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As an important category of proteins, alpha-helix transmembrane proteins (αTMPs) play an important role in various biological
activities. Because the solved αTMP structures are inadequate, predicting the residue contacts among the transmembrane
segments of an αTMP exhibits the basis of protein fold, which can be used to further discover more protein functions. A few
efforts have been devoted to predict the interhelical residue contact using machine learning methods based on the prior
knowledge of transmembrane protein structure. However, it is still a challenge to improve the prediction accuracy, while the
deep learning method provides an opportunity to utilize the structural knowledge in a different insight. For this purpose, we
proposed a novel αTMP residue-residue contact prediction method IMPContact, in which a convolutional neural network
(CNN) was applied to recognize those interhelical contacts in a TMP using its specific structural features. There were four
sequence-based TMP-specific features selected to descript a pair of residues, namely, evolutionary covariation, predicted
topology structure, residue relative position, and evolutionary conservation. An up-to-date dataset was used to train and test the
IMPContact; our method achieved better performance compared to peer methods. In the case studies, IHRCs in the regular
transmembrane helixes were better predicted than in the irregular ones.

1. Introduction

Alpha-helical transmembrane protein (αTMP) is an impor-
tant type of membrane protein (MP) widely existing in
eukaryotic cells and carrying on the responsibility of transfer-
ring signals or small molecules between two sides of biologi-
cal membranes. For this reason, αTMPs are involved in many
vital biological processes [1], such as solute and ion transport,
energy transduction in respiratory and photosynthetic sys-
tems, or sensory stimuli transduction and information pro-
cessing [2]. Consequently, they are major drug targets
accounting for approximately 70% of the known and tested
drug targets [3]. Therefore, the study of αTMPs’ structure
and function is currently a popular topic in chemistry and
biology fields [4].

However, due to the specificity of the function of mem-
brane proteins, many efforts had been applied to derive their
structures, but both biological experiment and prediction
approach cannot satisfy the requirements in the balance of

quantity and quality. In recent years, semistructural research
of TMP became more practical instead of the entire 3D struc-
ture, which is based on computational prediction to make the
balance, such as hydrophobicity, electrical polarity, or con-
tact prediction. In an αTMP, interhelical residue contacts
(IHRCs) bind its alpha-helixes as anchor points, while most
αTMP family members have similar transmembrane struc-
tures, so that they possibly have a similar function. It is obvi-
ous that predicting IHRCs has a special meaning for αTMPs
compared to that of solvent proteins, although those residue
contacts are totally the same in view of the biochemical
background.

For the solvent proteins, considerable improvements
had been made to predict the residue contact in decades,
corresponding to prediction methods mainly using corre-
lated mutation analysis- (CMA-) based or machine learn-
ing- (ML-) based methods. The CMA-based methods,
such as PSICOV [5] and CCMpred [6], take into consider-
ation that fact the contacts mostly happened between
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those coevolutionary residues because residue contact is an
important structural feature that remains between a pair of
residues on a protein sequence in the evolution process. Statis-
tical models weremainly used in CMA-basedmethods to find
the coevolutionary relationships from multiple sequence
alignment. ML-based methods, such as CMAPpro [7], iden-
tify the contacts by abstracting various structural features of
a protein sequence to a classifier. It is apparent that the coevo-
lutionary residues can be used in an ML-based predictor to
improve the prediction accuracy, which was proved by
R2C [8].

The residue contact prediction still remains an open
problem in the field of structural bioinformatics [5], and
the above methods cannot accurately identify the residue
contacts in an αTMP. Therefore, many TMP-specific predic-
tors have been raised in recent decades, which are still follow-
ing a similar way like those methods used on solvent
proteins. After the coevolving residues were noticed relevant
to the residue contact in MPs [9], the CMA-based method
was applied to MPs, namely, direct-coupling analysis
(DCA). Although corresponding methods continuously
improved the prediction accuracy, such as mfDCA [10],
PSICOV [5], plmDCA [11], and GREMLIN [12], a pure
CMA-based method still has its intrinsical limitation. A
direct cause is that multiple sequence alignment does not
work well against the MPs, because many MPs have less fam-
ily member proteins. Consequently, it is found that only a
small fraction of predicted correlations involved pairs of
residues in physical contact, while a sizeable fraction of the
correlations was found to be in close vicinity to interhelical
contacts [9]. Thus, coevolution information may not accu-
rately detect the residue contacts by itself, but it obviously
is a clue to find where the contacts exist.

For the purpose of IHRC prediction, various sequence-
or structure-based features and machine learning algorithms
were utilized. Neural network (NN), support vector machines
(SVMs), and random forest (RF) algorithms were, respec-
tively, proven to be effective in predicting IHRCs in TMHcon
[13], TMhit [14], MEMPACK [15], TMhhcp [4], COMSAT
[16], and MemConP [17]. It is convincing that the coevolu-
tion relationship highly improved the prediction accuracy
used in TMHcon [13], MEMPACK [15], and MemConP
[17]. These methods had already tried the best to maximize
the coevolution andmachine learning algorithms, but it is still
a challenging problem to improve the prediction accuracy to
an acceptable level, where the key factor is how to find more
IHRC-specific structural features for a proper machine learn-
ing algorithm. Our previous work on interbarrel residue con-
tact prediction for outer membrane proteins accessed a high
performance method by using MP-specific features [18]. It
is possible to further improve the IHRC prediction accuracy
when the IHRC-specific features meet the deep learning
networks, as many successful cases did in the field of bio-
informatics [19–22].

In this study, we abstracted four IHRC-specific features
from the αTMP sequences, including the Evolution Conser-
vation Feature, Evolutionary Covariation Feature, Topology
Structure Feature, and Residue Relative Position Feature.
Then, a CNN- (Convolutional Neural Networks-) based

predictor was proposed to predict IHRC for αTMPs, named
IMPContact. An up-to-date dataset was used to train and test
the method; the results showed that deep learning can better
utilize the IHRC-specific features than the SVM, RF, and NN
methods and derive higher prediction accuracy than the
other classical peer methods. Considering further applica-
tion, the source code of IMPContact was published at
https://github.com/NENUBioCompute/IMPContact.

2. Materials and Methods

2.1. Datasets. In order to improve the reliability and authen-
ticity of the predicted results, the data were obtained from the
redundant αTMP sequence ID from PDBTM [23], which
is a comprehensive and up-to-date transmembrane protein
selection extracted from the Protein Data Bank (PDB). The
dataset includes 348 nonredundant sequences, where 313
sequences were used in training and validation and the rest
of the 35 sequences were used for testing.

There are three ways to label the residue contact from a
protein structure: (I) the minimal distance between the heavy
atoms of the side chain or backbone was less than 5.5Å [13];
(II) the sum of their van der Waals (VDW) radii plus a
threshold of 0.6Å [14] (the VDW radii were taken from Li
and Nussinov in 1998) [24]; and (III) a maximal distance of
8Å between their C-beta atoms (C-alpha for glycine) [15].
Since it is essentially the same as the three definitions,
MEMPACK [15] found that the prediction accuracy will be
less different regardless of what definition was selected, and
we used the more restricted definition (I) to label the IHRC
for an αTMP.

2.2. TMP-Specific Sequence Features. As known, distinctive
features will be highly helpful for a machine learning method
to make a better prediction. The IHRCs in an αTMP have
many specific features observed in transmembrane segments.
We selected four structural features to describe the existence
of IHRCs from different perspectives, where an evolution
conservation feature is widely used in protein research and
proved to be available to describe the conservation sequence
segments, a topology feature is used to describe the trans-
membrane segments, an evolutionary covariation feature is
used to indirectly reveal the existing residue-residue contacts,
and residue relative position features are used to enhance the
structural information.

2.2.1. Evolution Conservation Feature. Multiple sequence
alignment discovered the evolution conservation against the
large-scale protein sequence database; it had already been
wildly applied in various biological sequence researches
[18, 25]. More than 30% of the homologous superfamilies
described in CATH are composed mainly or entirely of
α-helixes [26]. Transmembrane helixes are different from
those in the soluble proteins because the environment in
the lipid layer force those helixes that were stretched. But
the evolution conservation becomes more distinct and spe-
cial in these sequence segments, leading to a different way
to descript the evolutionary conservation between a pair of
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residues that have IHRC. At this point, evolution conserva-
tion is a particular TMP-specific feature.

The evolution conservation of a residue can be described
by the PSSM (Position-Specific Scoring Matrix) produced
from a multiple alignment tool; it presents the frequency
of a residue type that appeared in each position of the
protein sequence. The raw PSSM profile is represented by a
20-dimensional score vector [16, 27]. We obtained the PSSM
by running a stand-alone PSIBLAST [28] against NCBI’s
nonredundant sequence database (NR) with three iterations
and the E value set to 1e‐10.

2.2.2. Evolutionary Covariation Feature. Different from evo-
lution conservation, evolutionary covariation is aimed at
descripting the evolutionary correlation between two resi-
dues on a protein sequence. It was observed that the residues
having contact possibly present highly evolutionary conser-
vation, because the contacts are not randomly existing in
the protein, and they are closely related to the protein
structures. But on the contrary, not all the residue pairs with
evolutionary conservation will have contact. Therefore, con-
servation and covariation present the evolutionary informa-
tion of a protein sequence from discriminate perspectives.

All methods generate the evolutionary covariation from
the multiple sequence alignments; we allow IMPContact to
accept the evolutionary covariation feature abstracted by dif-
ferent methods under the condition that those methods can
be integrated into IMPContact, where the selected method
uses the multiple alignments generated from the process we
did for the evolution conservation feature then calculates
the evolutionary covariation for all the possible residue pairs
on a TMP. As known, different evolutionary conservative
tools may have different numerical spaces when predicting
different protein sequences, so the evolutionary covariation
feature finally inputting to IMPContact will be standardized
using the z-score for each sequence.

2.2.3. Topology Structure Feature. As mentioned, the helixes
are special in the transmembrane domain in the TMPs
compared to soluble proteins; they are characterized by the
topology structure to distinguish the transmembrane and
nontransmembrane segments. There is no doubt that the
topology structure will directly reduce the searching space
for the IHRCs, and it is exactly a TMP-specific feature.
According to our goal, only sequence-based features are suit-
able for use in the prediction and the predicted topology
structure meets the requirement.

There are several methods available to predict the topo-
logical structure of intimal proteins, including some that
are based on hydrophobicity analyses [29], statistical proce-
dures [30], or machine learning-based methods [31, 32].
The accuracy is the most important factor in choosing a
topology structure prediction method; in our previous work,
DMCTOP [33] was used to abstract the topology structure
features. Another consideration is that the DMCTOP is a
deep learning-based method, and it was upgraded during
the further improvement of IMPContact.

The predicted topological structure was output in a uni-
form format, in which the cross-diaphragm residues were

identified by the character “H”, the outer residues by the char-
acter “o/O”, and the inner residues by the character “i/I”.
Eventually, all the characters form a sequence equal to the
length of the original protein sequence. The predicted topol-
ogy structures were digitized into a vector as one input feature.

2.2.4. Residue Relative Position Feature. Relative position is a
derivative feature from the topology feature. According to the
observation, the transmembrane helixes on a sequence
always alternately cross the membrane, resulting in IHRCs
not occurring between the residues that separately close to
the different sides of the membrane. Here, the relative posi-
tion feature was used to descript whether the two residues
on the neighboring helixes close to the same side of the mem-
brane are close to each other.

The relevant position of a residue was assigned depend-
ing on the predicted topology structure. The process started
from the N-terminal of the sequence. We assigned increasing
integer values starting from 1 for each residue on each odd
transmembrane helix that appeared and then did the
same to the rest of the transmembrane helixes from the
C-terminal; the other residues were assigned to -1 finally.
After the above process, all the residues had a value represent-
ing their relative position; those residues who had closing
positive values are considered more possibly closing to
each other.

2.3. Sliding Windows. The IHRC is a local residue interaction
on the TMP sequence, though it possibly happens between
any pair of transmembrane helixes. The remote residues of
the protein structure have fewer influences on IHRC, while
the structural neighboring residues are mainly involved in
forming the necessary surrounding environment. For this
reason, two sliding windows with a size of 5 were used to
characterize the features for both residues of a contact pair,
where the 2 upstream and 2 downstream residues were
included in the sliding window with the first candidate resi-
due, and the same sliding window was applied to the other
candidate residues. In each turn, the 4 TMP-specific features
of the residues in the two sliding windows constituted a one-
dimensional feature vector for the corresponding candidate
pair of residues, in which an evolution covariation feature
was used only between the two candidate residues. For
the contact prediction between residues Ai and Bj, the fea-
tures were abstracted from residues ðAi−2Ai−1AiAi+1Ai+2Þ
and ðBj−2Bj−1BjBj+1Bj+2Þ, where i and j are the sequence
positions and i ≠ j. According to the sliding window, an
SVM input Vi,j is given as follows:

Vi,j = Ci,j, E, T , Rð Þi−2, E, T , Rð Þi−1, E, T , Rð Þi, E, T , Rð Þi+1,
�

E, T , Rð Þi+2, E, T , Rð Þj−2, E, T , Rð Þj−1,
E, T , Rð Þj, E, T , Rð Þj+1, E, T , Rð Þj+2Þ,

ð1Þ

where ðE, T , RÞi are the evolution conservation feature,
topology feature, and relative position feature of residues
in position i, respectively, and Ci,j is the predicted
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evolutionary covariation between residues i and j. Finally,
a 31-dimensional eigenmatrix is formed. In this way, it
became a simplified binary classification problem to pre-
dict IHRCs.

2.4. Deep Learning Network. As a representative branch of
deep learning, CNN [34] had already made great achieve-
ments in various research fields, including protein sequence
studies [35–39]. It can capture various nonlinear features
by constructing neural networks consisting of convolution,
pooling, and fully connected layers. The learning capability
of CNN is strongly supported by diversification through the
assembly of the different layers, activation functions, and
ways of connecting the nodes into the networks. Therefore,
lots of CNN-based applications have been raised to solve var-
ious kinds of researching issues in recent years; it has high
adaptability in keeping improvements.

According to the sliding window feature, we constructed
the IMPContact prediction process with a CNN-based model
kernel, as shown in Figure 1. IMPContact allows users to
input a whole TMP sequence; all the TMP-specific features
will be generated at one time, then it scales the whole
sequence from the N-terminal to the C-terminal using two
sliding windows, until all the residue pairs are predicted by
the CNN-based kernel. Finally, it outputs the prediction
results into two text files: one is the list of residue pairs
marked with a prediction conclusion and the other one is
an upper triangular matrix recording the prediction conclu-
sion accordingly.

The CNN kernel was designed as follows:

(1) Input layer: the input is a 31 × 1 feature vector, corre-
sponding to the residue features in the two sliding
windows; the middle residues in the windows are
the candidates to be predicted

(2) Convolutional block layers: there are 5 layers of con-
volutional blocks—512, 1024, 512, 1024, and 1024.
All the block layers are fully connected, and all the
blocks use the same network, which is composed of
a convolutional layer (kernel = 3), a rectified linear
unit (ReLU) layer, and a max pooling layer

(3) Output layer: the output is the binary classification
result for each input residue pair

3. Results and Discussion

3.1. Evolutionary Covariation Method Selection. Different
from the other features used in this work, the evolutionary
covariation feature is the key to accurately identify the exis-
tence of IHRCs. As mentioned previously, the evolutionary
covariation relationship between a pair of residues was
obtained from the multiple alignments against a particular
protein sequence database, but the process cannot guarantee
that those residue pairs with high evolutionary conservation
must have residue contact, especially for the protein
sequences that have fewer homology proteins in the sequence
database. This is the reason why the evolutionary covariation
is an indirect feature so that choosing the method to abstract
this feature becomes important.

There were three evolutionary covariation methods tak-
ing into consideration IMPContact, namely, ELSC [40], MI
[41], and OMES [42]. In spite of the many similar methods
providing computational tools, e.g., EVFOLD [43], which
obtained an even higher accuracy on covariation, those 3
methods are more convenient to realize an easy-to-use
particular IHRC method for the users. For the purpose of
discovering the covariation residue pairs from the multiple
alignment result, ELSC (Explicit Likelihood of Subset
Covariation) uses combinatorial arguments to realize a per-
turbative algorithm [44]. MI (mutual information) measures
the codependency of two residues as random variables [45].
OMES iteratively calculates the score for each pair of residues
by the frequency they observed in the sequence alignment
based on a correlated analysis method [46].

The above three evolutionary covariation methods were
discussed having different performances on different datasets
[42], and we tested all the methods in our method to choose
the best one with the highest compatibility to the IMP align-
ment results, where some TMPs have rare homology protein
sequences, and IHRC has special distribution of the evolu-
tionary covariation relative to the soluble proteins caused
by standing in the lipid layer environment. In comparison,
the evolutionary covariation features were abstracted using
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Figure 1: The neural network construction of IMPContact.
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the ELSC, MI, and OMES methods and, respectively, input
into the IMPContact while the other features and the deep
learning networks are completely the same. The experiments
randomly selected 80% of the sequences from the training
dataset to train the prediction models corresponding to the
three covariation methods then used the other 20% of the
sequences to test the three models.

As shown in Table 1, the three methods obtained obvious
prediction performances. ELSC provided the highest accu-
racy both on ACC and MCC. MI obtained the highest ACC
of 0.9742 but failed to get an acceptable MCC; it is obvious
that this method could not help the IMPContact to distin-
guish the positive and negative samples, because most resi-
due pairs in the transmembrane helixes were considered
having a similar covariation, and it ignored those residue
pairs with contact that should have a stronger covariation.
Compared to the other two methods, the OMES obtained a
middle accuracy on both standards. Therefore, the ELSC is
more compatible with our model to descript the evolutionary
covariation feature. All the following tests and publishing
models used the ELSC method.

3.2. Classifier Comparison. Deep learning methods were
proven to be inefficient for all the studies. They depend on
many factors, such as data space, data distribution, and the
researching problems; there is no guarantee that a deep
learning method could be better at solving the IHRC predic-
tion compared to traditional machine learning methods.
Therefore, we did the prediction performance comparison
among our CNN-based model and three widely used
machine learning methods: SVM (Support Vector Machine)
[47–49], RF (Random Forest) [50, 51], and NN (Neural
Network) [52, 53].

The CNNmodel was built on the PyTorch platform [54];
the other three machine learning methods used the Scikit-
learn toolkit [55]. All the models were developed using the
Python language and trained and tested against part of our
training datasets the same as that in Section 3.1. The param-
eters of each model were optimized to obtain the best predic-
tion accuracy correspondingly. The same four TMP-specific
features were input to each model for all the TMP sequences;
among them, the evolutionary covariation feature was
abstracted using the ELSC method, which was proven to be
the most compatible to the IHRC prediction.

The prediction accuracy levels of the four methods are
listed in Table 2; the CNN model achieved the best perfor-
mance with the highest MCC and ACC, which were about
0.34 and 0.84, respectively. The other three machine learning
methods obtained obviously lower accuracy levels on both

criteria, where the RF model had the worst accuracy with
an MCC of about 0.12 and an ACC of about 0.63; the SVM
and NN models were better than the RF model with a little
higher accuracy. Although the NN model obtained a closer
ACC to the CNN model, and a better MCC value, none of
the machine learning methods had accessed an acceptable
MCC as that of the CNN model. The results showed that
those three methods predicted more negative samples to be
positive samples, casing the lower MCCs even when high
ACCs appeared, not to mention that the RF and SVMmodels
had much lower ACC values. Finally, the CNN model was
chosen as a classifier used in the IMPContact.

3.3. Prediction Performance

3.3.1. Cross-Validation on the Training Dataset. Fivefold
cross-validation was used for our method on our training
dataset to show the training performance. In this experiment,
all the 4 IMP-specific features and the prediction classifier
had already been chosen according to the above processes.
All the training sequences were randomly assigned to 5 sub-
sets with similar members; in each fold, one subset was used
as the testing dataset, while the other four subsets were used
as the training datasets. The validation process was com-
pleted when each subset had been tested; there were a total
of 5 models produced during the training and testing pro-
cesses. At the same time, traditional machine learning
methods were validated using the same steps to comprehen-
sively represent that the deep learning method performed
better than the other methods in this issue. Here, the MCC
was used to evaluate the performance as a balanced criterion.

As known, fivefold is not an extremely strict cross-
validation; it was adopted in this experiment determined
mainly by the size of the TMP dataset. In our nonredundant
training dataset, many TMPs have only a few homology pro-
teins to obtain the comprehensive evolutionary investigation,
which will mislead the testing when too many folds are used
in the cross-validation. Moreover, fewer folds cannot descript
the stability of the model.

The prediction accuracy is shown in Figure 2; the
CNN-based model obviously surpasses the other three
machine learning methods, while they had a similar perfor-
mance. It can be found that the IMPContact could obtain a
consistent performance in the cross-validation no matter
what classifier was taken, where all the models were sta-
ble in the prediction. The phenomenon illustrates that
TMP-specific features had strongly supported the prediction,
but they had no such clear data space bundle for the

Table 1: Comparison of candidate evolutionary covariation
methods.

Methods ACC MCC

ELSC 0.8408 0.3371

MI 0.9742 0

OMES 0.7122 0.1335

Table 2: The prediction accuracy comparison of 4 classifiers.

Methods ACC MCC

RF 0.6337 0.1209

SVM 0.7451 0.1478

NN 0.8050 0.1745

CNN 0.8408 0.3371
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traditional machine learning methods to distinguish the
IHRCs, while the CNN model found more details by deep
learning.

3.3.2. Sequence Length Distribution in the Datasets. In previ-
ous studies, TMPs’ protein family was found strongly relative
to their sequence length; this is because the TMPs are mostly
remotely homological to have the conservative transmem-
brane segments and the functional segments. Therefore, the
distributions of the training dataset and testing dataset
should be discussed before the final testing.

We counted the sequence lengths in both the training
and testing datasets, as shown in Figures 3(a) and 3(b). The
diagram in Figure 3(a)is the sequence length distribution of
all the training datasets, and the one in Figure 3(b) represents
that of the testing dataset. It can be found that both datasets
have a similar distribution in sequence length descripted
using the red lines, where most sequences are less than 600
amino acids, a few sequences are 600-800 amino acids in
length, and a small number of sequences are larger than
800 amino acids. It is obvious that our testing results would
be more accurate under the condition that the training and
testing datasets have such similar distribution. There is
another problem that those long sequences have more com-
plex IHRCs than short sequences, and they may not obtain
enough training. However, IMPContact used a sliding win-
dow of 5 residues to descript the features of the candidate
contact pairs and it will be less affected by the sequence
length as the local features.

3.3.3. Prediction Performance. By the above studies, the final
IMPContact was built using a CNN-based deep learning
model; accepting the 4 TMP-specific features as inputs, the
ELSCmethod was chosen to abstract the evolutionary covari-
ation feature, outputting the IHRC prediction results into
two formats. Here, we excluded the peer methods which are
unavailable or proved to have low accuracy, and the methods
were not suitable for IHRC prediction; thus, PSICOV and
CCMpred were selected to make the comparison. Both the
two methods are CMA-based methods, but they did not use

any TMP-specific features and machine learning models.
We downloaded the stand-alone tools of both methods to
input the multiple alignment results the same as that of the
IMPContact. The experiment used our testing sequences.
To comprehensively descript the prediction performance,
ACC, Precision, Recall, and MCC evaluation criteria were,
respectively, counted using the prediction results.

As shown in Table 3, a total of 35 testing sequences were
input into the three methods. PSICOV obtained the predic-
tion results for 13 sequences, while the other two methods
were available for all the sequences, and the performances
were calculated based on those predicted samples by each
method. Additionally, precision was used instead of ACC in
a few peer studies, so we list both values. CCMpred had not
predicted any residue pairs having contact, and the negative
samples were far more than the positive samples, so it
obtained a high ACC, while Precision, Recall, and MCC
could not be calculated. PSICOV was better than CCMpred,
but still conservative in positive sample prediction; conse-
quently, it obtained a high ACC, while the other evaluation
criteria were low. In contrast, IMPContact achieved the best
performance; although there were more false positive sam-
ples predicted causing a lower ACC, it had a much higher
MCC than PSICOV.

The comparison above revealed that the evolutionary
covariation analyses cannot efficiently predict the IHRC cur-
rently, because less homological protein sequences limited
the multiple alignments to discover the evolutionary infor-
mation for TMPs, both in conservation and covariation.
TMP-specific features are necessary to improve the predic-
tion by bringing in more structural features to the classifier.
Meanwhile, deep learning can better capture those TMP-
specific features to identify the IHRCs.

3.4. Case Studies. For the purpose of displaying the details of
the prediction, 3UDC_A [56] and 2WSC_G [57] were cho-
sen as representative causes shown in Figures 4 and 5, where
the residues in a true positive sample were connected using a
blue dotted line, as well as yellow and red dotted lines for the
false positive and false negative samples, respectively.
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Figure 2: Prediction model comparison on fivefold cross-validation.
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The 3UDC_A belongs to a mechanosensitive channel,
which is composed of seven domains having the same
sequences. Each domain has two transmembrane helixes
along with one helix half crossing the membrane. 3UDC_A
is a classical TMP, with two transmembrane helixes binding
together through IHRCs. In this case, all positive contacts
were correctly predicted, a few false positives were made close
to the positive ones, and no false negative was predicted. It
illustrated that the IMPContact is efficient for predicting
the IHRCs between the regular transmembrane helixes.

In the other case, the 2WSC_G comes from a huge pro-
tein complex Plant Photosystem I. The transmembrane seg-
ments are partly formed as a helix; the rest of the parts
mostly are flexible structures. The 2WSC_G has no such
regular transmembrane helixes as in 3UDC_A; it directly

weakened all the features helping IMPContact to make the
classification, not only the evolutionary relevant features
but also the topology relevant features, so that much more
false positives and even false negatives appeared. It is
extremely hard for our method to accurately predict the
IHRCs for an irregular TMP, especially when the transmem-
brane segments are affected by the other segments in the
protein complex.

4. Conclusions

In this study, we proposed an IHRC prediction method for
inner transmembrane proteins. The TMP-specific features
were used as inputs representing evolutionary and topology
structure information, and a CNN model was used as the
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Figure 3: Sequence length distributions of datasets.

Table 3: Comparison with peer methods.

Methods ACC Precision Recall MCC Predicted samples

CCMpred 0.9978 — — — 35

PSICOV 0.9878 0.0030 0.3842 0.0166 13

IMPContact 0.6293 0.0035 0.5920 0.0271 35
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classifier. After the experiments, the ELSC method proved to
be better at discovering the evolutionary covariation in trans-
membrane segments, but it cannot identify the IHRCs by
itself. The deep learning method showed that it was efficient
in predicting IHRC based on the TMP-specific features.
Compared to the CMA-based methods, our method achieved
better performance on a testing dataset. In the case studies,
IHRCs in the regular transmembrane helixes were better
predicted than in the irregular ones. It is still a challenge to
accurately predict IHRCs for all the TMPs.

Data Availability

All the Training and Testing datasets are available at https://
github.com/NENUBioCompute/IMPContact.
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