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Abstract: Polyurethanes (PU) are one of the most-used classes of synthetic polymers in Europe,
having a considerable impact on the plastic waste management in the European Union. There-
fore, they represent a major challenge for the recycling industry, which requires environmentally
friendly strategies to be able to re-utilize their monomers without applying hazardous and polluting
substances in the process. In this work, enzymatic hydrolysis of a polyurethane-polyester (PU-PE)
copolymer using Humicola insolens cutinase (HiC) has been investigated in order to achieve decompo-
sition at milder conditions and avoiding harsh chemicals. PU-PE films have been incubated with
the enzyme at 50 ◦C for 168 h, and hydrolysis has been followed throughout the incubation. HiC
effectively hydrolysed the polymer, reducing the number average molecular weight (Mn) and the
weight average molecular weight (Mw) by 84% and 42%, respectively, as shown by gel permeation
chromatography (GPC), while scanning electron microscopy showed cracks at the surface of the
PU-PE films as a result of enzymatic surface erosion. Furthermore, Fourier Transform Infrared (FTIR)
analysis showed a reduction in the peaks at 1725 cm−1, 1164 cm−1 and 1139 cm−1, indicating that the
enzyme preferentially hydrolysed ester bonds, as also supported by the nuclear magnetic resonance
spectroscopy (NMR) results. Liquid chromatography time-of-flight/mass spectrometry (LC-MS-Tof)
analysis revealed the presence in the incubation supernatant of all of the monomeric constituents of
the polymer, thus suggesting that the enzyme was able to hydrolyse both the ester and the urethane
bonds of the polymer.

Keywords: plastic degradation; polyurethanes; enzyme catalysis

1. Introduction

Polyurethanes (PU) are a class of polymers obtained from the polycondensation reac-
tion of a di-isocyanate and a polyol in the presence of an organic or organometallic catalyst
or through ultraviolet light activation [1,2]. Polyurethanes were originally synthesized
by Otto Bayer in 1937 using di-functional hexane di-isocyanate and 1,4-butanediol as
monomers, obtaining stiff fibres that could be used for brush bristles [3]. Thanks to their
wide range of properties, PU have many different potential applications, such as fibres,
adhesives and shape-memory materials [4,5]. Originally, these polymers contained only a
characteristic intra-molecular urethane bond (carbonate ester bond -NHCOO-) [6], but more
recently they were modified to also include ester or ether bonds in their structure, therefore
expanding their properties and fields of application [7]. The incorporation of short-chain
polyol with a high level of crosslinking results in rigid and tough polymers, while soft and
stretchy PU can be obtained using flexible and long chain polyols having a low degree of
crosslinking [8,9]. A combination of hard and soft segments can also be obtained within the
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same macromolecule, thanks to the exploitation of the different cross-linking abilities of the
various monomers. This happens, for example, in thermoplastic polyurethanes, a versatile
class of polymers that finds application as coatings, drug-release controlling systems and
polymer blends [10]. The main form in which PU are used are foams. Generally, these
materials are obtained when water is present in the reaction mixture, since the carbamic
acid formed by the addition of water to the isocyanate molecules is unstable and releases
gaseous CO2, which forms bubbles that lead to the formation of pores in the material’s
structure [11]. Polyurethanes foams are commonly used in the automotive, packaging and
construction industries [12].

From the waste management point of view, due to their peculiar physical properties,
PU foams are included in a separate group from the PU used as CASE (Coatings, Adhesives,
Sealants, Elastomers) [13]. Substantially, PU foams act differently from fibres and other
polymer formulations, especially in landfill scenarios, since they have larger volumes
due to their low density and the high amount of air inside them that might cause the
development of deep-seated fires. Currently, landfilling is the main strategy for the disposal
of end-of-life PU, accounting for almost half of the whole European PU production [14].
PUs themselves represent almost 8% of the produced plastics in Europe, being the sixth
most used plastic [15] and accounting for almost 25% of plastic waste management in the
European Union [14].

With plastic recycling receiving increasing attention due to the enforcement of new,
more stringent environmental legislations, the reuse of PU has also become an important
point to tackle. One way to recycle PU polymers is mechanical shredding of scrap polymers
into fine powders to be used as fillers in newly manufactured materials. This technique,
however, cannot be applied to foams due to their high level of crosslinking [16] and post-
consumer waste products cannot be the stock for mechanical recycling due to the presence
of contaminants or the addition of other materials [17]. Another way to recycle PU waste
is through chemical processes, which allow us to reverse the polymerization reactions,
recovering some building blocks that can be reused for polymer synthesis or in other
unrelated operations, such as the production of syngas [18]. Among these processes, there
are hydrolysis, phosphorolysis and glycolysis. Hydrolysis is the reaction between PU waste
and water in the presence of ammonia or sodium hydroxide as catalysts, resulting in polyols,
amine intermediates and CO2 [19], while phosphorolysis is a reaction in which esters of
phosphonic or phosphoric acids react with the urethane groups, yielding phosphorus-
containing oligourethanes that can be used in the production of new polymers with flame-
retardant properties [20]. Last but not least, glycolysis is the most used chemical recycling
method for rigid and flexible PUs and comprises a transesterification reaction in which a
hydroxyl group from a glycol replaces the polyol in the urethane bond, yielding reduced
molecular weight oligomers [21].

To avoid the use of chemical catalysts and to achieve decomposition at milder condi-
tions, therefore reducing operational costs and avoiding harsh and polluting chemicals,
enzymatic depolymerisation of PU has been the object of preliminary research. Moreover,
enzymes, due to their high specificity, would allow stepwise recovery of buildings blocks
even from blended/multi-layer materials. The main limitation to this approach is the fact
that PUs do not occur in nature, and so the number of known enzymes able to hydrolyse
this class of materials is still very limited [22,23]. Despite this drawback, a number of
enzymes, belonging to different classes of hydrolases, has been reported to hydrolyse PU.
Some examples include an esterase from Comamonas acidovorans TB-35 [24] and the polyester
hydrolysing enzymes TfCut2, Tcur0390 and Tcur1278 isolated from Thermobifida fusca KW3
and Thermomonospora curvata DSM43183, respectively, as well as the LC cutinase [7]. A
combination of an esterase and an amidase has also been reported to degrade thermoplastic
polyurethanes by both ester bond hydrolysis and urethane bond cleavage [23]. The ability
of esterases, lipases and amidases to hydrolyse carbamate bonds has also been shown
by Zadło-Dobrowolska et al., who inserted a carbamate bond into their probes, designed
for screening the activity of hydrolytic enzymes [25]. Among other classes of hydrolases,
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the protease papain was found to be effective in degrading PU [26], and so was porcine
pancreatic elastase [27]. A novel approach involved the fusion of a hydrophobic binding
module from a poly(hydroxyalkanoate) depolymerase from Alcaligenes faecalis to a polyami-
dase from Nocardia farcinica. The activity of the fusion enzyme increased, suggesting that
enzyme adsorption seems to play a major role in enhancing PU hydrolysis [22].

Cutinases (EC 3.1.1.74) belong to the α/β hydrolase superfamily. They possess a
classical Ser–His–Asp catalytic triad. This class of enzymes is known to be able to hydrol-
yse high-molecular-weight synthetic polyesters such as poly(butylene succinate) (PBS),
poly(1,4-butylene 2,5-furandicarboxylate) (PBF), poly(ethylene 2,5-furanoate) (PEF) and
poly(ethylene terephthalate) (PET) [28–33]. Moreover, cutinases can catalyse esterification
and transesterification reactions on both small substrates and polymers [34,35], therefore
showing a wide range of applications in the environmental, chemical, detergent and textile
industries [36]. Some industrial examples involve the biodegradation of polymer waste [37]
and the surface functionalization and degradation of natural and synthetic fibres, including
cotton [38] and polyamides [39]. Recent studies have been dedicated to the comparison
between cutinases and lipases, which are already extensively used in industrial applica-
tions, to evaluate the feasibility of a practical application of these polymers in commercial
processes [40]. However, there is only very little information available about polyurethane-
polyester (PU-PE) hydrolysis and related reaction pathways. Therefore, in the present
work, the hydrolysis of PU-PE copolymers has been investigated utilising the cutinase from
Humicola insolens (HiC). A detailed characterization of the hydrolysis mechanism and the
analysis of the released products was carried out using gel permeation chromatography
(GPC) and LC-TOF/MS.

2. Materials and Methods
2.1. Chemicals, Substrates and Enzymes

Buffer components and model substrates such as para-nitrophenyl-butyrate (pNPB),
para-nitrophenyl-N-benzylcarbamate (pNPC), butyl-N(para-nitrophenyl)carbamate (pNPBC)
and para-nitrobutyranilide (pNPA) were purchased from Sigma-Aldrich (Vienna, Austria).
All other chemicals and reagents used in this work were of analytical grade and used with-
out further purification if not otherwise specified. Humicola insolens cutinase (HiC) was
purchased from STREM chemicals (BISCHHEIM, France, product code 06-3135, Novozym
51032, CAS Number: 9001-62-1). Commercial polyurethane pellets (PU1080) were kindly
provided by Bayer (Leverkusen, Germany).

2.2. Enzyme Characterization

The protein concentration was determined with the Biorad protein assay (Bio-Rad
laboratories GmbH, Vienna, Austria) as previously described [32] (Figure S6).

Hydrolytic activity was primarily tested on different model substrates, specifically
para-nitrophenyl-butyrate (pNPB) (Figure S1A), para-nitrophenyl-N-benzylcarbamate
(pNPC) (Figure S1B), butyl-N(para-nitrophenyl)carbamate (pNPBC) (Figure S1C), and
para-nitrobutyranilide (pNPA) (Figure S1D).

The increase in the absorbance at 405 nm (for p-NPB and p-NPC) and 385 nm (for
pNPBC and pNPA) was measured using a Tecan INFINITE M200 plate reader (Männedorf,
Switzerland). A blank was measured using 20 µL of buffer instead of sample. The increase
in the absorbance (at 25 ◦C) indicated an increase in p-nitrophenol and p-nitroaniline
(ε405 nm = 7.8 mmol−1 cm−1, ε385 nm = 9.25 mmol−1 cm−1). The activity was calculated
in units, where 1 unit had been defined as being the amount of enzyme required to
hydrolyse 1 µmol of substrate per minute under the given assay condition. The stock
solution concentration of HiC was determined as 11.5 mg mL−1 (±0.11 mg mL−1) and
further diluted in buffer till the linear range of enzymatic activity was observed; for p-NPB
activity assay, for example, the enzyme was diluted in buffer with ratio 1:5000.
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2.3. PU-PE Films Production

To obtain films suitable for hydrolysis testing, PU-PE pellets were solubilised in 1 mL
of THF at a concentration of 25 mg mL−1. The polymer solution was casted in 20 mL vials
and THF was then left to evaporate overnight, resulting in 25 mg of thin PU-PE films.

2.4. PU-PE Hydrolysis

A total of 25 mg of PU-PE film were incubated in triplicate in 5 mL of 1 M potassium-
phosphate buffer at pH 8.0-containing HiC at a concentration of 0.5 mg mL−1. The solution
was incubated at 50 ◦C and 150 rpm. Reactions were stopped at various time points (1, 24,
48, 72, 120 and 168 h) removing the enzyme (or blank) solution and freeze-drying the vial
with the leftover PU-PE film before carrying out the various characterizations.

2.5. Liquid Chromatography Time-of-Flight/Mass Spectrometry (LC-TOF/MS)

A total of 2 mL of each sample was centrifuged at 12,700 rpm and 4 ◦C for 15 min and
the supernatant was filtered in PTFE filters with a cut-off of 0.2 µm. Liquid chromatography
time-of-flight/mass spectrometry (LC-TOF/MS) in positive ionization mode was used
to qualitatively identify the released soluble oligomers. The analytes were separated
using an HPLC (1260 series, Agilent Technologies, Palo Alto, CA, USA) equipped with a
reversed-phase C18 rapid resolution column (Zorbax Eclipse XDB, Agilent Technologies,
Palo Alto, CA, USA) of 50 mm by 2.1 mm and 1.8 µm particle diameter at a total runtime of
15 min. Column temperature was 40 ◦C. Mobile phase A consisted of 20 mM NH4COOH
in ultrapure water and mobile phase B was MS-grade acetonitrile.

The flow rate was 0.5 mL min−1 and the injection volume was 20 µL. This HPLC
system was connected to a time-of-flight mass spectrometer (G6230B, Agilent Technologies,
Palo Alto, CA, USA) equipped with a dual electrospray ionizer (ESI) under the following
operating conditions: capillary 3500 V, nebulizer 40 psig, drying gas 8 L min−1, gas
temperature 300 ◦C, fragmentor 125 V, skimmer 65 V, OCT 1 RF Vpp 750 V. The mass axis
was calibrated using the mixture provided by Agilent Technologies over the mass range
of 50–3200 m/z. In addition to the second orthogonal nebulizer supplied with a reference
mass solution was used as a continuous calibration using the following reference masses:
121.05087 and 922.00979 m/z. Spectra were acquired with the Agilent Technologies software
MassHunter (Version 10.1) over the 50–3000 m/z range at a scan rate of two spectra per
second (Figures S2–S5).

2.6. Gel Permeation Chromatography (GPC)

The film samples for each timepoint were frozen at −20 ◦C and lyophilised. Each
sample was then dissolved in THF at a concentration of 2 mg mL−1 and filtered through
a cotton filter prior to passing into a HPLC vial in order to remove the insoluble salts
from the aqueous media used to carry out the reaction. Gel permeation chromatography
was carried out at 30 ◦C on an Agilent Technologies HPLC System (1260 series, Agilent
Technologies, Palo Alto, CA, USA) connected to a 6.0 mm ID × 40 mm L HHR-H, 5 µm
Guard column and a 7.8 mm ID × 300 mm L GMHHR-N, 5 µm TSK gel liquid chromatog-
raphy column (Tosoh Bioscience, Tessenderlo, Belgium) using 1 mL min−1 THF as the
mobile phase. An Agilent Technologies G1362A refractive index detector was employed for
detection. The molecular weights of the polymers were calculated using linear polystyrene
calibration standards in the 400–2,000,000 Da Mp range (Sigma-Aldrich, St. Louis, MO,
USA). Data processing was carried out using the Agilent GPC/SEC software (Version 1.2,
Figures S7–S10).

2.7. FT-IR Analysis

The film samples were washed with 5 mgmL−1 Triton X100, 100 mM Na2CO3 and
ultrapure water sequentially for 30 min for each solution to remove salt residues and other
impurities from their surface. The samples were then dried at 60 ◦C overnight and the
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spectra were recorded on a PerkinElmer Spectrum 100 spectrometer. Spectra were collected
at a resolution of 4 cm−1 for 40 scans and normalized at 1413 cm−1 before data processing.

2.8. Scanning Electron Microscopy (SEM)

PU-PE film morphology was qualitatively assessed through Scanning Electron Mi-
croscopy (SEM). Control PU-PE (without any enzymatic treatment) and enzymatically
hydrolysed films (after 1, 72, and 168 h) were surface characterized. The fracture surface
was sputter coated with a 10 nm layer of platinum to provide sufficient electrical conduc-
tivity. All SEM images were acquired collecting secondary electrons on a Hitachi 3030 TM
(Metrohm INULA GmbH, Austria) using 5 eV.

2.9. 1H-NMR Analysis

After freezing and lyophilization, the film samples for each timepoint were dissolved
in THF-d8. The 1H-NMR spectra were acquired using a Bruker Avance II 400 spectrometer
(Vienna, Austria) (resonance frequency 400.13 MHz for 1H) equipped with a 5 mm observe
broadband probe head (BBFO) (Vienna, Austria) with z-gradients.

3. Results and Discussion

The hydrolysis activity of Humicola insolens cutinase (HiC) towards different bonds
such as ester, urethane and amide bonds was evaluated using four model substrates
(Figure 1). It can be observed that the activity measured with the substrates presenting an
ester bond (pNPB) was higher than the one obtained using substrates containing a urethane
or amide bond (pNPC, pNPBC and pNPA).
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Figure 1. Activity of Humicola insolens cutinase on colorogenic model substrates containing ester,
urethane, and amide bonds. The activity was calculated in units, where 1 unit had been defined as
being the amount of enzyme required to hydrolyse 1 µmol of substrate per minute under the given
assay condition.

Humicola insolens cutinase demonstrated to be a versatile biocatalyst; as previously
shown by Quartinello et al., HiC was used for a nylon surface functionalization applica-
tion [41].

Urethane bonds represent a hybrid system between ester and amide bonds. Therefore,
the different model substrates assays were performed to better understand the affinity of
the biocatalysts towards those chemical bonds. Looking in detail, the chemical structure
of the model compounds, the different orientation/position of the p-nitrophenol, and
subsequentially its release leads to more information about the cleavage site of HiC.

HiC was used to hydrolyse PU-PE films at a concentration of 0.5 mg mL−1 in 1 M
K2HPO4/KH2PO4 buffer at pH 8. The hydrolysis was carried out at 50 ◦C and for a
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maximum of 7 days. Samples were taken every 24 h throughout the process and a set of
analysis was used to assess the performance of the enzymatic hydrolysis.

To evaluate the effect of the hydrolysis on the films, FT-IR spectra at various timepoints
were recorded (Figure 2A). Three peaks were of particular interest: the peak at 1725 cm−1

(Figure 2B), which can be assigned to the C=O stretching in aliphatic and aromatic ester
groups, the peak at 1164 cm−1 (Figure 2C), corresponding to the C–O stretching of esters
and the peak at 1139 cm−1 (Figure 2C), attributed to the C–O–C stretching of aliphatic and
aromatic esters. All three peaks show important reductions in the signal intensity since the
very beginning of the incubations, suggesting that HiC is particularly active in hydrolysing
the ester moieties of the copolymer.
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To obtain further information on the hydrolysis of the PU-PE polymer, GPC has been
performed on the residual solid part of the films after the incubation. A significant and
progressive reduction in the molecular weights is shown in Figure 3, where it can be
observed that, with ongoing incubation, the relative amount of molecules with relatively
higher molecular weights decreases, while molecules with relatively lower molecular
weights appear to be leading to a change in the signal distribution from unimodal to
bimodal, thus suggesting that hydrolysis is effectively taking place. Specifically, the number
average molecular weight (Mn) decreased from 22 kDa to 3.4 kDa after 72 h with no further
change after 168 h, while the weight average molecular weight (Mw) decreased from
108 kDa to 63 kDa after 72 h, not changing significantly further after 168 h. Hence, Mn and
Mw are reduced by 84% and 42%, respectively. This also causes the dispersity index (Ð)
to increase from 4.89 to 17.89 after 168 h, a value more than 3 times higher. This increase
is a further indication of the occurrence of an effective hydrolysis which yields highly
dispersed oligomers. An extensive set of data for each specific time point can be found in
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Table S1 in the ESI, where the original chromatograms for each timepoint are also reported
as Figures S7–S10.
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Three different monomers were identified, namely 3,3′-methylendianiline (MDA),
1,4-butanediol and adipic acid. Their concentration increased throughout incubation,
confirming that an effective hydrolysis took place (Figure 4A). In particular, the presence of
MDA indicates that the enzyme was able to cleave not only the ester bond, but also—to a
lesser extent—the urethane portion of the polymer. This observation correlates well with
the distribution of the polymer observed via GPC (Figure 3) and was somehow expected
since in nature, cutinases are hydrolytic enzymes whose specific function is to degrade
cutin, a polymer whose monomers are linked by ester bonds. Additionally, the mechanistic
aspects can be inferred observing the activity data for HiC obtained with different model
substrates, pNPB and pNPA in particular (Figure 1). The release of the chromophore
from pNPB takes place upon hydrolysis of an ester bond, while the chromophore group
is released from pNPA after hydrolysis of an amide bond. The great difference between
the activities of the enzyme obtained with the two substrates allows us to hypothesise that
the enzyme preferentially hydrolyses the ester portion of the urethane bond, yielding an
unstable intermediate that, upon releasing a molecule of CO2, is converted into MDA.

As for the dimers’ signal (Figure 4B), an increase in the first days followed by a
reduction in the later stages of the hydrolysis was observed. This reduction is probably due
to the fact that dimers were initially produced as products of oligomer hydrolysis and were
then progressively hydrolysed, yielding monomers. The same hypothesis can be made for
the trimers (Figure 4C), where the signal remained constant throughout the incubation,
probably because of a combined effect of production and degradation.

1H-NMR analyses were performed to identify the degradation products. An extensive
analysis of the NMR spectra of diisocyanate-based polyurethanes had been performed
by [42] and was very useful as a starting point for this study. Compared to the untreated
polymer, the sample after 120 h of incubation showed a number of additional signals, in
particular one at 3.6 ppm, assigned to the protons linked to the external carbon atoms of
the free diol molecules [43], whose appearance during the incubation further confirms the
hydrolysis of the ester bonds by the enzyme (Figure 5). All the signals were integrated
using the integral from the methylene group of the methylendianiline as a reference, since it
was sure not to react or be modified by the enzymatic treatment. Interestingly, throughout
the incubation, the integrated values of the peaks at 2.3 ppm, 4.05 ppm and 4.15 ppm,
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assigned respectively to the protons linked to the carbons “j”, “i” and “g”, were heavily
reduced. The fact that those three carbon atoms are those linked to the ester bonds further
suggests that the hydrolysis took place preferentially at the ester bonds. The integrated
values from the various 1H-NMR spectra are reported in Table S2 in the ESI.
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A visual proof of PU-PE hydrolysis was obtained via SEM imaging on PU-PE films
before (Figure 6A) and after incubation. After 72 h, deep, ramified ruptures appeared on
the polymer, producing irregularly shaped fragments detaching from its surface (Figure 6B).
At the end of the incubation, after 168 h, much bigger fragments can be observed, and
their detachment from the film surface is much more pronounced (Figure 6C), showing a
well-detectable surface erosion, as also presented in Figure S11.
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Figure 6. SEM images of the PU-PE films during enzymatic hydrolysis. (A) Blank; (B) 72 h of
incubation; (C) 168 h of incubation. Magnification 100x.

4. Conclusions

In this study, the hydrolysis of PU-PE films by a cutinase from Humicola insolens was
demonstrated. FT-IR analysis showed hydrolysis primarily of the ester bonds resulting
in a decrease in the Mn and the Mw by 84% and 42%, respectively, as shown by the GPC
analysis. Hydrolysis was also reflected by SEM, indicating significant decomposition
already after 72 h of incubation. Furthermore, the presence of free diol molecules and 3,3′-
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methylendianiline among the degradation products, verified by 1H-NMR and LC-TOF/MS
analysis, indicates that the substrate specificity of HiC is broad enough to make it capable of
hydrolysing both the ester and the urethane bond, showing its versatility and thus making
it a promising tool for the still-challenging enzymatic degradation of polyurethanes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym14030411/s1, Figure S1: Model substrates used for the hydrolytic activity assay; (A) para-
nitrophenyl-butyrate (p-NPB); (B) para-nitrophenyl-N-benzylcarbamate (p-NPC); (C) butyl-N(para-
nitrophenyl)carbamate (p-NPBC); (D) para-nitrobutyranilide (p-NPA), Figure S2: LC-TOF/MS
analysis of the released product 3,3’-methylenedianiline, chemical formula: C13H14N2. Exact
mass: 198.12 Da., Figure S3: LC-TOF/MS analysis of the released product 4-hydroxybutyl (3-(3-
aminobenzyl)phenyl)carbamate, chemical formula: C18H22N2O3. Exact mass: 314.16 Da.,
Figure S4: LC-TOF/MS analysis of the released product adipic acid, chemical formula: C6H10O4.
Exact mass: 146.06 Da., Figure S5: LC-TOF/MS analysis of the released product bis(4-hydroxybutyl)
(methylenebis(3,1-phenylene))dicarbamate, chemical formula: C23H30N2O6. Exact mass: 430.21 Da.,
Figure S6: Activity of assay of HiC (blue dots) in presence of para-nitrophenyl-N-benzylcarbamate
as substrate. The blank (red dot) was performed in presence of only buffer., Figure S7: GPC chro-
matogram of the PU-PE film after 0h of incubation., Figure S8: GPC chromatogram of the residual
PU-PE film after 24 h of incubation., Figure S9: GPC chromatogram of the residual PU-PE film
after 48 h of incubation., Figure S10: GPC chromatogram of the residual PU-PE film after 168 h of
incubation., Figure S11: SEM images of the PU-PE films during enzymatic hydrolysis. (A) Blank;
(B) 72 h of incubation; (C) 168 h of incubation. Magnification 1000×. Table S1: Values of Mn, Mw and
Ð throughout enzymatic hydrolysis of PU as evaluated from the GPC analysis, Table S2: Integrated
values of the peaks corresponding to the carbon atoms linked to the ester bonds at the beginning
and at the end of the incubation (all the peaks where manually integrated using the signal from the
methylene group of the methylendianiline as a reference).
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