𝒍 is the matrix of coordinate transformation and 𝑡 represents the transpose of matrix. Fig. 4 shows the spherical coordinate 
4

system expressed in Euler angles, where 𝜃, 𝜙, and 𝜓 are the zenith, azimuth, and rotation angles of a filler. In the case of the y-
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Fig. 4. Spherical coordinate system expressed by Euler angles.

convention, the coordinate transformation is performed by first rotating an azimuth angle 𝜙 around the z-axis, then a zenith angle 𝜃
around the y-axis, and finally a rotation angle 𝜓 around the z-axis again. The matrix of coordinate transformation in the y-convention 
𝒍 is given as follows [21]:

𝒍 =
⎡⎢⎢⎣
𝑙11 𝑙12 𝑙13
𝑙21 𝑙22 𝑙23
𝑙31 𝑙32 𝑙33

⎤⎥⎥⎦ =
⎡⎢⎢⎣
cos𝜓 sin𝜓 0
−sin𝜓 cos𝜓 0

0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
cos𝜃 0 −sin𝜃

0 1 0
sin𝜃 0 cos𝜃

⎤⎥⎥⎦
⎡⎢⎢⎣
cos𝜙 sin𝜙 0
−sin𝜙 cos𝜙 0

0 0 1

⎤⎥⎥⎦
=
⎡⎢⎢⎣
cos𝜃 cos𝜙 cos𝜓 − sin𝜙 sin𝜓 cos𝜃 sin𝜙 cos𝜓 + cos𝜙 sin𝜓 −sin𝜃 cos𝜓
−cos𝜃 cos𝜙 sin𝜓 − sin𝜙 cos𝜓 −cos𝜃 sin𝜙 sin𝜓 + cos𝜙 cos𝜓 sin𝜃 sin𝜓

sin𝜃 cos𝜙 sin𝜃 sin𝜙 cos𝜃

⎤⎥⎥⎦ . (11)

Using the relation of Eq. (10), the transformation for the total electric field 𝐿(𝑖)𝐄𝑡𝑜𝑡𝑎𝑙 and the total dielectric flux 𝐿(𝑖)𝐃𝑡𝑜𝑡𝑎𝑙 in Eqs. (7b)

and (8b) to the global coordinate system are expressed as

𝐺𝐄𝑡𝑜𝑡𝑎𝑙 = {𝒍(𝑖)}−1 𝐏Ω
𝒍
(𝑖) 𝐺𝐄− {𝒍(𝑖)}−1 𝐏𝑝Ω𝐄𝑝Ω , (7c)

𝐺𝐃𝑡𝑜𝑡𝑎𝑙 = {𝒍(𝑖)}−1 𝜺
𝐷Ω 𝐏Ω

𝒍
(𝑖) 𝐺𝐄− {𝒍(𝑖)}−1 𝜺

𝐷Ω (𝐏𝑝Ω − 𝐈)𝐄𝑝Ω . (8c)

From Eqs. (7c), (8c), and (11), taking the summation of the total electric field and the total dielectric flux of all fillers and the matrix 
yields the macroscopic total electric field 𝐺𝐄 and the macroscopic total dielectric flux 𝐺𝐃 as follows:

𝐺𝐄=
𝑛∑

𝑖=1
𝑓(𝑖)

𝐺𝐄𝑡𝑜𝑡𝑎𝑙 +
(
1 −

𝑛∑
𝑖=1

𝑓(𝑖)

)
𝐺𝐄𝑚

= 1
8𝜋2 𝑓

𝜋

∫
0

2𝜋

∫
0

2𝜋

∫
0

𝑠𝑖𝑛𝜃

(
𝒍
−1 𝐏Ω

𝒍
𝐺𝐄− 𝒍

−1 𝐏𝑝Ω𝐄𝑝Ω
)
𝑑𝜃 𝑑𝜙 𝑑𝜓 + (1 − 𝑓 ) 𝐺𝐄𝑚

= 1
3
𝑓 (𝑃Ω

11 + 𝑃Ω
22 + 𝑃Ω

33)
𝐺𝐄+ (1 − 𝑓 ) 𝐺𝐄𝑚 , (12)

𝐺𝐃 =
𝑛∑

𝑖=1
𝑓(𝑖)

𝐺𝐃𝑡𝑜𝑡𝑎𝑙 +
(
1 −

𝑛∑
𝑖=1

𝑓(𝑖)

)
𝐺𝐃𝑚

= 1
8𝜋2 𝑓

𝜋

∫
0

2𝜋

∫
0

2𝜋

∫
0

𝑠𝑖𝑛𝜃

(
𝒍
−1
𝜺
𝐷Ω 𝐏Ω

𝒍
𝐺𝐄− 𝒍

−1
𝜺
𝐷Ω (𝐏𝑝Ω − 𝐈)𝐄𝑝Ω

)
𝑑𝜃 𝑑𝜙 𝑑𝜓 + (1 − 𝑓 )𝐺𝐃𝑚

= 1
3
𝑓 (𝜀𝐷Ω

11 𝑃Ω
11 + 𝜀𝐷Ω

22 𝑃Ω
22 + 𝜀𝐷Ω

33 𝑃Ω
33)

𝐺𝐄+ (1 − 𝑓 )𝐺𝐃𝑚 . (13)

Note that from Eqs. (12) and (13) the integral concerning the eigen electric field 𝐄𝑝Ω vanishes as a result. 𝐺𝐄𝑚 and 𝐺𝐃𝑚 in these 
equations are the total electric field and the total dielectric flux of the matrix respectively, and the following relation between them 
holds.

𝐺𝐷𝑚
𝑖
= 𝛿𝑖𝑗𝜀

𝐷 𝐺𝐸𝑚
𝑗

𝑜𝑟 𝐺𝐃𝑚 = 𝜀𝐷 𝐺𝐄𝑚 . (14)

About Eqs. (12) and (13), if 𝐺𝐄𝑚 and 𝐺𝐃𝑚 are eliminated using the relation of Eq. (14), then the relation between 𝐺𝐄 and 𝐺𝐃 can be 
obtained as follows:

𝐺𝐃 =
[
𝜀𝐷 + 1

3
𝑓

{
𝑃Ω
11(𝜀

𝐷Ω
11 − 𝜀𝐷) + 𝑃Ω

22(𝜀
𝐷Ω
22 − 𝜀𝐷) + 𝑃Ω

33(𝜀
𝐷Ω
33 − 𝜀𝐷)

}]
𝐺𝐄 . (15)
5

On the other hand, 𝐺𝐄 and 𝐺𝐃 have the following relation through the effective permittivity 𝜀𝐷
of the material.
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𝐺𝐃 = 𝜀
𝐷 𝐺𝐄 . (16)

By equating Eq. (15) with Eq. (16) and using Eq. (9), the effective permittivity 𝜀𝐷
is finally obtained as

𝜀
𝐷 = 𝜀𝐷 + 1

3
𝑓 𝜀

𝐷

{
𝜀𝐷Ω
11 − 𝜀𝐷

𝐻Ω
1 𝜀𝐷Ω

11 + (1 −𝐻Ω
1 )𝜀

𝐷
+

𝜀𝐷Ω
22 − 𝜀𝐷

𝐻Ω
2 𝜀𝐷Ω

22 + (1 −𝐻Ω
2 )𝜀

𝐷
+

𝜀𝐷Ω
33 − 𝜀𝐷

𝐻Ω
3 𝜀𝐷Ω

33 + (1 −𝐻Ω
3 )𝜀

𝐷

}
. (17)

Note that Eq. (17) is an equation for the unknown 𝜀𝐷
, so it is necessary to find the value of 𝜀𝐷

by numerical calculation.

2.2. Analysis by the Mori-Tanaka’s theory

In this section, we perform the analysis using the concept of the Mori-Tanaka’s theory. In this theory, the surrounding of a filler 
Ω(𝑖) in the composite material shown in Fig. 1 is smeared out by unknown interaction dielectric flux 𝐷̃𝑖. This point is different from 
the self-consistent method. Therefore, in the models in Figs. 3 and 4, the unknown permittivity 𝜀𝐷

in the shaded area is replaced 
by the known permittivity 𝜀𝐷 of the matrix, and the unknown interaction dielectric flux 𝐷̃𝑖 acts on the entire material. Let 𝐸0

𝑖
and 

𝐸̃𝑖 denote the external electric field and the interaction one corresponding to 𝐷0
𝑖

and 𝐷̃𝑖, respectively. Referring to Eq. (2), the 
equivalent equation for the filler Ω(𝑖) is given by

𝐿(𝑖)𝐷0
𝑖
+ 𝐿(𝑖)𝐷̃𝑖 + 𝐿(𝑖)𝐷∞

𝑖
= 𝜀𝐷Ω

𝑖𝑗

{𝐿(𝑖)
𝐸0

𝑗
+ 𝐿(𝑖)𝐸̃𝑗 + (𝑆Ω

𝑗𝑘
− 𝐼𝑗𝑘) 𝐿(𝑖)𝐸∗∗Ω(𝑖)

𝑘
+ 𝐿(𝑖)𝐸∗Ω(𝑖)

𝑗

}
= 𝛿𝑖𝑗 𝜀𝐷

{𝐿(𝑖)
𝐸0

𝑗
+ 𝐿(𝑖)𝐸̃𝑗 + (𝑆Ω

𝑗𝑘
− 𝐼𝑗𝑘) 𝐿(𝑖)𝐸∗∗Ω(𝑖)

𝑘

}
. (18)

Relations between 𝐷0
𝑖

and 𝐸0
𝑖
, 𝐷̃𝑖 and 𝐸̃𝑖 are as follows:

𝐷0
𝑖
= 𝛿𝑖𝑗𝜀

𝐷𝐸0
𝑗

, 𝐷̃𝑖 = 𝛿𝑖𝑗𝜀
𝐷𝐸̃𝑗 . (19)

Comparing Eq. (18) with Eq. (2), Eq. (18) is a simple replacement of Eq. (2) as follows:

𝐷0
𝑖
→ 𝐷0

𝑖
+ 𝐷̃𝑖 , 𝐸𝑖 → 𝐸0

𝑖
+ 𝐸̃𝑖 , 𝜀

𝐷 → 𝜀𝐷 . (20)

Therefore, since the following analysis is the same as that in the previous section with the replacement shown in Eq. (20), the form 
of obtained solutions is the same. However, it is noted that the unknown permittivity 𝜀𝐷

that appears in the coefficients 𝐿Ω
1 and 𝐴Ω

1
in Eq. (6) and the coefficients 𝑃Ω

11 and 𝑃 𝑝Ω
11 in Eq. (9) is replaced with the known permittivity 𝜀𝐷 of the matrix. From the above, 

referring to Eqs. (12) and (13), the macroscopic total electric field 𝐺𝐄 and the macroscopic total dielectric flux 𝐺𝐃 of the material 
are obtained as follows:

𝐺𝐄= 1
3
𝑓 (𝑃Ω

11 + 𝑃Ω
22 + 𝑃Ω

33)(
𝐺𝐄0 +𝐺𝐄̃) + (1 − 𝑓 )𝐺𝐄𝑚

=
{1
3
𝑓 (𝑃Ω

11 + 𝑃Ω
22 + 𝑃Ω

33) + (1 − 𝑓 )
}
(𝐺𝐄0 +𝐺𝐄̃) , (21)

𝐺𝐃 = 1
3
𝑓 (𝜀𝐷Ω

11 𝑃Ω
11 + 𝜀𝐷Ω

22 𝑃Ω
22 + 𝜀𝐷Ω

33 𝑃Ω
33)(

𝐺𝐄0 +𝐺𝐄̃) + (1 − 𝑓 )𝐺𝐃𝑚

=
{1
3
𝑓 (𝜀𝐷Ω

11 𝑃Ω
11 + 𝜀𝐷Ω

22 𝑃Ω
22 + 𝜀𝐷Ω

33 𝑃Ω
33) + (1 − 𝑓 )𝜀𝐷

}
(𝐺𝐄0 +𝐺𝐄̃) , (22)

where 𝐺𝐄𝑚 and 𝐺𝐃𝑚 in the above equation are the total electric field and the total dielectric flux of the matrix. Unlike Eq. (14), these 
are given by the sum of the external field and the interaction field, and have the following relations:

𝐺𝐸𝑚
𝑖
= 𝐺𝐸0

𝑖
+𝐺𝐸̃𝑖 , 𝐺𝐷𝑚

𝑖
=𝐺𝐷0

𝑖
+𝐺𝐷̃𝑖 .

𝐺𝐷𝑚
𝑖
= 𝛿𝑖𝑗𝜀

𝐷 𝐺𝐸𝑚
𝑗

𝑜𝑟 𝐺𝐃𝑚 = 𝜀𝐷 𝐺𝐄𝑚 . (23)

Eq. (23) is used to derive Eqs. (21) and (22). Eliminating (𝐺𝐄0 +𝐺𝐄̃) in Eqs. (21) and (22) and obtaining the relation between 𝐺𝐄 and 
𝐺𝐃, and equating this with Eq. (16), the effective permittivity is finally obtained as follows:

𝜀
𝐷 = 𝜀𝐷 +

1
3
𝑓 𝜀𝐷

{
𝜀𝐷Ω
11 − 𝜀𝐷

𝐻Ω
1 𝜀𝐷Ω

11 +(1−𝐻Ω
1 )𝜀

𝐷
+

𝜀𝐷Ω
22 − 𝜀𝐷

𝐻Ω
2 𝜀𝐷Ω

22 +(1−𝐻Ω
2 )𝜀

𝐷
+

𝜀𝐷Ω
33 − 𝜀𝐷

𝐻Ω
3 𝜀𝐷Ω

33 +(1−𝐻Ω
3 )𝜀

𝐷

}

(1−𝑓 ) + 1
3
𝑓 𝜀𝐷

{
1

𝐻Ω
1 𝜀𝐷Ω

11 +(1−𝐻Ω
1 )𝜀

𝐷
+ 1

𝐻Ω
2 𝜀𝐷Ω

22 +(1−𝐻Ω
2 )𝜀

𝐷
+ 1

𝐻Ω
3 𝜀𝐷Ω

33 +(1−𝐻Ω
3 )𝜀

𝐷

} . (24)

From this derivation process, in the Mori-Tanaka’s theory, the effective permittivity can be obtained directly without solving the 
unknown interaction fields 𝐺𝐷̃𝑖 and 𝐺𝐸̃𝑖. This point differs greatly from the self-consistent method. Interaction fields 𝐺𝐷̃𝑖 and 𝐺𝐸̃𝑖

are obtained from the condition that the sum of the internal dielectric flux over the entire material is zero. 𝐺𝐃 in Eq. (22) is given by 
the sum of the dielectric flux acting externally 𝐺𝐃0 and the total internal dielectric flux. Therefore, the total internal dielectric flux 
obtained by subtracting 𝐺𝐃0 from 𝐺𝐃 must be zero. Therefore, from Eqs. (22) and (19), the interaction electric field 𝐺𝐄̃ is obtained 
6

as
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𝐺𝐃− 𝐺𝐃0 = 𝟎 .

∴ 𝐺𝐄̃ =
𝑓

{
1 − 1

3𝜀𝐷
(𝜀𝐷Ω

11 𝑃Ω
11 + 𝜀𝐷Ω

22 𝑃Ω
22 + 𝜀𝐷Ω

33 𝑃Ω
33)

}
1 − 𝑓

{
1 − 1

3𝜀𝐷
(𝜀𝐷Ω

11 𝑃Ω
11 + 𝜀𝐷Ω

22 𝑃Ω
22 + 𝜀𝐷Ω

33 𝑃Ω
33)

} 𝐺𝐄0 . (25)

The interaction dielectric flux 𝐷̃𝑖 can be derived by substituting Eq. (25) into the second equation of Eq. (19).

2.3. Solutions for special cases

2.3.1. A case where the physical property of the filler is isotropic and its shape is spheroidal

In this section, by using the solutions obtained in Sections 2.1 and 2.2, we show the solution for the special case where the physical 
property of the filler is isotropic and its shape is spheroidal. In this case, since 𝜀𝐷Ω

11 = 𝜀𝐷Ω
22 = 𝜀𝐷Ω

33 = 𝜀𝐷Ω and 𝐻Ω
1 = 𝐻Ω

2 = (1 − 𝐻Ω
3 )∕2

(see Appendix A) hold, substituting these into solutions of the self-consistent method and the Mori-Tanaka’s theory, Eqs. (17) and 
(24), respectively, we have

self-consistent method:

𝜀
𝐷 = 𝜀𝐷 + 𝑓 𝜀

𝐷(𝜀𝐷Ω−𝜀𝐷)

{
2

(𝜀𝐷Ω+2𝜀𝐷)+ 1
2
(1−3𝐻Ω

3 )(𝜀
𝐷Ω−𝜀

𝐷)
+ 1

(𝜀𝐷Ω+2𝜀𝐷)−(1−3𝐻Ω
3 )(𝜀

𝐷Ω−𝜀
𝐷)

}
, (26a)

Mori-Tanaka’s theory:

𝜀
𝐷 = 𝜀𝐷 + 3𝑓𝜀𝐷(𝜀𝐷Ω−𝜀𝐷)

(1−𝑓 )
{
(𝜀𝐷Ω+2𝜀𝐷) + 1

2
(𝜀𝐷Ω−𝜀𝐷)(1−3𝐻Ω

3 )
}{

(𝜀𝐷Ω+2𝜀𝐷)−(𝜀𝐷Ω−𝜀𝐷)(1−3𝐻Ω
3 )

}
(𝜀𝐷Ω+2𝜀𝐷) − 1

2
(𝜀𝐷Ω−𝜀𝐷)(1−3𝐻Ω

3 )
+ 3𝑓𝜀𝐷

. (26b)

The same solution expressed in a slightly different form from Eq. (26b) was derived by Hatta et al. [10]. Furthermore, when the 
shape of the filler is spherical, 𝐻Ω

3 = 1∕3 holds (see Appendix A), so substituting this into Eq. (26) eliminates the term 1 − 3𝐻Ω
3 , and 

we find immediately to be as follows:

self-consistent method: 𝜀
𝐷 = 𝜀𝐷 + 3𝑓𝜀

𝐷(𝜀𝐷Ω − 𝜀𝐷)
3𝜀𝐷 + (𝜀𝐷Ω − 𝜀

𝐷)
, (27a)

Mori-Tanaka’s theory: 𝜀
𝐷 = 𝜀𝐷 + 3𝑓𝜀𝐷(𝜀𝐷Ω − 𝜀𝐷)

3𝜀𝐷 + (1 − 𝑓 )(𝜀𝐷Ω − 𝜀𝐷)
. (27b)

The solution of Eq. (27a) is in agreement with that derived by Kanaun et al. [13].

2.3.2. A case where the filler is a void

In this section, we consider the case where all fillers are voids and the inside is filled with air. The permittivity of air is almost 
equal to that of vacuum 𝜀0. Therefore, the effective permittivity can be obtained by substituting 𝜀𝐷Ω = 𝜀0 in Eq. (27).

The solutions of effective permittivity given by Eqs. (17), (24), (26), and (27) can be applied to problems of thermal conduction, 
electrical conduction, and magnetism. Therefore, it is possible to obtain solutions of effective thermal conductivity, electrical conduc-

tivity, and magnetic permeability from that of effective permittivity. For example, the solution of effective thermal conductivity can 
be obtained by simply replacing the symbol 𝜀𝐷 with the symbol 𝑘 for thermal conductivity in these equations. Using this analogy, 
we consider the effective thermal conductivity, magnetic permeability, and electrical conductivity when the filler is void and filled 
with air. A foam metal is one such material. In this material, the thermal conductivity of the metal matrix is more than 104 times 
that of air, the magnetic permeability of the matrix is more than 105 times that of air, and the electrical conductivity is on the order 
of even greater. For the thermal conductivity of such foam metal, 𝑘Ω = 0 holds approximately. Thus, when the thermal conductivity 
inside the voids is sufficiently small compared to that of the matrix and can be regarded as zero, the effective thermal conductivity 
𝑘 can be expressed approximately as follows:

self-consistent method: 𝑘 = 𝑘− 1
3
𝑓𝑘

(
1

1 −𝐻Ω
1

+ 1
1 −𝐻Ω

2

+ 1
1 −𝐻Ω

3

)
, (28a)

Mori-Tanaka’s theory: 𝑘 = 𝑘−

1
3
𝑓𝑘

(
1

1 −𝐻Ω
1

+ 1
1 −𝐻Ω

2

+ 1
1 −𝐻Ω

3

)

(1 − 𝑓 ) + 1
3
𝑓

(
1

1 −𝐻Ω
1

+ 1
1 −𝐻Ω

2

+ 1
1 −𝐻Ω

3

) , (28b)

where 𝑘 is the thermal conductivity of the matrix. It is interesting that the solution of self-consistent method Eq. (28a), like that 
of Mori-Tanaka’s theory Eq. (28b), reduces to be an explicit expression. This approximate solution can also be applied to electrical 
7

conductivity and magnetic permeability for the reason mentioned above.
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Fig. 5. Composite material containing many ellipsoidal fillers with different physical properties and shapes oriented randomly. If there is no matrix, it becomes a 
polycrystalline material.

3. Analysis for composite materials (or polycrystalline materials) containing many kinds of fillers (or crystal grains) 
oriented randomly

3.1. Analytical model

Fig. 5 shows a composite material in which many kinds of ellipsoidal fillers (or crystal grains) with different physical properties 
and shapes are oriented randomly. The fillers are classified by (𝑖) in terms of their physical properties and shapes. To express this 
classification, (𝑖) is added to the right shoulder of the dielectric constant 𝜀𝐷Ω(𝑖)

𝑖𝑗
as shown in Fig. 5. Assume that there are 𝑛 types of 

such fillers. Although not shown in Fig. 5, the eigen electric field is similarly classified by (𝑖) and expressed as 𝐸𝑝Ω(𝑖)
𝑖

. It is assumed 
that the fillers are classified by (𝑗) in terms of their orientations and there are 𝑚 types. Since all fillers are oriented randomly, there 
are 𝑚 types of orientations for all (𝑖)th fillers. The filler region with physical property and shape (𝑖) and orientation (𝑗) is represented 
by Ω(𝑖𝑗), and the volume fraction of Ω(𝑖𝑗) is 𝑓(𝑖𝑗). As in the previous chapter, if the total volume fraction of all fillers is 𝑓 , then 
𝑓 =

∑𝑛

𝑖=1
∑𝑚

𝑗=1 𝑓(𝑖𝑗). In addition, the model in Fig. 5 becomes to be a polycrystalline material when the matrix does not exist.

3.2. Analysis of effective permittivity by the self-consistent method

As shown in Chap.2, the region around a filler Ω(𝑖𝑗) is smeared out with a material of unknown effective permittivity 𝜀𝐷
. The 

equivalent equation is solved in the local coordinate system 𝐿(𝑗)𝑥𝑖 taken along the direction of the principal semi-axis of Ω(𝑖𝑗), then 
the total electric field and the total dielectric flux of Ω(𝑖𝑗) can be derived as follows by referring to Eqs. (7b) and (8b).

𝐿(𝑗)𝐄𝑡𝑜𝑡𝑎𝑙 = 𝐏Ω(𝑖) 𝐿(𝑗)𝐄− 𝐏𝑝Ω(𝑖) 𝐄𝑝Ω(𝑖) , (29b)

𝐿(𝑗)𝐃𝑡𝑜𝑡𝑎𝑙 = 𝜺
𝐷Ω(𝑖)(𝐿(𝑗)𝐄𝑡𝑜𝑡𝑎𝑙 −𝐄𝑝Ω(𝑖)) = 𝜺

𝐷Ω(𝑖)
{
𝐏Ω(𝑖) 𝐿(𝑗)𝐄− (𝐏𝑝Ω(𝑖) − 𝐈)𝐄𝑝Ω(𝑖)

}
, (30b)

where 𝐏Ω(𝑖) and 𝐏𝑝Ω(𝑖) are coefficients obtained by adding (𝑖) to their right shoulders of the coefficients in Eq. (9).

Eqs. (29b) and (30b) are transformed into the global coordinate system from Eqs. (7c) and (8c) as follows:

𝐺𝐄𝑡𝑜𝑡𝑎𝑙 = {𝒍(𝑗)}−1 𝐏Ω(𝑖)
𝒍
(𝑗) 𝐺𝐄− {𝒍(𝑗)}−1 𝐏𝑝Ω(𝑖)𝐄𝑝Ω(𝑖) , (29c)

𝐺𝐃𝑡𝑜𝑡𝑎𝑙 = {𝒍(𝑗)}−1 𝜺
𝐷Ω 𝐏Ω(𝑖)

𝒍
(𝑗) 𝐺𝐄− {𝒍(𝑗)}−1 𝜺

𝐷Ω (𝐏𝑝Ω(𝑖) − 𝐈)𝐄𝑝Ω(𝑖) . (30c)

Using Eqs. (29c) and (30c), take the summation of total electric fields and total dielectric fluxes of all fillers and matrix. Referring to 
Eqs. (12) and (13), the macroscopic total electric field 𝐺𝐄 and the macroscopic total dielectric flux 𝐺𝐃 of the material are given by

𝐺𝐄=
𝑛∑

𝑖=1

𝑚∑
𝑗=1

𝑓(𝑖𝑗)
𝐺𝐄𝑡𝑜𝑡𝑎𝑙 +

(
1 −

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑓(𝑖𝑗)

)
𝐺𝐄𝑚

=
𝑛∑

𝑖=1

𝑓(𝑖)

8𝜋2

𝜋

∫
0

2𝜋

∫
0

2𝜋

∫
0

𝑠𝑖𝑛𝜃

(
𝒍
−1 𝐏Ω(𝑖)

𝒍
𝐺𝐄− 𝒍

−1 𝐏𝑝Ω(𝑖)𝐄𝑝Ω(𝑖)
)
𝑑𝜃 𝑑𝜙 𝑑𝜓 + (1 − 𝑓 )𝐺𝐄𝑚

1
𝑛∑ Ω(𝑖) Ω(𝑖) Ω(𝑖) 𝐺 𝐺 𝑚
8

=
3

𝑖=1
𝑓(𝑖)(𝑃11 + 𝑃22 + 𝑃33 ) 𝐄+ (1 − 𝑓 ) 𝐄 , (31)
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𝐺𝐃 =
𝑛∑

𝑖=1

𝑚∑
𝑗=1

𝑓(𝑖𝑗)
𝐺𝐃𝑡𝑜𝑡𝑎𝑙 +

(
1 −

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑓(𝑖𝑗)

)
𝐺𝐃𝑚

=
𝑛∑

𝑖=1

𝑓(𝑖)

8𝜋2

𝜋

∫
0

2𝜋

∫
0

2𝜋

∫
0

𝑠𝑖𝑛𝜃

{
𝒍
−1
𝜺

𝐷Ω(𝑖) 𝐏Ω(𝑖)
𝒍

𝐺𝐄− 𝒍
−1
𝜺
𝐷Ω(𝑖) (𝐏𝑝Ω(𝑖) − 𝐈)𝐄𝑝Ω(𝑖)

}
𝑑𝜃 𝑑𝜙 𝑑𝜓+(1−𝑓 )𝐺𝐃𝑚

= 1
3

𝑛∑
𝑖=1

𝑓(𝑖)(𝜀
𝐷Ω(𝑖)
11 𝑃

Ω(𝑖)
11 + 𝜀

𝐷Ω(𝑖)
22 𝑃

Ω(𝑖)
22 + 𝜀

𝐷Ω(𝑖)
33 𝑃

Ω(𝑖)
33 )𝐺𝐄+ (1 − 𝑓 )𝐺𝐃𝑚 , (32)

where 𝑓(𝑖) =
∑𝑚

𝑗=1 𝑓(𝑖𝑗) holds for the volume fraction. From Eqs. (31), (32), and (14), the relation between 𝐺𝐄 and 𝐺𝐃 can be obtained. 
Equating this relation with Eq. (16), the effective permittivity 𝜀𝐷

is finally obtained as

𝜀
𝐷 = 𝜀𝐷 + 𝜀

𝐷

3

𝑛∑
𝑖=1

𝑓(𝑖)

{
𝜀
𝐷Ω(𝑖)
11 − 𝜀𝐷

𝐻
Ω(𝑖)
1 𝜀

𝐷Ω(𝑖)
11 +(1−𝐻

Ω(𝑖)
1 )𝜀𝐷

+
𝜀
𝐷Ω(𝑖)
22 − 𝜀𝐷

𝐻
Ω(𝑖)
2 𝜀

𝐷Ω(𝑖)
22 +(1−𝐻

Ω(𝑖)
2 )𝜀𝐷

+
𝜀
𝐷Ω(𝑖)
33 − 𝜀𝐷

𝐻
Ω(𝑖)
3 𝜀

𝐷Ω(𝑖)
33 +(1−𝐻

Ω(𝑖)
3 )𝜀𝐷

}
. (33)

Eq. (33) is the solution for multiphase composites. In the case of polycrystalline materials, since 𝐺𝐃𝑚 and 𝐺𝐄𝑚 are zero or 𝑓 = 1
in Eqs. (31) and (32), we have

𝜀
𝐷 = 𝜀

𝐷

3

𝑛∑
𝑖=1

𝑓(𝑖)

{
𝜀
𝐷Ω(𝑖)
11

𝐻
Ω(𝑖)
1 𝜀

𝐷Ω(𝑖)
11 +(1−𝐻

Ω(𝑖)
1 )𝜀𝐷

+
𝜀
𝐷Ω(𝑖)
22

𝐻
Ω(𝑖)
2 𝜀

𝐷Ω(𝑖)
22 +(1−𝐻

Ω(𝑖)
2 )𝜀𝐷

+
𝜀
𝐷Ω(𝑖)
33

𝐻
Ω(𝑖)
3 𝜀

𝐷Ω(𝑖)
33 +(1−𝐻

Ω(𝑖)
3 )𝜀𝐷

}
. (34)

In Eq. (34), if there is only one kind of filler and it is isotropic, that is, in the case of 𝑛 = 1 and 𝜀𝐷Ω
11 = 𝜀𝐷

22 = 𝜀𝐷Ω
33 = 𝜀𝐷Ω, then 𝜀𝐷

that 
satisfies Eq. (34) is the only 𝜀𝐷Ω. Therefore, it can be seen that Eq. (34) is a physically consistent solution.

3.3. Analysis of effective permittivity by the Mori-Tanaka’s theory

Similar to Section 3.2, we can perform the replacement shown in Eqs. (20) and (23). Therefore, from Eqs. (31) and (32), the 
macroscopic total electric field 𝐺𝐄 and the macroscopic total dielectric flux 𝐺𝐃 of the material are given by

𝐺𝐄=
{ 1
3

𝑛∑
𝑖=1

𝑓(𝑖)(𝑃
Ω(𝑖)
11 + 𝑃

Ω(𝑖)
22 + 𝑃

Ω(𝑖)
33 ) + (1 − 𝑓 )

}
(𝐺𝐄0 +𝐺𝐄̃) , (35)

𝐺𝐃 =
{ 1
3

𝑛∑
𝑖=1

𝑓(𝑖)(𝜀
𝐷Ω(𝑖)
11 𝑃

Ω(𝑖)
11 + 𝜀

𝐷Ω(𝑖)
22 𝑃

Ω(𝑖)
22 + 𝜀

𝐷Ω(𝑖)
33 𝑃

Ω(𝑖)
33 ) + (1 − 𝑓 )𝜀𝐷

}
(𝐺𝐄0 +𝐺𝐄̃) . (36)

Eliminating (𝐺𝐄0 +𝐺 𝐄̃) in Eqs. (35) and (36) and deriving the relation between 𝐺𝐄 and 𝐺𝐃, and equating this with Eq. (16), the 
effective permittivity is finally obtained as

𝜀
𝐷 = 𝜀𝐷+

𝜀𝐷

3

𝑛∑
𝑖=1

𝑓(𝑖)
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33 − 𝜀𝐷

𝐻
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3 𝜀
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Ω(𝑖)
3 )𝜀𝐷

}

(1−𝑓 ) + 𝜀𝐷

3

𝑛∑
𝑖=1

𝑓(𝑖)

{
1

𝐻
Ω(𝑖)
1 𝜀

𝐷Ω(𝑖)
11 +(1−𝐻

Ω(𝑖)
1 )𝜀𝐷

+ 1
𝐻

Ω(𝑖)
2 𝜀
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22 +(1−𝐻

Ω(𝑖)
2 )𝜀𝐷
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3 𝜀

𝐷Ω(𝑖)
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Ω(𝑖)
3 )𝜀𝐷

} . (37)

In the case of polycrystalline materials, since there is no matrix, substituting 𝑓 = 1 and taking the limit 𝜀𝐷 → 0 for Eq. (37), we 
have

𝜀
𝐷 =

𝑛∑
𝑖=1

𝑓(𝑖)

(
1

𝐻
Ω(𝑖)
1

+ 1
𝐻

Ω(𝑖)
2

+ 1
𝐻

Ω(𝑖)
3

)
𝑛∑

𝑖=1
𝑓(𝑖)

(
1

𝐻
Ω(𝑖)
1 𝜀

𝐷Ω(𝑖)
11

+ 1
𝐻

Ω(𝑖)
2 𝜀

𝐷Ω(𝑖)
22

+ 1
𝐻

Ω(𝑖)
3 𝜀

𝐷Ω(𝑖)
33

) . (38)

In Eq. (38), if there is only one kind of filler and it is isotropic (𝜀𝐷Ω
11 = 𝜀𝐷Ω

22 = 𝜀𝐷Ω
33 = 𝜀𝐷Ω), then 𝜀𝐷 = 𝜀𝐷Ω. Therefore, it can be seen that 

Eq. (38) is a physically consistent solution like Eq. (34).

4. Numerical calculations and discussions

4.1. Material properties of constituents used in calculations

In this section, using the solutions obtained in Sections 2 and 3, the effective thermal conductivity of composites containing 
randomly oriented ellipsoidal fillers is calculated. In this calculation, we assume the same constituents used in the experiments by 
9

Agari et al. [22] [23]. In their experiments, polyethylene is used as a matrix, and short carbon fibers or quartz particles are used as 
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Table 1

Thermal conductivity of constituents.

Material Thermal conductivity

(W/(m ⋅ K))

Filler Carbon (PAN-based)∗1 4.00

Carbon (PAN-based)∗3 axial 1.60

radial 0.17

Quartz (16 μm)∗2 9.64

Quartz (156 μm)∗2 5.87

Matrix Polyethylene∗1,∗2 0.28

∗1 [23], ∗2 [22], ∗3 [17].

Table 2

Combination of constituents of composite materials.

Filler (& Void) Matrix

Isotropic 
filler

Carbon (PAN-based)∗1 Polyethylene

Quartz (156 μm)∗2

Quartz (156 μm)∗2 & Void

Quartz (156 μm)∗2 & Quartz (16 μm)

Quartz (156 μm)∗2 & Quartz (16 μm) & Void

Anisotropic 
filler

Carbon (PAN-based)∗3

fillers. The thermal conductivities of these materials are shown in Table 1. Agari et al. assume that all of the constituents are isotropic 
materials. As shown in Table 1, the thermal conductivity of quartz particles differs depending on their particle size. Table 2 shows 
the combinations of constituents of composite materials used in the calculations. For quartz particles, we deal with two types of 
composite materials. One is a material containing particles with a diameter of 156 μm, and the other is a hybrid material containing 
two types of particles with diameters of 156 μm and 16 μm. These composite materials are made by impregnating the gaps among 
particles with resin. If the resin impregnation is not successful, gaps will remain as voids. So calculations are also performed for the 
case including voids.

Table 1 lists two types of PAN-based carbon fibers with different thermal conductivity. It is a well-known fact that carbon fibers 
are generally anisotropic materials with different physical properties in the longitudinal (axial) direction of fiber and the radial 
direction perpendicular to the fiber axis [17] [18]. However, there are few studies that clarify the anisotropic properties of fillers 
and investigate the effects of these anisotropic properties on the effective physical properties of composite materials. That is, most 
studies assume that the properties of fillers are isotropic. Therefore, in this study, as shown in Table 2, we also assume a composite 
material containing anisotropic PAN-based carbon fillers in the polyethylene resin matrix and investigate the coupling effect of the 
shape and the anisotropy of the fillers on the effective thermal conductivity of composites.

For composite materials shown in Table 2, the analytical results of effective thermal conductivity are compared with the exper-

imental ones. Hashin and Shtrikman obtained the upper and lower bounds of the effective permeability by using the variational 
method [8]. In their analysis, the shape of each phase is arbitrary and the effective physical properties of the entire material are 
assumed to be isotropic. We also compare the present results with the upper and lower bound of Hashin et al.

4.2. Analytical results of effective thermal conductivity

4.2.1. The case of isotropic filler

Fig. 6 shows analytical results of the effective thermal conductivity 𝑘 for the isotropic carbon filler / polyethylene material. This 
calculation is performed under the condition that the aspect ratio is continuously changed for each shape of the filler shown in 
Fig. A (see Appendix A) while keeping the volume fraction of fillers 𝑓 constant at 0.15. Fig. 6(a), (b), and (c)∼(e) correspond to a 
longitudinal elliptic flake, a longitudinal elliptic cylinder, and a spheroid, respectively. The vertical axis of the figure is 𝑘∕𝑘, which 
is dimensionless with the thermal conductivity of matrix 𝑘, and the horizontal axis is the aspect ratio of the filler 𝜔3. The red line 
and the blue line show the result of the self-consistent method (denoted by SC) and the Mori-Tanaka’s theory (denoted by MT). Open 
circles, open rectangles, solid circles, and open triangles in Fig. 6(c) and (d) are the experimental results obtained by Agari et al.

The solution of the lower and upper bounds of the effective permeability of multiphase composites obtained by Hashin and 
Shtrikman [8] can be expressed as the solution of thermal conductivity 𝑘(−) and 𝑘(+) by the analogy between magnetism and heat 
conduction, as follows:

𝑘
(−)

= 𝑘1 +
𝐴1

1 −
𝐴1
3𝑘1

, 𝑘
(+)

= 𝑘𝑚 +
𝐴𝑚

1 −
𝐴𝑚

3𝑘𝑚

, (39a)

𝐴1 =
𝑚∑

𝑖=2

𝑓𝑖

1
𝑘𝑖 − 𝑘1

+ 1
3𝑘1

, 𝐴𝑚 =
𝑚−1∑
𝑖=1

𝑓𝑖

1
𝑘𝑖 − 𝑘𝑚

+ 1
3𝑘𝑚

, (39b)

where 𝑘𝑖 is the thermal conductivity of the 𝑖th phase assumed to be an isotropic material, and 𝑘1 and 𝑘𝑚 represent the minimum and 
maximum thermal conductivities, respectively. In the special case of a two-phase material, Eq. (39) reduces to

𝑘
(−)

= 𝑘1 +
𝑓2

1
𝑘2 − 𝑘1

+
𝑓1
3𝑘1

, 𝑘
(+)

= 𝑘2 +
𝑓1

1
𝑘1 − 𝑘2

+
𝑓2
3𝑘2

, (𝑘1 < 𝑘2) . (40)

The results of upper and lower bounds expressed by Eq. (40) are indicated by dashed lines (HS(+), HS(−)) in Fig. 6. From the 
figure, it can be seen that the results of SC and MT always exist between the upper and lower bounds regardless of the aspect 
ratio of the filler 𝜔3. The result of SC is higher than that of MT for any aspect ratio. Fig. 6(c)∼(e) shows that the results of SC and 
10

MT asymptotically approach the upper bound, as 𝜔3 decreases and the shape of the filler becomes flatter. When the shape of the 
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Fig. 6. Change in effective thermal conductivity 𝑘 of isotropic carbon (PAN-based)∗1 / Polyethylene with the aspect ratio of filler. (a), (b), and (c)-(e) show the results 
when the shape of the filler is a longitudinal elliptic flake, longitudinal elliptic cylinder, and spheroid, respectively. The red line and the blue one are the results of the 
self-consistent method and the Mori-Tanaka’s theory for the three-dimensional random orientation of fillers, respectively. The dashed lines are the Hashin-Shtrikman’s 
bounds. In Figures (c) and (d), the experimental results obtained by Agari et al. are also shown by open circles, open rectangles, solid circles, and open triangles.

filler is spherical, the result of MT becomes the same as that of the lower bound, since Eq. (27b) agrees with the lower bound of 
Eq. (40) replacing Eq. (27b) with the solution of the effective thermal conductivity and applying 𝑘Ω → 𝑘2 and 𝑘 → 𝑘1. In addition, it 
is interesting that the value of 𝑘 when the shape of filler is an oblate spheroid (Fig. 6(e)) or longitudinal elliptic flake (Fig. 6(a)) is 
about 20% higher than that of long fiber (Fig. 6(c)). In other words, if you want to increase the thermal conductivity of composite 
material, flat-shaped fillers are more advantageous than simple circular cross-sectioned fibers that are widely available in the market. 
This fact also suggests that it is possible to significantly reduce the volume fraction of fillers by devising the shape of the filler to 
obtain the desired value of thermal conductivity.

Next, we consider the reason why the thermal conductivity is higher when flat-shaped fillers are used rather than fibrous-shaped 
ones. In the case of fibrous-shaped filler, heat conduction is high only in the longitudinal direction of the fiber. On the other hand, 
when the shape of the filler is flat, the heat conduction in two directions in its flat plane is improved at the same time. When the 
flat-shaped fillers are oriented randomly, this characteristic appears in any direction. Therefore, it is considered that the thermal 
conductivity is higher when the shape of the filler is oblate spheroid or elliptical flake than fibrous shape.

Comparing the analytical results with the experimental ones in Fig. 6(c) and (d), it can be seen that the experimental results are 
almost close to the results of SC and MT. Fig. 7 shows the change in effective thermal conductivity 𝑘 with the volume fraction of 
the filler 𝑓 . Fig. 7(I) shows the result of the self-consistent method, and Fig. 7(II) that of the Mori-Tanaka’s theory. The shape of the 
11

filler is spheroid, and the results of SC and MT are compared with the experimental results [23] for each aspect ratio of 𝜔3 = 45.3, 
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Fig. 7. Change in effective thermal conductivity 𝑘 of isotropic carbon (PAN-based)∗1 / Polyethylene with the volume fraction of carbon fillers 𝑓 . The shape of the 
filler is spheroid. The results of the self-consistent method (red lines in (I)) and the Mori-Tanaka’s theory (blue lines in (II)) are compared with the experimental 
results obtained by Agari et al. for each value of aspect ratio 𝜔3 = 45.3, 21.6, 6, and 1 (denoted by open circles, open rectangles, solid circles, and open triangles 
respectively).

21.6, 6 and 1. The line types and symbols in these figures are the same as in Fig. 6. From the figures, regardless of the aspect ratio 𝜔3, 
the effective thermal conductivity of SC is higher than that of MT even if the volume fraction of the filler is changed. This difference 
between SC and MT is clearly due to the difference in the evaluation of interaction among fillers. When the aspect ratio of the filler 
is 𝜔3 = 45.3, the experimental results are closer to the results of SC, and MT is underestimated. However, when the aspect ratio 
decreases and the shape of the filler becomes a sphere of 𝜔3 = 1, the experimental results are closer to the result of MT than that of 
SC, regardless of the volume fraction of the filler. From the above results, although there is some variation in the experimental data 
for aspect ratios from 𝜔3 = 1 to 𝜔3 = 45.3, the experimental results tend to be closer to the result of MT than that of SC as the aspect 
ratio decreases. To investigate this point further, the analysis for the quartz particles / polyethylene material (shown in Table 2) is 
performed. Fig. 8 shows the change in effective thermal conductivity 𝑘 with the volume fraction of the filler 𝑓 , for the case that 
quartz particles with a size of 156 μm are included in the material. Open triangles in the figure are the experimental results obtained 
by Agari et al. As shown in Table 2, the effective thermal conductivity is calculated for both materials with and without voids. 
Fig. 8(I) is the result when there are no voids in the material, and Fig. 8(II) is the result when the existence of voids is considered. In 
Fig. 8(I), as mentioned in Fig. 6, the result of MT completely agrees with that of the lower bound HS(−) regardless of the value of 𝑓 . 
As the value of 𝑓 increases, there is no significant difference between the results of SC and MT up to around 𝑓 = 0.2. As the value of 𝑓
increases from this point, this difference increases. However, as the value of 𝑓 approaches 1, this difference decreases, and at 𝑓 = 1, 
the result of SC agrees with that of MT. For the effective elastic modulus, a similar result is obtained that the difference between the 
results of SC and MT is small when the volume fraction of the filler is relatively small [24]. Although the types of effective physical 
properties are different, the fact that the tendency is the same for the volume fraction of the filler supports the fact that the results 
of this analysis are physically valid.

Fig. 8(II) shows the change in the effective thermal conductivity when the volume fraction of voids 𝑓𝑣𝑜𝑖𝑑 is changed as a parameter. 
From this figure, regardless of the value of 𝑓𝑣𝑜𝑖𝑑 , the value of SC is larger than that of MT, and this tendency is the same as in Fig. 7. 
As 𝑓𝑣𝑜𝑖𝑑 increases, the values of SC and MT naturally decrease. From Figs. 8(I) and (II), comparing these analytical results with the 
experimental ones, the experimental results are close to the result of MT when 𝑓𝑣𝑜𝑖𝑑 = 0.

Similar to Fig. 8, Fig. 9 shows the result of the effective thermal conductivity for a polyethylene matrix containing quartz particles 
with sizes 156 μm and 16 μm. Two types of quartz particles, 156 μm and 16 μm, have a volume fraction ratio of 4 ∶ 1. Note that this 
calculation cannot take into account the difference between the two particle sizes. Comparing Fig. 9 with Fig. 8, the tendency of 
SC and MT for 𝑓 and 𝑓𝑣𝑜𝑖𝑑 are the same in both figures. It can be seen that the experimental results are close to the MT results for 
𝑓𝑣𝑜𝑖𝑑 = 0 even at a high volume fraction exceeding 𝑓 = 0.5.

From the above analytical results, it is proved that the composite material prepared by Agari et al. has almost no voids and is 
impregnated with resin throughout the material. Furthermore, from the results in Figs. 6 to 8, it is found that the experimental results 
are closer to the results of MT than that of SC when the shape of the filler is spherical.

4.2.2. The case of anisotropic filler

Fig. 10 shows the change in the effective thermal conductivity 𝑘 of the anisotropic carbon (PAN-based) filler / polyethylene 
material with the aspect ratio of the filler. In this calculation, the shape of the carbon filler is spheroidal, and the thermal conductivity 
12

of the filler in the axial direction (𝑥3 axis of the filler) is different from that in the radial one (𝑥1 or 𝑥2 axis of the filler) as shown 
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Fig. 8. Change in effective thermal conductivity 𝑘 of isotropic quartz particle (156 μm)∗2 / Polyethylene with the volume fraction of quartz particles 𝑓 . Fig. 8(I) is the 
result when there are no voids in the material. Fig. 8(II) is the result when the existence of voids is considered and the volume fraction of voids 𝑓𝑣𝑜𝑖𝑑 is a parameter. 
The shape of particles and voids is spherical (𝜔3 = 1). The results of the self-consistent method (red lines) and the Mori-Tanaka’s theory (blue lines) are compared 
with the experimental results obtained by Agari et al. (open triangles).

Fig. 9. Change in effective thermal conductivity 𝑘 of isotropic quartz particles (156 μm and 16 μm)∗2 / Polyethylene with the volume fraction of quartz particles 𝑓 . 
The ratio of volume fraction is 156 μm : 16 μm = 4 : 1. Fig. 9(I) is the result when there are no voids in the material. Fig. 9(II) is the result when the existence of voids 
is considered and the volume fraction of voids 𝑓𝑣𝑜𝑖𝑑 is a parameter. The shape of particles and voids is spherical (𝜔3 = 1). The results of the self-consistent method 
(red lines) and the Mori-Tanaka’s theory (blue lines) are compared with the experimental results obtained by Agari et al. (open triangles).

in Table 1. The results of 𝑘 based on the self-consistent method and the Mori-Tanaka’s theory are indicated by the red solid line 
(SC(ani)) and the blue solid one (MT(ani)), respectively. In the figure, the dashed line (SC(iso) and MT(iso)) shows the results when 
the thermal conductivity of the carbon filler is assumed to be isotropic, where the value of thermal conductivity in the radial direction 
is 1.6(𝑊 ∕(𝑚 ⋅𝐾)) same as that in the axial direction. From the figure, it can be seen that there is no significant difference in the results 
of 𝑘 obtained by the self-consistent method and the Mori-Tanaka’s theory when the carbon filler is anisotropic. The same is true for 
the results when the carbon filler is assumed to be isotropic. However, it can be seen that the tendency of 𝑘 with respect to the aspect 
ratio of the filler 𝜔3 differs, depending on whether the carbon filler is treated as anisotropic or isotropic. When the carbon filler is 
treated as isotropic, as the value of 𝜔3 decreases and the shape of the filler approaches a flattened shape, 𝑘 reaches a minimum at 
13

𝜔3 = 1 and then increases. This tendency is similar to Fig. 6. On the other hand, when the carbon filler is treated as anisotropic, 𝑘
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Fig. 10. Change in effective thermal conductivity 𝑘 of anisotropic carbon (PAN-based)∗3 filler / Polyethylene with the aspect ratio of filler. The solid red line and the 
solid blue one are the results of the self-consistent method and the Mori-Tanaka’s theory respectively, in the case that the thermal conductivity of the filler in the axial 
direction (𝑥3 axis of the filler) is different from that in the radial one (𝑥1 or 𝑥2 axis of the filler) as shown in Table 1. The dashed lines are the results in the case that 
the thermal conductivity of the filler in the radial direction is assumed to be equal to that of the axial direction.

decreases monotonically and takes the lowest value when the shape of the filler is flat. This is because the thermal conductivity of 
the filler in the radial direction is about 1/10 of that in the axial direction, as shown in Table 1. Therefore, the surface effect of the 
flattened filler mentioned in 4.2.1 tends to lower the 𝑘. Comparing the result of the dashed line with that of the solid one, when the 
shape of the filler is flat, it is found that the result of the dashed line is about 1.5 times larger than that of the solid line, and the 
difference between two results is the largest at this shape of the filler. In the other hand, when the shape of the filler is long fibrous, 
the difference between two results is the smallest. In Figs. 6 and 7, the carbon filler was treated as isotropic, but it is assumed that 
the filler is actually anisotropic. As a result, there is no significant difference between the analytical results and the experimental 
ones, because the shape of the filler is treated as sphere or fibrous that the error is small regardless of whether the filler is treated 
as anisotropic or isotropic. Therefore, in the future, it will be necessary to compare the analytical results with the experimental ones 
when the shape of filler is flat. From the above, when the filler is oriented randomly in the material, it is very important to consider 
not only the shape of the filler but also its anisotropic properties in order to accurately evaluate the effective physical properties 
of the composite material. In addition, if the anisotropic properties of the filler are ignored and it is assumed to be isotropic, it is 
suggested that there is a possibility that a large error may occur when the shape of the filler is flat.

5. Conclusions

In this study, for a composite material containing anisotropic and ellipsoidal fillers oriented randomly in the matrix, the solution 
of the effective permittivity of the material can be derived explicitly by using the self-consistent method (SC) and the Mori-Tanaka’s 
theory (MT). In addition, solutions of the effective permittivity both for composite materials containing many kinds of fillers with 
different shapes and physical properties and for polycrystalline materials can be also derived. In order to investigate the effect of 
the shape, the anisotropy, and the volume fraction of the filler on the effective physical properties of the material, we calculate the 
effective thermal conductivities of two types of composites and compare the obtained results with experimental ones.

As a result, for the isotropic carbon filler / polyethylene, it is found that the effective thermal conductivity of the material when 
the shape of the filler is flat is about 20% higher than that when the shape of the filler is fibrous, and the experimental results tend 
to be closer to the result of MT than that of SC as the aspect ratio decreases. Moreover, we analyze the case in which the anisotropic 
properties of the carbon filler are taken into account. As a result, when the shape of the filler is flat, the result when the filler is 
assumed to be isotropic is significantly different from that when the filler is assumed to be anisotropic. Therefore, when the filler is 
oriented randomly in the material, it is found that simultaneously considering not only the shape of the filler but also its anisotropic 
properties is important to accurately evaluate the effective physical properties of the composite material.

For two types of quartz particles (and voids) / polyethylene materials, the experimental result agrees better with the result of MT 
than that of SC, even if the volume fraction of the filler is more than 50%. In addition to this, since the tendency of the behavior of 
SC and MT with the volume fraction of the particle is the same as those of elastic moduli, the results of this analysis are considered 
to be reasonable to some extent. However, doubts remain about the differences between the results of SC and MT. MT uses the 
assumption that adding only one filler to the matrix does not affect the field in the material before this addition. When many kinds 
of fillers (including voids) exist in a material, it is obvious that the effect of adding one filler in the material on the interaction field 
differs depending on the shape and properties of the added filler. The solution based on MT obtained from this analysis does not 
14

consider this point. Thus, it is not clear at present whether the solution based on MT can correctly evaluate the interaction field 
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Fig. A. Various shapes of ellipsoidal filler.

inside the material containing many kinds of fillers. On the other hand, it is a well-known fact that the SC can accurately evaluate 
the interaction field for the high volume fraction of the filler.

From the above results, it is found that the analytical solutions of this study can generally explain the experimental results and 
can be applied to actual materials. However, it is considered that further investigation is required for the validity of the evaluation 
of interaction fields of many types of fillers, which is a subject for future study.
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Appendix A. Geometrical factor

Fig. A shows various shapes of ellipsoidal filler Ω. Fig. A(a) is called a longitudinal elliptic flake, which is thin in the 𝑥2 direction 
and elongated in the 𝑥3 direction. Fig. A(b) is called a longitudinal elliptic cylinder extended infinitely along the 𝑥3 axis, and the 
cross-sectional shape in the 𝑥1 − 𝑥2 plane is an ellipse. Fig. A(c) is a prolate spheroid whose longitudinal direction is the 𝑥3 axis, 
Fig. A(d) is a sphere and Fig. A(e) is an oblate spheroid and thin in the direction of the 𝑥3 axis. The nonzero components of the 
geometrical factor 𝐻𝑖 for these ellipsoidal shapes are expressed as

(a) Longitudinal elliptic flake (𝜔3 > 1≫ 𝜔2)

𝐻Ω
3 =

𝜔2

𝜔2
3 − 1

{
𝐹 (𝑘) −𝐸(𝑘)

}
, 𝐻Ω

1 = −
𝜔2

𝜔2
3 − 1

{
𝐹 (𝑘) −𝜔2

3𝐸(𝑘)
}

, 𝐻Ω
2 = 1 −𝜔2𝐸(𝑘) , (A.1a)

(b) Longitudinal elliptic cylinder (𝜔3 →∞ , 𝜔2 ≤ 1)

𝐻Ω
1 =

𝜔2
1 +𝜔2

, 𝐻Ω
2 = 𝐻Ω

23 =
1

1 +𝜔2
, (A.1b)

(c) Prolate spheroid (𝜔3 > 1 , 𝜔2=1)

𝐻Ω
3 = 1 −

𝜔3

(𝜔2
3−1)

3∕2

{
𝜔3(𝜔2

3−1)
1∕2−cosh−1 𝜔3

}
, 𝐻Ω

1 = 𝐻Ω
2 = 1

2
(1−𝐻Ω

3 ) , (A.1c)

(d) Sphere (𝜔3 = 𝜔2 = 1)

𝐻Ω
3 = 𝐻Ω

1 = 𝐻Ω
2 = 1

3
, (A.1d)

(e) oblate spheroid (𝜔3 < 1 , 𝜔2=1)

𝐻Ω
3 = 1 −

𝜔3
2

{
cos−1 𝜔3 −𝜔3(1−𝜔2

3)
1∕2} , 𝐻Ω

1 =𝐻Ω
2 = 1 (1−𝐻Ω

3 ) , (A.1e)
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where 𝜔𝑖 in equations are aspect ratios of the filler, given by 𝜔2 = 𝑎Ω2 ∕𝑎
Ω
1 and 𝜔3 = 𝑎Ω3 ∕𝑎

Ω
1 as shown in Fig. A(a). 𝐹 (𝑘) and 𝐸(𝑘) are 

complete elliptic integrals of the first and second kinds, and 𝑘 is given by

𝑘 =

(
𝜔2
3 − 1

𝜔2
3

)1∕2

. (A.2)
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