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Two studies investigated the reliability and predictive validity of commonly used measures
and models of Approximate Number System acuity (ANS). Study 1 investigated reliability
by both an empirical approach and a simulation of maximum obtainable reliability under
ideal conditions. Results showed that common measures of the Weber fraction (w ) are
reliable only when using a substantial number of trials, even under ideal conditions. Study 2
compared different purported measures of ANS acuity as for convergent and predictive
validity in a within-subjects design and evaluated an adaptive test using the ZEST
algorithm. Results showed that the adaptive measure can reduce the number of trials
needed to reach acceptable reliability. Only direct tests with non-symbolic numerosity
discriminations of stimuli presented simultaneously were related to arithmetic fluency.
This correlation remained when controlling for general cognitive ability and perceptual
speed. Further, the purported indirect measure of ANS acuity in terms of the Numeric
Distance Effect (NDE) was not reliable and showed no sign of predictive validity. The
non-symbolic NDE for reaction time was significantly related to direct w estimates in a
direction contrary to the expected. Easier stimuli were found to be more reliable, but only
harder (7:8 ratio) stimuli contributed to predictive validity.
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INTRODUCTION
Picture yourself hunting, slowly approaching a herd of gazelles
on the African savanna. As you get closer the herd picks up your
scent and scatters into two almost equally large groups that run off
in different directions. To maximize your chance of a successful
hunt, you quickly need to decide which of the two groups has
more animals.

Together with infants and non-human animals, human adults
share the ability to represent numerical magnitudes, for exam-
ple the number of gazelle, without the use of symbols (Feigenson
et al., 2004). The ability is supported by the Approximate Number
System (ANS), which represents numbers and magnitudes in an
analog and approximate fashion with representations becoming
increasingly imprecise as numerosity increases (Dehaene, 2009;
but see, Brannon et al., 2001).

The acuity of the ANS, how accurately it represents numerical
magnitude, is conceptualized as the smallest change in numeros-
ity that can be reliably detected by an individual. This acuity is
often quantified by a Weber fraction (w). Recent studies have
shown considerable individual variability in ANS acuity among
humans (e.g., Pica et al., 2004; Halberda and Feigenson, 2008;
Halberda et al., 2008; Tokita and Ishiguchi, 2010) and that ANS
acuity improves (i.e., w decreases) developmentally from child-
hood to adolescence (Halberda and Feigenson, 2008).

Brain-imaging studies have indicated that the ANS has a neu-
rological basis in the intraparietal sulcus (IPS) on the lateral
surface of the parietal lobe (Castelli et al., 2006; Piazza et al.,

2006). Studies on macaque monkeys have even found specialized
neurons (numerons) within the IPS that are sensitive to numeros-
ity (Nieder et al., 2002). The ANS is thought to be a fundamentally
abstract representation independent of perceptual variables of
lower order. This characteristic is essential because numerical
quantity itself is a highly abstract concept [but see Gebuis and
Reynvoet (2012) for an account that rejects the idea of an ANS
altogether, and proposes that instead numerosity judgments stem
from multiple weighted visual cues]. Further support for this
independence from lower level perceptual variables in terms of
supramodality was found in a recent study (Nieder, 2012a). Using
single-cell recordings in the primate brain it was shown that
there are neurons that encode numerosity irrespective of stimu-
lus modality (visual/auditory) (see Nieder, 2012b for a review of
the physiology of “number neurons”).

The IPS is activated when people attend to or compare the
number of objects in a set, when they observe numbers in dif-
ferent modalities and when they perform simple arithmetic tasks
(Piazza et al., 2004; Piazza and Izard, 2009). This suggests a
relationship between ANS acuity and achievement on formal
mathematical tasks. It has been proposed that the precision of the
ANS and mathematical ability are associated due to a causal link
from the former to the latter. The idea is that the neural correlates
of the ANS lay the foundation for representations of symbolic
higher-level arithmetical concepts. While such a relationship has
been documented with children, even when controlling for a large
number of cognitive abilities, (Halberda et al., 2008; Inglis et al.,
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2011) results from studies on adults are mixed (Gebuis and van
der Smagt, 2011; Inglis et al., 2011; Castronovo and Göbel, 2012;
Price et al., 2012).

One reason for the mixed results might be that different tasks
have been used to measure both ANS acuity and mathemat-
ics achievement. Recently, the reliability and validity of some
of the tasks most commonly used to measure ANS acuity have
been challenged (e.g., Gebuis and van der Smagt, 2011; Gilmore
et al., 2011; Price et al., 2012). In this article, we first review the
inconclusive findings in regard to ANS acuity and mathematics
achievement, suggesting that the current measures of ANS acuity
may have limited reliability1. We thereafter validate this claim by
reporting simulations that determine the upper limit of the relia-
bility that can be achieved as a function of the length of the test.
In view of these results we developed and tested an adaptive test of
ANS acuity that allows valid and reliable measures of ANS acuity
with a shorter test-length. This test also correlated significantly
with measures of mathematical ability, also after controlling for
more general cognitive abilities.

ANS ACUITY AND MATH ACHIEVEMENT
Theories of magnitude representation (Feigenson et al., 2004;
Dehaene, 2009) and brain imaging data (Nieder et al., 2002;
Piazza et al., 2004, 2006; Dehaene, 2009; Nieder and Dehaene,
2009; Piazza and Izard, 2009) suggest that ANS acuity should be
related to achievement in formal mathematical tasks. Such a rela-
tionship has been found all the way back to kindergarten math-
ematics performance in children (Halberda et al., 2008) when
using a non-symbolic discrimination task with simultaneous pre-
sentation. Libertus et al. (2011) showed that the link is found
prior to formal mathematics education. Desoete et al. (2012)
showed that accuracy of non-symbolic judgments in kindergarten
is related to arithmetical achievement in first grade. Mazzocco
et al. (2011a) and Piazza et al. (2010) showed that impairment
of the ANS is predictive of developmental dyscalculia.

With adults, the results are less clear-cut. Libertus et al.
(2012) reported a correlation between ANS acuity and mathe-
matics SAT scores with undergraduate students and Lyons and
Beilock (2011) reported a correlation with mental arithmetic
using university students. DeWind and Brannon (2012) obtained
a correlation between self-reported math SAT/GRE scores and w.
Lourenco et al. (2012) found a correlation between ANS acu-
ity and Woodcock-Johnson calculation subtask that measures
advanced arithmetic ability, as well as with a test of geomet-
ric knowledge, but failed to obtain correlations with a number
of more elementary math subtasks. Surprisingly, this study also
found significant correlations with judgments of cumulative area,
rather than number.

Price and coworkers (Price et al., 2012) compared three dif-
ferent non-symbolic comparison tasks with both the numeric
distance effect (NDE) and w as dependent variables, but found

1Previous research has used the terms mathematical ability and mathematical
achievement broadly to include skills such as arithmetic ability and mathemat-
ical problem solving and even self-reported SAT-scores. In this study we are
primarily interested in the more specific ability of arithmetic fluency. However,
in the introduction we will use these terms interchangeably.

no correlations with arithmetic fluency (Woodcock et al., 2001)
as the criterion variable. Castronovo and Göbel (2012) found that
ANS precision did not correlate with math performance. Another
recent study found a significant correlation for children but failed
to do so for adults (Inglis et al., 2011). Inglis and colleagues (2011)
suggested that the lack of relationship for adults indicates that
the strength between the two constructs changes with age. They
suggested that ANS plays a bootstrapping role in learning whole
numbers but that other factors dominate how more sophisticated
numerical concepts are learned (Inglis et al., 2011, p. 1228). The
stimuli used by Inglis and colleagues, however, led both adults and
children to rely on non-numerical visual cues to a large extent,
resulting in 40% of the participants being excluded from the anal-
ysis. This may have affected the conclusions. It is possible, for
example, that perceptual cue reliance is systematically related to
performance.

Halberda et al. (2012) showed that ANS precision correlated
with self-reported school mathematics ability with a sample of
more than 10,000 participants, and across age groups from 11
to 85 years. This finding was replicated in a second study in the
same paper with the presumably more valid and less vaguely
defined self-reported scores on the mathematics subtest of the
SAT. Another study showed that while performance on a dis-
crimination task correlated with concurrent arithmetic fluency
(addition), performance on a detection (same/different) task did
not (Gebuis and van der Smagt, 2011).

The inconsistent results across studies with adults indicate that
the task used to measure ANS acuity may influence the relation-
ship with mathematical achievement. In the present study we
further investigate the relationship between ANS acuity and arith-
metical fluency by using both the task introduced by Halberda
et al. (2008) and variants of this task. Use of a within-subjects
design makes interpretation of results easier by eliminating vari-
ance due to different participant populations, different experi-
mental procedures etc. We know of only one study (Price et al.,
2012) that relies on a within-subjects procedure to study relia-
bility and validity of different ANS-metrics and different tasks.
We therefore used a within-subject design to be able to compare
different measures of ANS acuity directly.

MEASURING ANS ACUITY
Measures of ANS acuity can be divided into direct and indirect
measures, as discussed below. Common for these measures is that
they are static in the sense that they present the same stimuli to
all participants regardless of each participant’s individual level of
ANS acuity.

Direct measures
In the tasks that use direct measures of ANS acuity, the partici-
pants are either asked to compare two non-symbolic magnitudes
(i.e., which set is more numerous) or to detect a change between
two numerosities (are these sets the same or different in numeros-
ity?). The latter detection task may either involve a baseline
numerosity, which is constant from trial to trial, and a compar-
ison numerosity that varies on each trial, or two stimuli that
both vary from trial to trial. Most often the non-symbolic magni-
tudes are dot arrays presented briefly (around 200 ms) but other
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stimuli, for example arrays of squares, have also been used (e.g.,
Halberda et al., 2008; Maloney et al., 2010). Non-symbolic stim-
uli are thus sets of objects (e.g., five squares or three elephants) in
contrast to symbolic stimuli where numerosity is represented by a
numeric symbol (e.g., the Arabic digit 5 or the Roman numeral
III). Direct measures of ANS acuity can also be classified into
tasks with parallel and sequential stimulus presentation. In par-
allel tasks, which are predominant, both sets of non-symbolic
magnitudes are presented at the same time, while sequential tasks
display each set one at a time, often separated by a blank screen
or a mask, where the inter-stimulus interval is often brief. The
sequential presentation in detection tasks using baseline and com-
parison stimuli often presents the baseline numerosity several
times before the comparison stimulus is presented (much like
a habituation procedure). Simultaneously presented stimuli are
most often spatially intermixed but sometimes they are sepa-
rated spatially. When stimuli are presented spatially intermixed
the areas occupied by the two sets are allowed to overlap (but no
single element is allowed to overlap, or occupy the same space
as, any other element) while there is no such overlap allowed for
spatially separated stimuli.

Indirect measures
Indirect measures of ANS acuity attempt to measure effects that
are, supposedly, consequences of ANS acuity rather than ANS
acuity per se. For example, the numeric distance effect (NDE;
Moyer and Landauer, 1967), where it takes longer for people to
tell which of two digits is the larger when the digits are close
on the number line (e.g., 5 and 6) than when the digits are fur-
ther apart (e.g., 5 and 9), is considered to be a result of the way
magnitudes are represented in the ANS (e.g., Dehaene, 1992).
The rationale for using NDE as a measure of ANS acuity orig-
inates in the fact that both direct measures of ANS acuity and
indirect measures produce a ratio effect where accuracy decreases
and reaction time increases as the ratio between stimuli becomes
larger. The NDE has been interpreted as a performance product of
the noisiness of the representation of number, resulting in over-
lapping representations (Dehaene and Cohen, 1995, however, see
Van Opstal et al., 2008 for an account of the distance effect that
does not require overlapping representations). Consequentially,
researchers have considered the NDE to be “a key metric of the
ANS” (Price et al., 2012, p. 50) and used the size of the NDE as
a measure of ANS acuity with larger NDE indicating larger w
(e.g., Peters et al., 2008; Gilmore et al., 2011; Price et al., 2012).
The NDE is sometimes also used as a measure with non-symbolic
stimuli (e.g., Holloway and Ansari, 2009; Mundy and Gilmore,
2009).

The distinction made above between tests as direct and indi-
rect is related to the implicit underlying validity of these tests.
Direct tests have content validity in actually measuring behav-
ioral performance directly related to the underlying construct,
whereas indirect tests can be viewed as relying on construct valid-
ity, related to theoretical assumptions and models. It is thus fully
possible that an individual with a large NDE is better at dis-
crimination between any pair of numerosities (both in terms
of accuracy and reaction times) than another individual with a
small NDE.

Dependent measures of ANS acuity
The tasks described above generally produce one, or more, of
three types of dependent measures to quantify ANS acuity.
Accuracy measures quantify ANS acuity as the total proportion
of correct responses irrespective of the difficulty of the discrim-
ination/detection task. The second type is ratio measures, which
quantify ANS acuity as proportion correct or response time (RT)
with respect to the ratio between the numeric stimuli. Finally,
internal weber fractions model ANS acuity by estimating an indi-
vidual w. The procedure of modeling ANS acuity is discussed
further below.

Validity and reliability of ANS measures
While a lot of research has emphasized the relationship between
ANS acuity and a variety of cognitive abilities (Halberda and
Feigenson, 2008; Halberda et al., 2008; Mazzocco et al., 2011a,b)
and cognitive impairments (Wilson et al., 2006; Räsänen et al.,
2009; Mazzocco et al., 2011a,b) little attention has, until recently,
been given to the reliability and validity of the tasks used to mea-
sure ANS acuity. Perhaps a bit surprisingly, recent research has
raised concerns about both the reliability and validity of the tasks
used to measure ANS acuity (Maloney et al., 2010; Gebuis and
van der Smagt, 2011; Gilmore et al., 2011; Inglis et al., 2011; Price
et al., 2012) thereby questioning at least some of the conclusions
presented in previous work.

The results are mixed and while some studies report acceptable
reliabilities (Gilmore et al., 2011; DeWind and Brannon, 2012;
Halberda et al., 2012) others report moderate or low reliabili-
ties (Maloney et al., 2010; Price et al., 2012). The inconsistencies
in results might be attributed to, at least, three differences in
methodology. First, there are several tasks that may be used
to measure ANS acuity and studies reporting high or accept-
able reliabilities have commonly used direct measures of ANS
acuity (Gilmore et al., 2011; Halberda et al., 2012) while those
reporting lower reliabilities have used indirect measures (Maloney
et al., 2010). Second, the use of numeric distance as dependent
measures seems to give lower reliability than the use of mea-
sures of internal w:s for some tasks. For example, Price et al.
(2012) reported lower reliability for a numeric distance (ratio
effect) measure than for w when the task presented stimuli inter-
mixed while the reverse was true when stimuli was presented
paired. Finally, the number of trials varies a lot over studies
with some studies reporting reliabilities for several thousand tri-
als (DeWind and Brannon, 2012); others report reliabilities for
only a few hundred trials (Gilmore et al., 2011; Halberda et al.,
2012). The classical true score model (Spearman, 1907) is based
on the premise that test scores are fallible measures of human
traits (true values). The reliability coefficient is defined as the
ratio of true score variance to the total variance of test scores.
In this model, reliability increases monotonically as a function
of test length, following the law of diminishing returns, derived
in the Spearman–Brown prophecy formula (Crocker and Algina,
1986). Because the reliability of a measure sets an upper bound
on the correlation with other measures and because researchers
often focus on relating ANS acuity to other measures of cogni-
tive ability it is important to further investigate the reliability of
ANS measures. In the present study we investigate two aspects
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of the reliability of ANS measures. First, we investigate reliability
as a function of the number of trials in a discrimination task
with simultaneously presented stimuli. Second, we investigate the
upper bounds on the theoretical reliability.

MODELING ANS ACUITY
The representation of magnitudes in the ANS is considered to be
noisy in the sense that the representation of a specific numerosity
varies. For example, the representation of the numerosity six is a
random variable with a mean of six and a normally distributed
variance. Further, representations become increasingly imprecise
as numerosity increases. To model these representations two main
approaches have been used, in both of which magnitudes are
considered Gaussian random variables with mean equal to the
actual numerosity. In the logarithmic model the means increase
logarithmically with numerosity while the standard deviation is
constant for all numerosities. In contrast, in the linear model both
means and standard deviations increase linearly with numeros-
ity. Even though these models make different assumptions about
how the ANS represents magnitude they, in all but a few cases
(Dehaene, 2003), make the same predictions regarding the ability
to discriminate between magnitudes. Recently, several researchers
(Halberda et al., 2008; Inglis et al., 2011; Lyons and Beilock, 2011;
DeWind and Brannon, 2012; Price et al., 2012; Lindskog et al.,
2013a) have used a classical psychophysics model suggested by
Barth et al. (2006); see also, Pica et al. (2004), that relies on the
linear model of the ANS, to model performance in ANS acuity
tasks.

Given the linear model of the ANS, an optimal response strat-
egy in a comparison task is to respond that the set associated
with the larger internal representation is the more numerous (i.e.,
respond n2 > n1 whenever n2 – n1 > 0). Thus, with this model
an optimal response strategy and the corresponding percentage
of correct discriminations between two stimuli can be modeled
as a function of the increasing ratio between the two sets [(larger
sample (n2)/smaller sample (n1)]. The two sets are represented
as Gaussian random variables with means n1 and n2 and standard
deviations w · n1 and w · n2, respectively. The response criterion is
found by subtracting the Gaussian for the smaller set from that for
the larger, which gives a new Gaussian with a mean of n2 − n1 and

a standard deviation of w
√

n2
1 + n2

2. The error rate in the compar-

ison task is then the area under the tail (i.e., to the left of 0) of this
resulting Gaussian and the proportion of correct responses can be
computed as,

1 − 1

2
erfc

⎛
⎝ |n1 − n2|√

2w
√

n2
1 + n2

2

⎞
⎠, (1)

where the term being subtracted is the error rate and erfc is the
complementary error function. Equation 1 is fitted to the per-
centage correct discriminations as a function of the Gaussian
approximate number representation for the two sets of stimuli
with w as a free parameter. The w obtained describes the stan-
dard deviations of the Gaussian representations (i.e., how much
the two Gaussian representations overlap) thereby predicting an
individual’s percentage correct on a discrimination task.

Even though the model described above has been frequently
used, its performance with different number of observations has
not been evaluated. In the present study, we present simula-
tions that evaluate the performance of the model with respect
to reliability. Previous research has indeed indicated the poten-
tial volatility of w, when fitting the model to a small number of
data points (Mazzocco et al., 2011a,b; Odic et al., 2012).

THE PRESENT STUDIES
In Study 1, we investigate the empirically observed and the the-
oretical maximum upper bound of reliability, as a function of
the number of trials, for one of the standard tasks used to mea-
sure ANS acuity (Halberda et al., 2008). The former is estimated
by reanalyzing previously collected data (Lindskog et al., 2013a).
The results indicate that even in an ideal situation, large unrelia-
bility is introduced by an unavoidable binominal sampling error.
Because of this sampling error, several hundred trials are needed
to achieve an acceptable reliability. Therefore, in Study 2 we create
a measure of ANS acuity requiring fewer trials to achieve accept-
able reliability by introducing an adaptive test based on the ZEST
algorithm (King-Smith et al., 1994). This adaptive test and other
more conventional tasks are evaluated for their reliability and
convergent/predictive validity.

STUDY 1: EMPIRICAL AND THEORETICAL RELIABILITY
In Study 1, we investigated three important questions with respect
to the reliability of ANS-measures and models. First, we evalu-
ated the empirical reliability for a standard task that measures
ANS acuity, as a function of the number of trials. Second, using
computer simulation we evaluated the theoretical maximum reli-
ability as a function of the number of trials. Finally, we investigate
if small samples introduce biases in the measures of w.

EMPIRICALLY OBSERVED RELIABILITY
To investigate the empirical reliability in a task that measures ANS
acuity we used raw data from a study investigating rapid effects of
feedback on ANS acuity (Lindskog et al., 2013a). In this study 39
participants (university undergraduate students, 31 female, with
a mean age of 25.4 years, SD = 5.7) performed 1300 trials on a
task that closely models the task used in Halberda et al. (2008).
On each trial of the task, participants saw spatially intermixed
blue and yellow dots on a computer monitor. The exposure time
(200 ms) was too short for the dots to be serially counted. One
of five ratios was used between the arrays (1:2, 3:4, 5:6, 7:8, 9:10)
and the total number of dots varied between 11 and 30. One 5th
of the trials consisted of each ratio. Half of the trials had blue and
half had yellow as the more numerous set. The dots varied ran-
domly in size. To counteract the use of perceptual cues dot arrays
were matched either for total area or for average dot-size. The
participants judged which set was more numerous by pressing a
color-coded keyboard button.

Studies of ANS acuity have used test lengths that vary from 60
to 80 trials (Halberda et al., 2008; Libertus et al., 2011, 2012) up
to several thousands of trials (DeWind and Brannon, 2012). It is
therefore important to evaluate the reliability of ANS acuity tasks
as a function of the number of trials. There are several procedures
that could be used to estimate the reliability of a test. However,
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because w is used as a measure of performance procedures that
estimate reliability using item covariance (e.g., Cronbach’s alpha
and KR 20; Crocker and Algina, 1986) cannot be used. We, there-
fore, estimated reliability by splitting the test into two halves and
correlating performance on the two halves (split-half reliability;
Crocker and Algina, 1986)2. By varying the number of trials in
the full test we can thereby evaluate reliability as a function of the
number of trials.3

The reliability of the task described above was estimated as a
function of the number of trials (N) in the following way. For each
N we estimated 100 reliability coefficients by randomly drawing
two independent sets of data points for each participant and cal-
culating the correlation between the two sets, both using the best
fitting w and the observed proportion correct (P). The two sets of
data points were drawn without replacement from the 1300 data
points of each participant with the constraint that one fifth of the
data points were required to come from each of the five ratios. We
varied N in steps of 50 from 50 to 6504.

The results are illustrated in Figure 1 that shows reliability as a
function of the number of trials, for w and P, respectively. The fig-
ure invites three major conclusions. First, the reliability of the task
at small N (50–200), which are commonly used to measure ANS
acuity, is low with a reliability coefficient below 0.5 for both w

2While the choice of calculating split-half reliabilities over for example test-
retest reliability allow us to investigate how errors in measurement affect
reliability in a test situation on a single occasion it, of course, limits the pos-
sibility to evaluate how measurements fluctuate when they are separated by a
given time period.
3It is, of course, possible to use the Spearman–Brown prophecy to estimate the
reliability of different test lengths when the reliability of a given test length is
known. However, this procedure only gives an approximation of the reliability
while our procedure gives the exact reliability.
4In the study by Lindskog et al. (2013a) half of the participants received feed-
back on 1000 of the trials. This manipulation resulted in a small effect which
disappeared when controlling for motivation. To assure that the manipula-
tion did not affect the results of the simulations we reran all simulations, with
almost identical results, with data from only the control group. To retain more
reliable results, both groups are included in the analysis.

FIGURE 1 | Empirical reliability for w (solid line) and P (dashed line) as

a function of the number of trials (N).

and P. It is noteworthy that w, in spite of being estimated through
modeling stands up quite well-compared to P in terms of relia-
bility. Second, for both measures it is necessary to have tests with
about 400 trials to reach an acceptable reliability of 0.7. Finally,
the reliability of the two measures is more or less identical for all
N 5. The original data only allowed us to estimate the exact reli-
ability for N up to 650. Calculation of reliabilities corrected for
test length, using the Spearman–Brown prophecy (Crocker and
Algina, 1986), however, reveals that the rate with which the reli-
abilities increase quickly levels out when N becomes larger than
700. Increasing N from 700 to 1300 only increases the reliability
from 0.81 to 0.89.

THE THEORETICAL MAXIMUM RELIABILITY
The discrimination process is inherently stochastic; the same
stimulus may lead to different responses from trial to trial. The
proportions of correct responses (p) predicted by the model in
Equation 1 are therefore expected values of the observed propor-
tions of correct responses (P) found in empirical data. Because
the process is stochastic P as a measurement of p will include
an unavoidable sampling error. Further, because P comes from
a binomial sampling process, the size of the sampling error will
depend on the size (N) of the samples (i.e., the number of trials).
For an analogy, consider when you measure the probability (p)
that a certain tossed coin comes up heads (a stochastic process)
by calculating the proportion of heads (P) in a sample of coin
tosses. If you estimate p by tossing the coin 5 times, the sampling
error of the binomial process with N = 5 will provide an upper
boundary on how accurately you can estimate p. If you perform
this “measurement” (i.e., use P as an estimate of p) repeatedly,
each time tossing the coin 5 times, you will end up with different
estimates of p each time and the variability of the estimates will
be a function of the number of tosses. In other words, the sam-
ple size N per se defines an upper ceiling on the reliability in the
measurement of p.

The sampling error that will always lead to imperfect reliabil-
ity at small N has probably been of a non-trivial size in previous
studies. For example, Libertus et al. (2012) (Experiment 1) fit
w to ten stimulus difficulty ratios over a total of 60 trials, leav-
ing six observations per ratio. Odic et al. (2012) concluded that
it was not feasible to fit w reliably with seven difficulty ratios
and 35 observations (five observations per ratio). Mazzocco et al.
(2011b) reached the same conclusion when trying to fit w with 64
trials consisting of nine ratios, of which four were estimated with
two observations each. Thus, it is not uncommon that researchers
have attempted to measure w with few observations. In the fol-
lowing, we describe a simulation, which estimates the theoretical
upper limit for the reliability coefficient, where we use the linear
model (Equation 1) to produce an individual w as a measure of
performance.

We relied on a distribution of 224 empirically observed
w-values from adult undergraduate students tested in our lab.

5Because some studies (e.g., Halberda et al., 2008) use four, rather than five
ratios we reran all analyses using four ratios. The basic shape of the reliability-
trial function was highly similar for both number of ratios but reliabilities
were ∼5% higher when using four as opposed to five ratios.
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The w-values had a median of 0.22 and an inter-quartile range
of 0.09, similar to previous published research (Pica et al., 2004;
Halberda and Feigenson, 2008; Halberda et al., 2008; Tokita and
Ishiguchi, 2010). We simulated 100 “experiments,” with 40 “ideal
participants” each responding to the same five stimulus ratios
as in the above analysis of the empirical reliability. The “partic-
ipants” are ideal in the sense that the responses were computed
from Equation 1, with the only origin of unreliability therefore
deriving strictly from the binomial sampling error. The data were
thus generated from Equation 1 and a binomial sampling process,
for sample sizes N in steps of 50 from 50 to 650. Specifically, in
each “experiment,” we sampled a random set of 40 w-values from
the distribution described above. We generated two data sets, Ai

and Bi, for each “participant” (i = 1 . . . 40) in each “experiment,”
by first calculating the expected value pij of the proportion correct
for each of the five ratios j given an true value of wi (Equation 1).
We then generated the two parallel sets of data points from a
binomial distribution with n = N/5 and p = pij. For the two sets
of N data points, we thereafter calculated the overall proportion
correct PAi and PBi and the best fitting estimates, WAi and WBi,
of wi, respectively. The reliabilities of P and W were obtained
by calculating the correlation between the two data sets for each
measure. Because the irreducible sampling error is the only source
of unreliability in the simulations, these coefficients represent the
highest reliability that is possible at sample size N according to
the underlying model.

The simulations for w are illustrated in Figure 2 (solid line)
together with the results from the estimation of the empirical
reliability (dashed line)6. The results invite two major conclu-
sions. First, the theoretical maximum reliability is higher than
the empirical reliability for all N, because the simulations ignore
the additional unreliability introduced by the use of human par-
ticipants. Second, at small N (50–200), the sampling error alone
is sufficient to produce a theoretical maximum reliability that is

6The results were similar for proportion correct.

FIGURE 2 | Empirical (dashed line) and Theoretical (solid line)

reliability for w as a function of the number of trials (N).

rather low (0.42–0.74). For example, with 50 trials, correspond-
ing to 10 observations per ratio, the highest possible reliability in
this setting is 0.42. To have a theoretical maximum reliability of
0.8, more than 300 trials are required. To estimate the attenuation
of reliability from the additional variability introduced by human
participants, we calculated the differences between the theoretical
and the empirical reliabilities. For experiments with fewer than
600 trials, we expect to find reliabilities that are at least 0.1 lower
than the theoretical maximum reliabilities displayed in Figure 27.

A direct implication of this analysis is that the sampling error
(i.e., [p·(1–p)]/N) is larger for difficult stimuli (p close to 0.5)
than for easy stimuli (p close to 1)8. To illustrate this, consider the
case where N is 240 and all five stimulus ratios are equally present,
as in the above analysis, where the reliability is 0.77. If only the
two easiest ratios (1:2, 3:4) are used the reliability at N = 240 is
0.88, but if only the most difficult ratios (8:9, 9:10) are used the
reliability is 0.649. The simulation also allows us to evaluate if the
linear model introduces biases into the estimates of w at small
sample size; if the model fitting procedure provides estimates W
of w that are systematically larger or smaller than the true pop-
ulation value of w. We therefore calculated the mean difference
between the w used to generate the data and the fitted W for each
N. This analysis revealed that the mean difference did not deviate
significantly from 0 for any N. We also looked at the possibility
that using easy/hard subsets of stimuli would bias the estimates
of the population w, but there were no signs of this. That is,
the modeling procedure does not introduce systematic biases into
estimates of w.

DISCUSSION
In Study 1 we estimated the empirical reliability of a task, used by
several researchers, that measures ANS acuity. The results indi-
cated poor reliability, which was similar for both w and propor-
tion correct, with the number of trials (50–300) most commonly
used. The results indicated that more than 600 trials were needed
to reach an acceptable reliability of 0.8. The low reliability may
at least in part derive directly from the binomial sampling error
that is an unavoidable consequence of measuring discrimination
performance with proportions.

To estimate the attenuation of reliability introduced by
sampling error, and to evaluate the linear model, Study 1 used
computer simulation to evaluate the theoretical reliability as
a function of number of trials. Even in ideal circumstances
it was not possible to reach acceptable reliability at low N.

7While we were primarily interests in evaluating the reliability of the model in
Equation 1 it is also possible to evaluate it in terms of the fit of the model to
the data. We therefore evaluated the fit of the psychometric model in terms of
R2 for tests of length 100, 300, and 500 trials. The fit was highly comparable
for the theoretical (0.78, 0.91, 0.95) and empirical (0.75, 0.88, 0.94) data sets
for the three test lengths.
8In reality, for a high reliability coefficient, it is also necessary that the test
discriminates between participants. Thus, if we use a stimulus for which all
participants always discriminate perfectly, there is no sampling error, but of
course lack of a reliability coefficient because of the failure of the test to
discriminate between participants.
9Virtually the same pattern holds when we perform these analyses on the
empirical data rather than data simulated with the model.
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Approximately 350 trials were needed to reach a reliability of 0.8
and an additional 1000 trials were required for a reliability of 0.95.
Even if it would be possible to eliminate all of the errors due
to human factors from the measurements, sampling error alone
will attenuate reliability. The analysis also showed that tests made
up of easier stimuli are more reliable and that the linear model
provides unbiased estimates of w.

Although the reliability functions in Figure 1 are far from
universal, and will be affected by, for example the stimuli of a par-
ticular study, it is interesting to make comparisons to estimated
reliabilities in previously published papers. With this respect a few
estimates stick out (e.g., Gilmore et al., 2011) with reliabilities that
seem higher than possible even with error free measurements. A
possible explanation of such “too high” observations is probably
that measurements have been polluted, assessing something else
above the ANS. This will lead to correlated error measurements
that violate an assumption of classical test theory (Crocker and
Algina, 1986, p. 114). A plausible candidate for a variable that may
affect results is the influence of perceptual variables on behavior.
In general, in numerosity judgment tasks, stimuli are arranged
in such a way as to control for use of perceptual variables (e.g.,
cumulative area). This set up leads to a situation in which those
who rely on perceptual variables will take a hit in performance
measures. Because those who rely on such cues will probably do
so throughout the experiment, this will lead to correlated errors
of measurement when for example calculating split-half reliabil-
ity, giving an inflated false impression of high reliability. Another
arrangement that may lead to correlated errors of measurement is
the increasing use of data collected on the internet (e.g., Halberda
et al., 2012). While such data collections make it possible to
effortlessly obtain very large samples of participants they have the
drawback that the researcher has limited or no control of condi-
tions during stimulus presentation. Thus, if one individual takes
the test under poor viewing conditions, this will most probably
affect performance detrimentally on both test halves, again lead-
ing to a false sense of reliability in measures. Thus, extremely high
reliability estimates may not be entirely positive, but signal that
the test measures other variables than the ANS.

To conclude: the presence of irreducible sampling error implies
that we need a large number of trials to reach good reliability with
the procedures and models commonly used in research. Easier
stimuli are associated with more reliable measures than harder
stimuli.

STUDY 2: AN ADAPTIVE MEASURE OF ANS ACUITY
The results from the simulations highlight that the traditional
measures of ANS acuity might suffer from low reliability, at least
for small N. It is of course possible to have participants do a
very large number of trials in order to achieve a reliable mea-
sure of ANS acuity. However, such procedures quickly become
time consuming for the researcher and tedious for the participant,
which in turn might introduce more noise into measurements.
It would be preferable to have a task that can produce reliable
measures of ANS acuity with as few trials as possible. While sam-
pling error per se cannot be eliminated, one can select the most
diagnostic stimulus on each trial with an adaptive test proce-
dure. We developed and evaluated an adaptive measure based on

the ZEST-algorithm (King-Smith et al., 1994) in Study 2. The
results from the Study 1 also indicated that because reliability
is an upper bound on the observable correlation between two
measures, the previously reported correlations might have been
attenuated by low reliability. To evaluate this possibility, Study 2
included measures of arithmetic fluency, intelligence and percep-
tual speed. With a more reliable ANS acuity measure based on the
ZEST-algorithm we hoped to gain new insight into the predictive
validity issue in terms of concurrent correlations with arithmetic
fluency. Finally, the fact that different studies use different meth-
ods makes comparisons between measures difficult and renders
within-subjects studies valuable.

METHODS
Participants
Participants (13 Male, 27 Female) were undergraduate students
from Uppsala University with a mean age of 24.6 years (SD = 8.2
years). They received a movie ticket or course credits for their
participation.

Materials and procedure
Participants carried out a set of six tasks, described in detail below,
developed to measure ANS acuity, perceptual processing speed,
intelligence, and arithmetic fluency.

Static non-symbolic number comparison. The static non-
symbolic number comparison task was based on Halberda et al.
(2008). On each of the 100 trials, participants saw spatially inter-
mixed blue and yellow dots on a monitor. Exposure time (300 ms)
was too short for the dots to be serially counted. We used five
ratios between the two sets of dots (1:2, 3:4, 5:6, 7:8, 9:10) with the
total number of dots varying between 11 and 30. One fifth of the
trials consisted of each ratio. Half of the trials had blue and half
had yellow as the more numerous set. The dots varied randomly
in size. To counteract the use of perceptual cues we matched dot
arrays either for total area or for average dot-size. The participants
judged which set was more numerous by pressing a color-coded
keyboard button.

Adaptive non-symbolic number comparison. The stimuli were
the same type of dots and had the same color as those in the
static test. ANS threshold for obtaining 80% correct discrimina-
tions was estimated by an adaptive method, the ZEST algorithm
(a modification of the Bayesian QUEST algorithm, King-Smith
et al., 1994). The algorithm calculates the stimulus difference
for each trial based on the performance on earlier trials in the
discrimination task. Weber fractions w—�S/S, where S is a stim-
ulus parameter (number of dots) and �S is the interstimulus
difference—were used to quantify the difference between stim-
ulus pairs at each trial. The ZEST algorithm uses all responses in
previous trials for optimal estimation of the difference between
stimuli presented in the next trial and converges to the thresh-
old estimate, w, for achieving the desired percentage of correct
responses. In short, after each trial this method multiplies a prob-
ability density function (a prior PDF) of w with a likelihood
function of obtaining the response (correct or incorrect). The
result is an updated density function (a posterior PDF). The mean
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of the updated PDF is used to determine w of the next trial. A loop
was used that searched for the nearest w ratio with integer compo-
sition of dots with the constraint that the total number of dots not
exceeded 33, and a minimum of six dots of the less numerous set.
If several ratios were found, the ratio with lowest total number of
dots was used. This procedure was repeated in a predetermined
number of trials and the final w was used as the threshold esti-
mate. The initial PDF was a normal distribution of possible w:s
with an average of 0.23 and standard deviation 0.58. The initial
estimate of w was based on the median w for a large number of
participants (∼200) tested in our lab. This estimate is also consis-
tent with a large number of previous studies (e.g., Pica et al., 2004;
Halberda and Feigenson, 2008; Halberda et al., 2008; Tokita and
Ishiguchi, 2012). Participants received 240 trials, for which the
algorithm simultaneously estimated two w-values based on ran-
domly ordered intermixed trials (120 trials each). We used both a
simultaneous and a sequential version. In the sequential version,
the two numerosities were separated by an ISI of 300 ms with a
blank screen.

Symbolic numeric distance effect. We used a symbolic number
comparison task based on Moyer and Landauer (1967). On each
of the 160 trials participants saw a fixation cross during 500 ms
followed by two Arabic digits positioned to the left and right of
the fixation cross. Each trial presented a standard digit, which
was always the digit 5, with a comparison digit, which was either
smaller (1, 4) or larger (6, 9) than the standard digit. Thus, the
comparison digit was either close to (4, 6) or far from (1, 9)
the standard digit. The digits remained visible until participants
had responded. The task was to decide if the comparison digit
was smaller or larger than the standard digit and we measured
the response time (RT) from the presentation of the digits until
the response was given. Standard and comparison digits were
randomly assigned to be presented to the left or right of the fixa-
tion cross for each trial. The symbolic NDE was calculated as the
dependent measure. Following Holloway and Ansari (2009) and
Gilmore et al. (2011) we defined the NDE as (RTC—RTF)/RTC

where RTF and RTC are mean RT on trials were numbers dif-
fered more and trials where numbers were closer in numerosity,
respectively10.

Non-symbolic numeric distance effect. Two measures of non-
symbolic distance effect were used based on the responses
of the static non-symbolic number comparison task described
above11. The first was defined as (RT9:10—RT1:2)/RT1:2 where
RT1:2 and RT9:10 are mean RT for trials with ratio 1:2 and
9:10, respectively. We defined the second measure analogously as
(P9:10—P1:2)/P1:2, where P is proportion correct.

Before calculating the two NDE measures based on RT, indi-
vidual responses were scanned for outliers and responses with an

10We also conducted all analyses using the NDE (or rather the ratio effect,
NRE) as defined by Price et al. (2012) based on the slope across all stimulus
levels. Results were similar to those presented below for both symbolic and for
non-symbolic numeric distance.
11The nature of the adaptive task did not allow for the calculation of P or NDE
measures.

RT of more than three standard deviations were excluded. This
procedure excluded ∼2% of individual responses.

Perceptual speed. The “visual inspection time” task, that measure
general perceptual and mental speed, was closely based on Deary
et al. (2004). On each trial participants saw a fixation cross for
a duration of 500 ms, followed by a stimulus with one horizon-
tal line and two vertical lines organized to resemble the Greek
letter �. The two horizontal lines were of different lengths and
participants had to decide which of the two was the longest. The
�-stimulus was presented with one of five presentation times
(25, 40, 60, 80, and 100 ms) and participants saw 20 presenta-
tions from each presentation time. The �-stimulus presentation
was followed by a 500 ms mask covering the two horizontal lines.
Participants gave their answer by pressing the letter F (left was
longer) or the letter K (right was longer) on a computer key
board.

Raven’s matrices. Participants carried out a subset of Raven’s pro-
gressive matrices (Raven et al., 1998) based on Stanovich and West
(1998) (see also Carpenter et al., 1990). Participants were first
instructed on the task. They were then allowed two of the 12 test
items before completing 18 of the test items (item 13 through 30)
with a 15 min time limit. Participants were instructed to try to
complete all 18 items within the time limit.

Arithmetic fluency. The arithmetic fluency task was based on the
mathematical task found in Gebuis and van der Smagt (2011)
and consisted of four sets of arithmetic problems; addition, sub-
traction, multiplication, and division. For each set participants
had 150 s to complete as many problems as possible. Each set
presented problems with increasing difficulty accomplished by
adding more digits and requiring borrowing or carrying. For
example the first three problems in the addition and multipli-
cation sets were 2 + 7, 12 + 9, and 38 + 17, and 2 · 3, 3 · 6, and
4 · 7, respectively. The order of sets was counterbalanced over
participants.

RESULTS AND DISCUSSION
For the adaptive ANS acuity tasks the dependent measure was the
posterior estimated individual w score. For the non-adaptive ANS
acuity task we calculated an individual w score and mean propor-
tion correct (P). In the other tasks we used proportion correct
(inspection time task) or number of correct answers (arithmetic
fluency task, Raven’s matrices) as dependent measure. All depen-
dent measures were scanned for outliers using z > |3.5|, which led
to no data points being excluded.

Reliability
Participants performed two rounds of the inspection time task,
the symbolic number comparison task and the two versions of
the adaptive non-symbolic number comparison task. To evalu-
ate the reliability of these four tasks we calculated the correlation
between the first and the second round. The results are sum-
marized in Table 1, which also includes full length reliability
coefficients corrected for test length using the Spearman–Brown
prophecy formula. The results indicate that while reliability is
acceptable for the sequential adaptive task already at test length of

Frontiers in Psychology | Cognition August 2013 | Volume 4 | Article 510 | 8

http://www.frontiersin.org/Cognition
http://www.frontiersin.org/Cognition
http://www.frontiersin.org/Cognition/archive


Lindskog et al. Reliable measures of ANS acuity

Table 1 | Reliability coefficients and Spearman–Brown corrected

reliability coefficients for the different proposed measures of

ANS-ability.

Measure Uncorrected Corrected

DIRECT

Statica

w 0.40 (100) n.a.
P 0.40 (100) n.a.

Adaptive
Simultaneous 0.58 (120) 0.74 (240)
Sequential 0.85 (120) 0.92 (240)

INDIRECT

Distance effect
Symbolic 0.53 (160) 0.69 (320)
Non-symbolica

RT 0.39 (100) n.a.
P 0.15 (100) n.a.

Note: The direct test measures were the dependent measures obtained with the

static task based on Halberda et al. (2008) and the simultaneous and sequential

adaptive task. The indirect test measures were the symbolic and non-symbolic

distance effects. The numbers in brackets after the reliabilities indicate the num-

ber of trials for which the reliability was estimated.
aThe reliability of the measures are based on the evaluation of empirical reliability

from Study 1.

120 trials, the simultaneous adaptive task and the Symbolic dis-
tance effect require at least 240 and 320 trials, respectively, to at
least approach acceptable levels of reliability. There is no obvious
difference between direct and indirect measures of ANS acuity
with respect to reliability. The non-symbolic NDE based on P
entirely lacks reliability. The corrected reliability for the percep-
tual speed task (not included in the table) was 0.77, corrected for
a test length of 320 trials.

Convergent validity of ANS acuity measures
We investigated the convergent validity of the different measures
of ANS acuity (i.e., the extent to which they measure the same
construct) by calculating all pairwise correlations between the
measures of ANS acuity. For the tasks that participants performed
twice we constructed an aggregated score before calculating the
correlations. Table 2, which includes correlations adjusted for
reliability, displays the results12. As can be seen, there are several
significant correlations. However, considering that all measures
are expected to measure the same construct correlations are mod-
erate to low, with the exception of the both dependent measures of
the static tasks (w, P) (r = 0.95). These low correlations could, be
the result of low reliability. Correcting for reliability reveals that
there are, indeed, strong relationships between some of the mea-
sures. For example, the corrected correlations between the static

12For some of these measures (w, numeric distance effect on RT), a small score
suggests better ANS discrimination. For other measures (P, numeric distance
effect based on P) a high (or less negative) score indicates better precision. To
simplify interpretation of data, the sign of all correlations (and beta-weights)
reported below were arranged so that a positive correlation means that supe-
rior performance on one measure is associated with superior performance on
the other measure.

and adaptive simultaneous tasks (w) (r = 0.88), (P) (r = 0.88),
are very high, as well as the correlation between the two depen-
dent measures calculated for the static direct task (r = 0.95).
The adjusted correlations between the non-symbolic NDE mea-
sure for P and the static task measures measure are also high.
(However, all adjusted measures for the non-symbolic P effect
should be interpreted with caution, since the extremely low reli-
ability for this variable will boost all correlations greatly.) A
bit surprisingly, in spite of the high reliability found for the
sequential discrimination task w-measure, this variable is unre-
lated to all other measures, even after adjustment for attenuation.
The most striking result is that the non-symbolic (RT) NDE
measure correlates negatively with all direct task measures. The
adjusted negative correlation between this measure and the adap-
tive simultaneous task is even extremely high (−0.89). While
measures 1–4 are direct measures of ANS acuity measures 5–7
are indirect measures. The results indicate that there is a weak
or negative relationship between these two types of measures.
The only positive correlation between these measures is the cor-
relation between the symbolic distance task and the adaptive
simultaneous task (0.52 adjusted). However, the results for this
variable are inconclusive, since no correlation was found for
the other direct measures. It should also be noted that perfor-
mance on the perceptual speed task (not in the table) corre-
lated significantly only with the symbolic version of the NDE
[r = 0.38 (0.45)]13.

The results of the analyses of convergent validity indicate that
all of the measures that have been used in previous research do
not measure the same construct. More specifically, there seems to
be a weak or even negative relationship between direct and indi-
rect measures of ANS acuity, suggesting that some of the mixed
results reported in previous work (Halberda et al., 2008; Inglis
et al., 2011) might very well be due to methodological differences.

Predictive validity14

The predictive validity of the tasks used to measure ANS acu-
ity was evaluated by calculating the Pearson correlation between

13We also performed a principal components factor analysis on all measures
of ANS acuity (coded so that a positive value indicates better performance),
the arithmetic fluency task and the inspection time task. This analysis revealed
a three factor solution. The three simultaneous measures and arithmetic flu-
ency had high positive loadings on the first factor, whereas NDE-RT loaded
strongly but negatively on the same factor. We interpret this factor as arith-
metic predisposition. The sequential test, symbolic NDE and the inspection
time task all loaded positively on the second factor, which we interpret as a
working memory/attention over time factor. Finally, the inspection time task
also loaded in a third factor together with the NDE-P measure. This factor is
harder to interpret. All factors had eigenvalues larger than 1, with a total of
64% explained variance, and all factor loadings were larger than 0.5.
14The term predictive validity, (or criterion-related validity) generally refers to
the extent to which a measure allows discrimination between participants on
basis of a behavioral criterion, as used here arithmetic fluency. It should be
noted that a failure to find correlations with this criterion could mean either
that the measure lacks in psychometric quality or that we are mistaken in our
assumptions regarding the behavior that the measure should predict. Because
several studies have established such correlations, and these associations are
the main reason the research area has attracted so much recent interest, we
have chosen to refer to this as “predictive validity,” in spite of the reasonable
objections that could be raised against the use of the term.
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Table 2 | Pairwise correlations between proposed measures of ANS capacity.

Task (Measure)

Task (Measure) 1 2 3 4 5 6 7

ADAPTIVE

1. Simultaneous 0.74

2. Sequential 0.34* (0.41) 0.92

STATIC

3. (w ) 0.48* (0.88) 0.00 (0.00) 0.40

4. (P) 0.48* (0.88) −0.03 (−0.05) 0.95*a 0.40

NUMERIC DISTANCE

5. Non-symbolic (RT) −0.48* (−0.89) −0.11 (−0.18) −0.41*a −0.42*a 0.39

6. Non-symbolic (P) 0.14 (0.42) −0.15 (−0.40) 0.23 (0.94) 0.41*a −0.04 (−0.17) 0.15

7. Symbolic 0.37* (0.52) 0.17 (0.21) −0.04 (−0.08) 0.01 (0.02) −0.11 (−0.21) −0.08 (−0.25) 0.69

Note: Correlations in bold along the diagonal are reliability coefficients for the current test length. Signs of the correlations have been transformed so that a positive

sign indicates a positive functional association. Included in brackets are correlations adjusted for reliability.
*p < 0.05.
aCorrected reliabilities exceeded 1 and were therefore excluded.

Table 3 | Correlations between all measures of ANS acuity and arithmetic fluency and intelligence (Raven’s matrices).

Math task

Acuity task Addition Subtraction Multiplication Division Total Raven’s

ADAPTIVE

Simultaneous 0.43* 0.31* 0.30** 0.10 0.32* 0.22

Sequential 0.07 0.12 0.02 −0.14 0.02 0.22

STATIC

(w ) 0.32* 0.39* 0.20 0.07 0.28*** 0.09

(P) 0.40* 0.41* 0.28*** 0.16 0.35* 0.09

NUMERIC DISTANCE

Non-symbolic (RT) −0.28 −0.24 −0.12 −0.11 −0.22 −0.15

Non-symbolic (P) 0.11 −06 0.03 0.13 0.10 −0.12

Symbolic 0.23 0.07 0.18 0.09 0.16 0.01

Note: Signs of the correlations have been transformed so that a positive sign indicates a positive association.
*p < 0.05, **p = 0.06, ***p = 0.08.

the measures and all four subtests of the arithmetic fluency task,
an aggregated measure of arithmetic fluency and performance
on Raven’s matrices. The results, summarized in Table 3, show
that while the direct measures that use simultaneous presentation
are related to arithmetic fluency, the sequential adaptive measure
and the indirect measures are not. For the non-symbolic (RT)
measure, the sign of all correlations is negative, even though not
statistically significant. Notice that it is foremost a somewhat sim-
pler, or basic, arithmetic fluency (BARF) in terms of an addition
and subtraction skill that is related to ANS acuity, rather than
the more advanced skills of multiplication and division. Division
performance does not correlate with any measure. Further, none
of the seven measures are significantly related to performance on
Raven’s matrices.

To investigate the possibility that basic arithmetic fluency
(BARF) could be predicted by ANS acuity after controlling for
intelligence and perceptual speed we ran multiple regression
analyses for each proposed measure of ANS acuity, with a

composite measure of performance on addition and subtrac-
tion as dependent variable and controlling for perceptual speed,
and intelligence (Raven’s matrices). The results, summarized in
Table 4, indicate that the three measures obtained by direct simul-
taneous tests predict performance in basic arithmetic tasks even
after controlling for perceptual speed and intelligence. No other
measures of ANS are even close of being significantly related to
arithmetic fluency.

Stimulus difficulty and predictive validity
The analysis of reliability in Study 1 revealed higher reliabilities
for easier stimuli. We therefore performed corresponding anal-
yses for predictive validity estimates for the different stimulus
ratios of the static task (P). The zero order correlations between
the test previously shown to be associated with highest relia-
bility (made up of the 1:2 and 3:4) ratios with BARF was not
significant [r(38) = 0.21, p = 0.19]. The corresponding correla-
tion for the test previously shown to be associated with lowest
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reliability (made up of the 7:8 and 9:10) ratios, however, was sig-
nificant [r(38) = 0.38, p = 0.017]. Thus, paradoxically, the stimuli
with lower reliability showed predictive validity, but not the stim-
uli with higher reliability. We conducted a multiple regression
analysis with performance at each of the stimuli ratios (P) as pre-
dictor variables and BARF as dependent variable. The results are
shown in Table 5, which reveals that the 7:8 ratio is the only stim-
ulus that contributes to predictive validity. Removing all other
predictor variables lead to no significant reduction in R2. The
easier stimuli (ratio 1:2) do even have negative beta-weights.

Gain in reliability by the adaptive test
The results in Tables 3, 4 indicate that both the simultaneous
direct discrimination tasks have significant predictive validity.
However, as can be seen in Table 1 there is a considerable dif-
ference in reliability for the same number of trials. To estimate
the gain in reliability of using the adaptive simultaneous over the
static task we used the Spearman–Brown prophecy to estimate
the number of trials required to achieve an acceptable (0.8), high
(0.9), and very high (0.95) reliability for the two tasks. The results
are summarized in Table 6 and indicate that the adaptive task
requires about 40% fewer trials than the static task to reach the
same level of reliability. Thus, using ∼350 trials the adaptive task
is a measure of ANS acuity, which is both highly reliable and valid.

Table 4 | Multiple regression models for each ANS acuity measure,

with basic arithmetic fluency (addition and subtraction) as

dependent variable and perceptual speed, intelligence (Raven’s

matrices) as predictors.

Acuity task ANS Speed Raven’s R2 (model p)

ADAPTIVE

Simultaneous 0.33* 0.00 0.28*** 0.23 (0.02)

Sequential 0.02 0.01 0.35* 0.13 (0.18)

STATIC

(w ) 0.36* 0.08 0.31* 0.25 (0.01)

(P) 0.40* 0.07 0.30* 0.29 (0.01)

NUMERIC DISTANCE

Non-symbolic (RT) −0.23 0.03 0.31** 0.18 (0.07)

Non-symbolic (P) 0.14 0.01 0.37* 0.14 (0.13)

Symbolic 0.17 0.04 0.36* 0.15 (0.11)

Note: Signs of the beta-weights have been transformed so that a positive sign

indicates a positive association.
*p < 0.05, **p = 0.05, ***p = 0.07.

GENERAL DISCUSSION
When chasing after one of the groups of gazelles on your hunt-
ing expedition you can only hope that your ANS has helped you
make a correct decision. Even though previous research has not
investigated how individual differences in ANS acuity relate to
decisions like the one on your hunting expedition per se, an exten-
sive body of research has investigated how ANS acuity relates to
a variety of cognitive abilities (Halberda and Feigenson, 2008;
Halberda et al., 2008; Mazzocco et al., 2011a,b) and cognitive
impairments (Wilson et al., 2006; Räsänen et al., 2009; Mazzocco
et al., 2011a,b). However, the methods used to measure ANS acu-
ity are many and until recently not much attention has been given
to the reliability and validity of these methods (but see Maloney
et al., 2010; Gebuis and van der Smagt, 2011; Gilmore et al., 2011;
Inglis et al., 2011; Price et al., 2012). The large differences in
tasks and dependent measures might be one explanation for the
somewhat mixed results from previous research.

In the present paper we conducted two studies to further inves-
tigate issues concerning reliability and validity of ANS acuity
measures and to, if possible, develop a task that measures ANS
acuity reliably in a reasonable number of trials. In Study 1 we
evaluated the empirical reliability of a task that is commonly used
to measure ANS acuity as a function of the number of trials par-
ticipants need to perform. The results indicated that a substantial
number of trials were needed to reach an acceptable reliability and
that previous studies using small numbers of trials probably suf-
fer from low reliability. The results from the simulations showed
that even in a world with perfect error free measurements, sam-
pling error alone will attenuate the reliability coefficients when
the number of trials is low. Analyses of stimulus difficulty and
reliability revealed that easier stimuli prove more reliable than the
hard, probably due to smaller error variance in these stimuli.

The results from Study 1 indicated the need for a task that can
measure ANS acuity with acceptable reliability using a limited
number of trials and without a requirement of post-hoc estima-
tion of w using the linear model. The aim of Study 2 was to
develop such a task based on the ZEST algorithm. Study 2 was also
designed to further evaluate the reliability and validity of different
measures of ANS acuity using a within-subject design.

The results of Study 2 revealed that the adaptive task was more
reliable than the static task with the same number of trials. In fact
the adaptive task could reach a given reliability in ∼60% of the
number of trials required for the non-adaptive task. Further, an
analysis of convergent validity indicated that while direct mea-
sures with simultaneous stimulus presentation are highly related,
indirect measures and sequential tasks are not. The non-symbolic

Table 5 | Multiple regression models [(beta-weights (p-value)], with arithmetic fluency as dependent variable and discrimination performance

(P) at the different stimulus ratios (difficulties) as predictors.

Dependent Predictor

1:2 3:4 5:6 7:8 9:10 R2

Basic −0.12 (0.41) 0.14 (0.38) 0.26 (0.11) 0.41 (0.008) 0.11 (0.47) 0.28

Advanced −0.30 (0.06) 0.036 (0.82) 0.23 (0.18) 0.34 (0.033) 0.04 (0.81) 0.23

Total −0.21 (0.16) 0.09 (0.56) 0.25 (0.12) 0.39 (0.012) 0.08 (0.61) 0.28
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Table 6 | The (approximate) minimum number of trials needed to

reach a reliability of 0.8, 0.9, and 0.95 for the adaptive and static

simultaneous tasks, respectively.

Measure Desired reliability

0.8 0.9 0.95

Adaptive-Simultaneous 350 770 1630

Static (w /P) 600 1350 2900

(RT) NDE measure has been called a “key-metric of ANS acuity”
(Price et al., 2012, p.50). Remarkably, this measure showed a sta-
tistically significant negative convergent validity with the direct
measures. We know of only one other study (Price et al., 2012)
that has calculated the NDE (RT) measure and w on the same
data. Price and colleagues found no correlation between these
measures on two out of three tests and a significant negative cor-
relation on the third, a finding that together with our results
suggest that indirect and direct indices do not measure the same
thing. This is further supported by results from a recent arti-
cle (Nys et al., 2013) showing that unschooled adults who had
never received math education had both a larger error rate and
a smaller NDE on a non-symbolic comparison task, than did
schooled adults who had attended regular school in childhood.
That is, poorer discriminability (i.e., larger w) was related to a
smaller NDE.

The idea that the NDE can be used as an index of the qual-
ity of the representation of number has been very influential, but
its origin is vague and not well-supported empirically. It prob-
ably comes from the attractiveness of theoretical models that
by assuming a Gaussian internal number coding and sequen-
tial accumulation of evidence can generate relations between
RT, accuracy and number distance that mimic the NDE (see
Dehaene, 1992, 2007, 2009; Link, 1992; Cordes et al., 2001). In
these models, the degree of overlap between representations (the
imprecision of the representations) determines the size of the
NDE (but see Van Opstal et al., 2008 for an account of number
representation that gives the NDE without assuming overlapping
representations). If future research confirms the suspicion that
the non-symbolic NDE is not an appropriate index of the preci-
sion of non-symbolic number representations, previous research
has to be reinterpreted. For example, Holloway and Ansari (2009)
observed a correlation between the symbolic distance effect and
mathematics achievement, but no corresponding correlation for a
non-symbolic NDE. Mundy and Gilmore (2009) found the same
pattern of results. However, their results showed that while the
non-symbolic NDE did not correlate with math performance,
overall performance on the non-symbolic task did. This result
also suggests that the non-symbolic NDE is a poor estimator
of non-symbolic representation precision. Holloway and Ansari
(2009) suggested that their results questioned both the notion
that the processing of non-symbolic magnitude serves as a precur-
sor to the symbolic representation of number and that mapping
of abstract symbols onto non-symbolic representations plays an
important role when acquiring Arabic numerals. However, this
finding could be accounted for by the non-symbolic NDE not

being a valid measure of non-symbolic number representation
precision. Thus, several studies, all using direct measures of the
acuity of non-symbolic number representations suggest that there
is such a connection (Halberda et al., 2008; Piazza et al., 2010;
Libertus et al., 2011; Mazzocco et al., 2011a,b; Desoete et al.,
2012).

Further, only the direct measures with parallel, simultaneous
stimulus presentation exhibited predictive validity while indirect
measures of ANS acuity were neither reliable nor showed predic-
tive validity. The non-symbolic (RT) measure in the present study
was not reliable, it lacked convergent validity, or showed even neg-
ative convergent validity, and the predictive validity coefficients
were non-significant and of negative signs. All three dependent
measures calculated from tests with parallel stimulus presentation
on the other hand predicted arithmetic fluency even after control-
ling for general cognitive functioning and perceptual speed. These
results are in contrast to the results of Price et al. (2012) who did
not find correlations between arithmetic fluency and a direct test
with parallel stimulus presentation. One possible explanation for
this discrepancy is the use of different measures of mathemati-
cal achievement. While we use a simple measure of arithmetic
fluency, Price and colleagues used the more complex Woodcock
Johnson Math Fluency subtest (Woodcock et al., 2001). Another
possibility is that the population correlation is low. If so, larger
sample sizes would be required to increase the statistical power of
documenting the relationship consistently.

In line with previous research (Price et al., 2012) we found
no predictive validity for the sequential direct task. This is inter-
esting, because the difference cannot be attributed to lack in
reliability in the sequential measure, which was higher than in
the direct tests with simultaneous stimulus presentation. The
reason for this lack of predictive validity is unclear. One possi-
bility is that sequential tests involve working memory processes
in that the first numerosity needs to be retained in memory
when comparing it to the second (as suggested by the factor
analysis). It is also possible that the in psychophysical discrimi-
nation tasks commonly observed time-order error (TOE) plays
a role in the sequential task. The TOE suggests that when two
stimuli are presented sequentially, the second is experienced as
more intense. We have (Lindskog et al., 2013b) shown that the
TOE does occur for numerosity judgments. It is possible that
in sequential tasks individual differences in w reflect differences
in susceptibility to such TOE effects. This could, of course, only
be the case if individual differences in TOE are not critical in
arithmetic ability. Based on previous research there are at least
no obvious a priori reasons which suggest that arithmetic abil-
ity should covary with TOE. Most studies on adults that have
shown predictive validity have used parallel stimulus presenta-
tion, but such validity has also been shown in at least one study
with sequential presentation (Gebuis and van der Smagt, 2011).
It is unclear what could account for these differences, but a dis-
crepancy to the present study, is that Gebuis and van Der Smagt
used a longer inter-stimulus interval (800 ms) and a constant
standard stimulus reappearing on all trials. Another interesting
finding is that performance measures using proportion correct
and w on direct tests showed virtually identical properties both
for reliability and predictive validity. This means that the rather
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cumbersome fitting procedure involved in obtaining w estimates
is unnecessary when absolute estimates of this measure is not the
primary objective.

In order to measure ANS acuity with a measure that is both
reliable and valid, it is preferable to use a direct measure with
simultaneous stimulus presentation. Further, using the adaptive
task developed in Study 2 this could be done more efficiently, with
respect to the number of trials, than by using previously suggested
methods (e.g., Halberda et al., 2008).

Whereas easier stimuli were more reliable, paradoxically these
stimuli were found not to contribute to predictive validity, which
suggests an intriguing trade-off between reliability and validity.
Predictive validity was quite narrowly pinned down to the 7:8
ratio in the present study. This finding clearly needs to be repli-
cated since it is based on very limited sample sizes. However,
the finding suggests that it is only discriminations at a particular
difficulty that are critical for obtaining correlations with arith-
metic performance. This “optimal” difficulty level probably varies
between participant populations, so that it for example is at a

different level for children than for adults. This is, in addition
to the fact that more difficult stimuli will demand more trials to
reach an adequate reliability, another reason that speaks for the
use of adaptive tests that adjust the difficulty level to an individ-
ual level. The result that predictive validity may be found only at
an appropriate level of difficulty possibly also has contributed to
the inconsistent results in previous research.

The growing interest in the ANS and how individual differ-
ences in the system relate to other cognitive abilities highlights the
need for reliable and valid measures of ANS acuity. The present
paper contributes with an analysis of commonly used measures
and models. However, further research is needed to thoroughly
map out how different tasks that measure ANS acuity are related
and to which extent they measure what is intended.
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